Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,899)

Search Parameters:
Keywords = lake management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 26161 KiB  
Article
Adaptive Intermodal Transportation for Freight Resilience: An Integrated and Flexible Strategy for Managing Disruptions
by Siyavash Filom, Satrya Dewantara, Mahnam Saeednia and Saiedeh Razavi
Logistics 2025, 9(3), 107; https://doi.org/10.3390/logistics9030107 - 6 Aug 2025
Abstract
Background: Disruptions in freight transportation—such as service delays, infrastructure failures, and labor strikes—pose significant challenges to the reliability and efficiency of intermodal networks. To address these challenges, this study introduces Adaptive Intermodal Transportation (AIT), a resilient and flexible planning framework that enhances [...] Read more.
Background: Disruptions in freight transportation—such as service delays, infrastructure failures, and labor strikes—pose significant challenges to the reliability and efficiency of intermodal networks. To address these challenges, this study introduces Adaptive Intermodal Transportation (AIT), a resilient and flexible planning framework that enhances Synchromodal Freight Transport (SFT) by integrating real-time disruption management. Methods: Building on recent advances, we propose two novel strategies: (1) Reassign with Delay Buffer, which enables dynamic rerouting of shipments within a user-defined delay tolerance, and (2) (De)Consolidation, which allows splitting or merging of shipments across services depending on available capacity. These strategies are incorporated into a re-planning module that complements a baseline optimization model and a continuous disruption-monitoring system. Numerical experiments conducted on a Great Lakes-based case study evaluate the performance of the proposed strategies against a benchmark approach. Results: Results show that under moderate and high-disruption conditions, the proposed strategies reduce delay and disruption-incurred costs while increasing the percentage of matched shipments. The Reassign with Delay Buffer strategy offers controlled flexibility, while (De)Consolidation improves resource utilization in constrained environments. Conclusions: Overall, the AIT framework demonstrates strong potential for improving operational resilience in intermodal freight systems by enabling adaptive, disruption-aware planning decisions. Full article
Show Figures

Figure 1

18 pages, 11555 KiB  
Article
Impacts of Land Use and Hydrological Regime on the Spatiotemporal Distribution of Ecosystem Services in a Large Yangtze River-Connected Lake Region
by Ying Huang, Xinsheng Chen, Ying Zhuo and Lianlian Zhu
Water 2025, 17(15), 2337; https://doi.org/10.3390/w17152337 - 6 Aug 2025
Abstract
In river-connected lake regions, both land use and hydrological regime changes may affect the ecosystem services; however, few studies have attempted to elucidate their complex influences. In this study, the spatiotemporal dynamics of eight ecosystem services (crop production, aquatic production, water yield, soil [...] Read more.
In river-connected lake regions, both land use and hydrological regime changes may affect the ecosystem services; however, few studies have attempted to elucidate their complex influences. In this study, the spatiotemporal dynamics of eight ecosystem services (crop production, aquatic production, water yield, soil retention, flood regulation, water purification, net primary productivity, and habitat quality) were investigated through remote-sensing images and the InVEST model in the Dongting Lake Region during 2000–2020. Results revealed that crop and aquatic production increased significantly from 2000 to 2020, particularly in the northwestern and central regions, while soil retention and net primary productivity also improved. However, flood regulation, water purification, and habitat quality decreased, with the fastest decline in habitat quality occurring at the periphery of the Dongting Lake. Land-use types accounted for 63.3%, 53.8%, and 40.3% of spatial heterogeneity in habitat quality, flood regulation, and water purification, respectively. Land-use changes, particularly the expansion of construction land and the conversion of water bodies to cropland, led to a sharp decline in soil retention, flood regulation, water purification, net primary productivity, and habitat quality. In addition, crop production and aquatic production were higher in cultivated land and residential land, while the accompanying degradation of flood regulation, water purification, and habitat quality formed a “production-pollution-degradation” spatial coupling pattern. Furthermore, hydrological fluctuations further complicated these dynamics; wet years amplified agricultural outputs but intensified ecological degradation through spatial spillover effects. These findings underscore the need for integrated land-use and hydrological management strategies that balance human livelihoods with ecosystem resilience. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

