Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (296)

Search Parameters:
Keywords = laboratory tank

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4557 KiB  
Article
Potential of LiDAR and Hyperspectral Sensing for Overcoming Challenges in Current Maritime Ballast Tank Corrosion Inspection
by Sergio Pallas Enguita, Jiajun Jiang, Chung-Hao Chen, Samuel Kovacic and Richard Lebel
Electronics 2025, 14(15), 3065; https://doi.org/10.3390/electronics14153065 - 31 Jul 2025
Viewed by 176
Abstract
Corrosion in maritime ballast tanks is a major driver of maintenance costs and operational risks for maritime assets. Inspections are hampered by complex geometries, hazardous conditions, and the limitations of conventional methods, particularly visual assessment, which struggles with subjectivity, accessibility, and early detection, [...] Read more.
Corrosion in maritime ballast tanks is a major driver of maintenance costs and operational risks for maritime assets. Inspections are hampered by complex geometries, hazardous conditions, and the limitations of conventional methods, particularly visual assessment, which struggles with subjectivity, accessibility, and early detection, especially under coatings. This paper critically examines these challenges and explores the potential of Light Detection and Ranging (LiDAR) and Hyperspectral Imaging (HSI) to form the basis of improved inspection approaches. We discuss LiDAR’s utility for accurate 3D mapping and providing a spatial framework and HSI’s potential for objective material identification and surface characterization based on spectral signatures along a wavelength range of 400-1000nm (visible and near infrared). Preliminary findings from laboratory tests are presented, demonstrating the basic feasibility of HSI for differentiating surface conditions (corrosion, coatings, bare metal) and relative coating thickness, alongside LiDAR’s capability for detailed geometric capture. Although these results do not represent a deployable system, they highlight how LiDAR and HSI could address key limitations of current practices and suggest promising directions for future research into integrated sensor-based corrosion assessment strategies. Full article
Show Figures

Figure 1

13 pages, 1585 KiB  
Communication
An Inexpensive AI-Powered IoT Sensor for Continuous Farm-to-Factory Milk Quality Monitoring
by Kaneez Fizza, Abhik Banerjee, Dimitrios Georgakopoulos, Prem Prakash Jayaraman, Ali Yavari and Anas Dawod
Sensors 2025, 25(14), 4439; https://doi.org/10.3390/s25144439 - 16 Jul 2025
Viewed by 484
Abstract
The amount of protein and fat in raw milk determines its quality, value in the marketplace, and related payment to suppliers. Technicians use expensive specialized laboratory equipment to measure milk quality in specialized laboratories. The continuous quality monitoring of the milk supply in [...] Read more.
The amount of protein and fat in raw milk determines its quality, value in the marketplace, and related payment to suppliers. Technicians use expensive specialized laboratory equipment to measure milk quality in specialized laboratories. The continuous quality monitoring of the milk supply in the supplier’s tanks enables the production of higher quality products, better milk supply chain optimization, and reduced milk waste. This paper presents an inexpensive AI-powered IoT sensor that continuously measures the protein and fat in the raw milk in the tanks of dairy farms, pickup trucks, and intermediate storage depots across any milk supply chain. The proposed sensor consists of an in-tank IoT device and related software components that run on any IoT platform. The in-tank IoT device quality incorporates a low-cost spectrometer and a microcontroller that can send milk supply measurements to any IoT platform via NB-IoT. The in-tank IoT device of the milk quality sensor is housed in a food-safe polypropylene container that allows its deployment in any milk tank. The IoT software component of the milk quality sensors uses a specialized machine learning (ML) algorithm to translate the spectrometry measurements into milk fat and protein measurements. The paper presents the design of an in-tank