20 pages, 5212 KiB  
Article
Assessing the Land Surface Temperature Trend of Lake Drūkšiai’s Coastline
by Jūratė Sužiedelytė Visockienė, Eglė Tumelienė and Rosita Birvydienė
Land 2025, 14(8), 1598; https://doi.org/10.3390/land14081598 - 5 Aug 2025
Abstract
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its [...] Read more.
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its legacy continues to influence the lake’s thermal regime. Using Landsat 8 thermal infrared imagery and NDVI-based methods, we analysed spatial and temporal LST variations from 2013 to 2024. The results indicate persistent temperature anomalies and elevated LST values, particularly in zones previously affected by thermal discharges. The years 2020 and 2024 exhibited the highest average LST values; some years (e.g., 2018) showed lower readings due to localised environmental factors such as river inflow and seasonal variability. Despite a slight stabilisation observed in 2024, temperatures remain higher than those recorded in 2013, suggesting that pre-industrial thermal conditions have not yet been restored. These findings underscore the long-term environmental impacts of industrial activity and highlight the importance of satellite-based monitoring for the sustainable management of land, water resources, and coastal zones. Full article
Show Figures

Figure 1

17 pages, 4589 KiB  
Article
Evaluation of Slope Stability and Landslide Prevention in a Closed Open-Pit Mine Used for Water Storage
by Pengjiao Zhang, Yuan Gao, Yachao Liu and Tianhong Yang
Appl. Sci. 2025, 15(15), 8659; https://doi.org/10.3390/app15158659 (registering DOI) - 5 Aug 2025
Abstract
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model [...] Read more.
To study and quantify the impact of water storage on lake slope stability after the closure of an open-pit mine, we targeted slope control measures by large-scale parallel computing methods and strength reduction theory. This was based on a three-dimensional refined numerical model to simulate the evolution of slope stability under different water storage levels and backfilling management conditions, and to quantitatively assess the risk of slope instability through the spatial distribution of stability coefficients. This study shows that during the impoundment process, the slope stability has a nonlinear decreasing trend due to the decrease in effective stress caused by the increase in pore water pressure. When the water storage was at 0 m, the instability range is the largest, and the surface range is nearly 200 m from the edge of the pit; when the water level continued to rise to 50 m, the hydrostatic pressure of the pit lake water on the slope support effect began to appear, and the stability was improved, but there is still a wide range of unstable areas at the bottom. In view of the unstable area of the steep slope with soft rock in the north slope during the process of water storage, the management scheme of backfilling the whole bottom to −150 m was proposed, and the slope protection and pressure footing were formed by discharging the soil to −40 m in steps to improve the anti-slip ability of the slope. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

19 pages, 4452 KiB  
Article
Artificial Surface Water Construction Aggregated Water Loss Through Evaporation in the North China Plain
by Ziang Wang, Yan Zhou, Wenge Zhang, Shimin Tian, Yaoping Cui, Haifeng Tian, Xiaoyan Liu and Bing Han
Remote Sens. 2025, 17(15), 2698; https://doi.org/10.3390/rs17152698 - 4 Aug 2025
Viewed by 175
Abstract
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of [...] Read more.
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of regional water resources and assessing their current status. Therefore, a deep understanding of its changing patterns and driving forces is essential for achieving the sustainable management of water resources. In this study, we examined the interannual variability and trends of SWA in the NCP from 1990 to 2023 using annual 30 m water body maps generated from all available Landsat imagery, a robust water mapping algorithm, and the cloud computing platform Google Earth Engine (GEE). The results showed that the SWA in the NCP has significantly increased over the past three decades. The continuous emergence of artificial reservoirs and urban lakes, along with the booming aquaculture industry, are the main factors driving the growth of SWA. Consequently, the expansion of artificial water bodies resulted in a significant increase in water evaporation (0.16 km3/yr). Moreover, the proportion of water evaporation to regional evapotranspiration (ET) gradually increased (0–0.7%/yr), indicating that the contribution of water evaporation from artificial water bodies to ET is becoming increasingly prominent. Therefore, it can be concluded that the ever-expanding artificial water bodies have become a new hidden danger affecting the water security of the NCP through evaporative loss and deserve close attention. This study not only provides us with a new perspective for deeply understanding the current status of water resources security in the NCP but also provides a typical case with great reference value for the analysis of water resources changes in other similar regions. Full article
Show Figures

Figure 1

14 pages, 3622 KiB  
Article
Environmental DNA Metabarcoding as a Tool for Fast Fish Assessment in Post-Cleanup Activities: Example from Two Urban Lakes in Zagreb, Croatia
by Matej Vucić, Thomas Baudry, Dušan Jelić, Ana Galov, Željko Pavlinec, Lana Jelić, Biljana Janev Hutinec, Göran Klobučar, Goran Slivšek and Frédéric Grandjean
Fishes 2025, 10(8), 375; https://doi.org/10.3390/fishes10080375 - 4 Aug 2025
Viewed by 149
Abstract
This study evaluated the effectiveness of eDNA metabarcoding in assessing fish communities in two urban lakes (First Lake and Second Lake) in Zagreb, Croatia, following IAS removal. Water samples were collected in April and June 2024 and analyzed using MiFish primers targeting the [...] Read more.
This study evaluated the effectiveness of eDNA metabarcoding in assessing fish communities in two urban lakes (First Lake and Second Lake) in Zagreb, Croatia, following IAS removal. Water samples were collected in April and June 2024 and analyzed using MiFish primers targeting the 12S rRNA gene. The results indicated that the cleanup efforts were largely successful, as several IAS previously recorded in these lakes were not detected (Ameiurus melas, Lepomis gibbosus, and Hypophthalmichthys spp.). However, some others persisted in low relative abundances, such as grass carp (Ctenopharyngodon idella), topmouth gudgeon (Pseudorasbora parva), and prussian/crucian carp (Carassius sp.). Species composition differed between lakes, with common carp (Cyprinus carpio) dominating Maksimir First Lake, while chub (Squalius cephalus) was prevalent in Maksimir Second Lake. Unexpected eDNA signals from salmonid and exotic species suggest potential input from upstream sources, human activity, or the nearby Zoo Garden. These findings underscore the utility of eDNA metabarcoding in biodiversity monitoring and highlight the need for continuous surveillance and adaptive management strategies to ensure long-term IAS control. Full article
Show Figures

Figure 1

22 pages, 7156 KiB  
Communication
Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake
by Tseren Ochir Soyol-Erdene, Ganbat Munguntsetseg, Zambuu Burmaa, Ulziibat Bilguun, Shagijav Oyungerel, Soninkhishig Nergui, Nyam-Osor Nandintsetseg, Michael Walther and Ulrich Kamp
Geographies 2025, 5(3), 38; https://doi.org/10.3390/geographies5030038 - 1 Aug 2025
Viewed by 493
Abstract
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized [...] Read more.
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized by the international organization Birdlife. However, the construction of the Taishir Hydroelectric Power Station, aimed at supplying electricity to the western provinces of Mongolia, had a detrimental effect on the flow of the Zavkhan River, resulting in a drying-up and pollution of Lake Ereen, which relies on the river as its water source. This study assesses the pollution levels in Ereen Lake and determines the feasibility of its rehabilitation by redirecting the flow of the Zavkhan River. Field studies included the analysis of water quality, sediment contamination, and the composition of flora. The results show that the concentrations of ammonium, chlorine, fluorine, and sulfate in the lake water exceed the permissible levels set by the Mongolian standard. Analyses of elements from sediments revealed elevated levels of arsenic, chromium, and copper, exceeding international sediment quality guidelines and posing risks to biological organisms. Furthermore, several species of diatoms indicative of polluted water were discovered. Lake Ereen is currently in a eutrophic state and, based on a water quality index (WQI) of 49.4, also in a “polluted” state. Mass balance calculations and box model analysis determined the period of pollutant replacement for two restoration options: drying-up and complete removal of contaminated sediments and plants vs. dilution-flushing without direct interventions in the lake. We recommend the latter being the most efficient, eco-friendly, and cost-effective approach to rehabilitate Lake Ereen. Full article
Show Figures

Figure 1

15 pages, 3267 KiB  
Article
Monitoring and Analyzing Aquatic Vegetation Using Sentinel-2 Imagery Time Series: A Case Study in Chimaditida Shallow Lake in Greece
by Maria Kofidou and Vasilios Ampas
Limnol. Rev. 2025, 25(3), 35; https://doi.org/10.3390/limnolrev25030035 - 1 Aug 2025
Viewed by 143
Abstract
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field [...] Read more.
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field measurements. Data processing was performed using Google Earth Engine and QGIS. The study focuses on discriminating and mapping two classes of aquatic surface conditions: areas covered with Floating and Emergent Aquatic Vegetation and open water, covering all seasons from 1 March 2024, to 28 February 2025. Spectral bands such as B04 (red), B08 (near infrared), B03 (green), and B11 (shortwave infrared) were used, along with indices like the Modified Normalized Difference Water Index and Normalized Difference Vegetation Index. The classification was enhanced using Otsu’s thresholding technique to distinguish accurately between Floating and Emergent Aquatic Vegetation and open water. Seasonal fluctuations were observed, with significant peaks in vegetation growth during the summer and autumn months, including a peak coverage of 2.08 km2 on 9 September 2024 and a low of 0.00068 km2 on 28 December 2024. These variations correspond to the seasonal growth patterns of Floating and Emergent Aquatic Vegetation, driven by temperature and nutrient availability. The study achieved a high overall classification accuracy of 89.31%, with producer accuracy for Floating and Emergent Aquatic Vegetation at 97.42% and user accuracy at 95.38%. Validation with Unmanned Aerial Vehicle-based aerial surveys showed a strong correlation (R2 = 0.88) between satellite-derived and field data, underscoring the reliability of Sentinel-2 for aquatic vegetation monitoring. Findings highlight the potential of satellite-based remote sensing to monitor vegetation health and dynamics, offering valuable insights for the management and conservation of freshwater ecosystems. The results are particularly useful for governmental authorities and natural park administrations, enabling near-real-time monitoring to mitigate the impacts of overgrowth on water quality, biodiversity, and ecosystem services. This methodology provides a cost-effective alternative for long-term environmental monitoring, especially in regions where traditional methods are impractical or costly. Full article
Show Figures

Figure 1

21 pages, 2593 KiB  
Article
Climate Change Impacts on Grey Water Footprint of Agricultural Total Nitrogen in the Yangtze River Basin Based on SSP–InVEST Coupling
by Na Li, Hongliang Wu and Feng Yan
Agronomy 2025, 15(8), 1844; https://doi.org/10.3390/agronomy15081844 - 30 Jul 2025
Viewed by 267
Abstract
With climate change, the spatial and temporal patterns of precipitation are altered to a certain degree, which potentially affects the grey water footprint (GWF) of total nitrogen (TN) in agriculture, thereby threatening water security in the Yangtze River Basin (YRB), the largest river [...] Read more.
With climate change, the spatial and temporal patterns of precipitation are altered to a certain degree, which potentially affects the grey water footprint (GWF) of total nitrogen (TN) in agriculture, thereby threatening water security in the Yangtze River Basin (YRB), the largest river in China. The current study constructs an assessment framework for climate change impacts on the GWF of agricultural TN by coupling Shared Socioeconomic Pathways (SSPs) with the InVEST model. The framework consists of four components: (i) data collection and processing, (ii) simulating the two critical indicators (LTN and W) in the GWF model based on the InVEST model, (iii) calculating the GWF and GWF index (GI) of TN, and (iv) calculating climate change impact index on GWF of agricultural TN (CI) under two SSPs. It is applied to the YRB, and the results show the following: (i) GWFs are 959.7 and 961.4 billion m3 under the SSP1-2.6 and SSP5-8.5 climate scenarios in 2030, respectively, which are both lower than that in 2020 (1067.1 billion m3). (ii) The GI values for TN in 2030 under SSP1-2.6 and SSP5-8.5 remain at “High” grade, with the values of 0.95 and 1.03, respectively. Regionally, the water pollution level of Taihu Lake is the highest, while that of Wujiang River is the lowest. (iii) The CI values of the YRB in 2030 under SSP1-2.6 and SSP5-8.5 scenarios are 0.507 and 0.527, respectively. And the CI values of the five regions in the YRB are greater than 0, indicating that the negative effects of climate change on GWFs increase. (iv) Compared with 2020, LTN and W in YRB in 2030 under the two SSPs decrease, while the GI of TN in YRB rises from SSP1-2.6 to SSP5-8.5. The assessment framework can provide strategic recommendations for sustainable water resource management in the YRB and other regions globally under climate change. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

25 pages, 3102 KiB  
Article
Rainfall Drives Fluctuating Antibiotic Resistance Gene Levels in a Suburban Freshwater Lake
by Jack Roddey, Karlen Enid Correa Velez and R. Sean Norman
Water 2025, 17(15), 2260; https://doi.org/10.3390/w17152260 - 29 Jul 2025
Viewed by 381
Abstract
Antibiotic resistance genes (ARGs) in suburban freshwater ecosystems pose a growing public health concern by potentially reducing the effectiveness of medical treatments. This study investigated how rainfall influences ARG dynamics in Lake Katherine, a 62-hectare suburban lake in Columbia, South Carolina, over one [...] Read more.
Antibiotic resistance genes (ARGs) in suburban freshwater ecosystems pose a growing public health concern by potentially reducing the effectiveness of medical treatments. This study investigated how rainfall influences ARG dynamics in Lake Katherine, a 62-hectare suburban lake in Columbia, South Carolina, over one year. Surface water was collected under both dry and post-rain conditions from three locations, and ARGs were identified using metagenomic sequencing. Statistical models revealed that six of nine ARG classes with sufficient data showed significant responses to rainfall. Three classes, Bacitracin, Aminoglycoside, and Unclassified, were more abundant after rainfall, while Tetracycline, Multidrug, and Peptide resistance genes declined. Taxonomic analysis showed that members of the Pseudomonadota phylum, especially Betaproteobacteria, were prevalent among ARG-carrying microbes. These findings suggest that rainfall can alter the distribution of ARGs in suburban lakes, highlighting the importance of routine monitoring and water management strategies to limit the environmental spread of antibiotic resistance. Full article
(This article belongs to the Special Issue Water Safety, Ecological Risk and Public Health)
Show Figures

Graphical abstract

18 pages, 2100 KiB  
Article
Spatial Patterning and Growth of Naturally Regenerated Eastern White Pine in a Northern Hardwood Silviculture Experiment
by David A. Kromholz, Christopher R. Webster and Michael D. Hyslop
Forests 2025, 16(8), 1235; https://doi.org/10.3390/f16081235 - 26 Jul 2025
Viewed by 227
Abstract
In forests dominated by deciduous tree species, coniferous species are often disproportionately important because of their contrasting functional traits. Eastern white pine (Pinus strobus L.), once a widespread emergent canopy species, co-occurs with deciduous hardwoods in the northern Lake States, but is [...] Read more.
In forests dominated by deciduous tree species, coniferous species are often disproportionately important because of their contrasting functional traits. Eastern white pine (Pinus strobus L.), once a widespread emergent canopy species, co-occurs with deciduous hardwoods in the northern Lake States, but is often uncommon in contemporary hardwood stands. To gain insights into the potential utility of hardwood management strategies for simultaneously regenerating white pine, we leveraged a northern hardwood silvicultural experiment with scattered overstory pine. Seven growing seasons post-harvest, we conducted a complete census of white pine regeneration (height ≥ 30 cm) and mapped their locations and the locations of potential seed trees. Pine regeneration was sparse and strongly spatially aggregated, with most clusters falling within potential seed shadows of overstory pines. New recruits were found to have the highest density in a scarified portion of the study area leeward of potential seed trees. Low regeneration densities within treatment units, strong spatial aggregation, and the spatial arrangement of potential seed trees precluded generalizable inferences regarding the utility of specific treatment combinations. Nevertheless, our results underscore the critical importance of residual overstory pines as seed sources and highlight the challenges associated with realizing their potential in managed northern hardwoods. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 2696 KiB  
Article
Evaluation of Multiple Ecosystem Service Values and Identification of Driving Factors for Sustainable Development in the Mu Us Sandy Land
by Chunjun Shi, Yao Yao, Yuyi Gao and Jingpeng Guo
Diversity 2025, 17(8), 516; https://doi.org/10.3390/d17080516 - 26 Jul 2025
Viewed by 270
Abstract
Exploring the evolution of ecosystem services value (ESV) and its drivers is pivotal for optimizing the land-use structure and improving the value of ecosystem services. Using the 1980–2020 land-use/land-cover (LULC) dataset of the Mu Us Sandy Land, this study quantitatively evaluated ESV through [...] Read more.
Exploring the evolution of ecosystem services value (ESV) and its drivers is pivotal for optimizing the land-use structure and improving the value of ecosystem services. Using the 1980–2020 land-use/land-cover (LULC) dataset of the Mu Us Sandy Land, this study quantitatively evaluated ESV through LULC change, analyzing the spatiotemporal evolution characteristics of ESV and its driving forces. The results showed that (1) the LULC changes were stable from 1980 to 2020, and the ESV showed a slight downward trend in general. Grassland and water ecosystem services predominantly influenced ecosystem service function value fluctuations across the study area. (2) ESV demonstrated strong positive spatial autocorrelation, with high-value areas concentrated primarily in Red Alkali Nur, Dawa Nur, Batu Bay, and Ulanmulun Lake and low-value areas mainly distributed in unused land and certain agricultural zones. (3) The land-use degree and human activity intensity index were the main factors leading to the differentiation of ESV. The synergistic effects of human activities, landscape pattern changes, and natural factors led to the spatial differentiation of ESV in the study area. Beyond artificial ecological restoration projects, policies for ecosystem service management should pay more attention to the role of geodiversity in service provision. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

20 pages, 6464 KiB  
Article
Bacterial Communities Respond to Spatiotemporal Fluctuation in Water Quality and Microcystins at Lake Taihu
by Aimin Hao, Dong Xia, Xingping Mou, Sohei Kobayashi, Tomokazu Haraguchi, Yasushi Iseri and Min Zhao
Water 2025, 17(15), 2222; https://doi.org/10.3390/w17152222 - 25 Jul 2025
Viewed by 317
Abstract
Microbial communities are crucial to maintaining the ecological health of lakes, but their response to water quality and eutrophication is poorly understood. This study analyzed seasonal variation in the effect of water quality parameters on microbial community structure and function at southern Lake [...] Read more.
Microbial communities are crucial to maintaining the ecological health of lakes, but their response to water quality and eutrophication is poorly understood. This study analyzed seasonal variation in the effect of water quality parameters on microbial community structure and function at southern Lake Taihu. We observed poor water quality in autumn (low dissolved oxygen concentration and water transparency) with severe eutrophication (high in nitrogen, phosphorus, and microcystins). Microcystins were a major indicator of water quality that affected total phosphorus and dissolved oxygen concentrations. Redundancy analysis revealed that total nitrogen, total phosphorus, nitrate, ammonium, and microcystins, temperature, and dissolved oxygen all significantly influenced the microbial community. Microbial co-occurrence networks revealed significant seasonal variations, with autumn and winter exhibiting a more complex structure than other seasons. Additionally, we identified microcystin-sensitive microbial species as eutrophication indicators; they are involved in bacterial community components and metabolic function and fluctuate under seasonal changes to water quality. In conclusion, our findings provide insight into the relationship between water quality and microbial communities, offering an empirical basis for improving the sustainable management of Lake Taihu. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

26 pages, 11237 KiB  
Article
Reclassification Scheme for Image Analysis in GRASS GIS Using Gradient Boosting Algorithm: A Case of Djibouti, East Africa
by Polina Lemenkova
J. Imaging 2025, 11(8), 249; https://doi.org/10.3390/jimaging11080249 - 23 Jul 2025
Viewed by 491
Abstract
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping [...] Read more.
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping of environmental dynamics enables us to define factors that trigger these processes and are crucial for our understanding of Earth system processes. In this study, a reclassification scheme of image analysis was developed for mapping the adjusted categorisation of land cover types using multispectral remote sensing datasets and Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS) software. The data included four Landsat 8–9 satellite images on 2015, 2019, 2021 and 2023. The sequence of time series was used to determine land cover dynamics. The classification scheme consisting of 17 initial land cover classes was employed by logical workflow to extract 10 key land cover types of the coastal areas of Bab-el-Mandeb Strait, southern Red Sea. Special attention is placed to identify changes in the land categories regarding the thermal saline lake, Lake Assal, with fluctuating salinity and water levels. The methodology included the use of machine learning (ML) image analysis GRASS GIS modules ‘r.reclass’ for the reclassification of a raster map based on category values. Other modules included ‘r.random’, ‘r.learn.train’ and ‘r.learn.predict’ for gradient boosting ML classifier and ‘i.cluster’ and ‘i.maxlik’ for clustering and maximum-likelihood discriminant analysis. To reveal changes in the land cover categories around the Lake of Assal, this study uses ML and reclassification methods for image analysis. Auxiliary modules included ‘i.group’, ‘r.import’ and other GRASS GIS scripting techniques applied to Landsat image processing and for the identification of land cover variables. The results of image processing demonstrated annual fluctuations in the landscapes around the saline lake and changes in semi-arid and desert land cover types over Djibouti. The increase in the extent of semi-desert areas and the decrease in natural vegetation proved the processes of desertification of the arid environment in Djibouti caused by climate effects. The developed land cover maps provided information for assessing spatial–temporal changes in Djibouti. The proposed ML-based methodology using GRASS GIS can be employed for integrating techniques of image analysis for land management in other arid regions of Africa. Full article
(This article belongs to the Special Issue Self-Supervised Learning for Image Processing and Analysis)
Show Figures

Figure 1

24 pages, 3066 KiB  
Article
Urban Flood Susceptibility Mapping Using GIS and Analytical Hierarchy Process: Case of City of Uvira, Democratic Republic of Congo
by Isaac Bishikwabo, Hwaba Mambo, John Kowa Kamanda, Chérifa Abdelbaki, Modester Alfred Nanyunga and Navneet Kumar
GeoHazards 2025, 6(3), 38; https://doi.org/10.3390/geohazards6030038 - 21 Jul 2025
Viewed by 399
Abstract
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy [...] Read more.
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy Process (AHP)-based Multi-Criteria Decision Making approach. It integrates eight factors contributing to flood occurrence: distance from water bodies, elevation, slope, rainfall intensity, drainage density, soil type, topographic wetness index, and land use/land cover. The results indicate that proximity to water bodies, drainage density and slope are the most influential factors driving flood susceptibility in Uvira. Approximately 87.3% of the city’s land area is classified as having high to very high flood susceptibility, with the most affected zones concentrated along major rivers and the shoreline of Lake Tanganyika. The reliability of the AHP-derived weights is validated by a consistency ratio of 0.008, which falls below the acceptable threshold of 0.1. This research provides valuable insights to support urban planning and inform flood management strategies. Full article
Show Figures

Figure 1

Back to TopTop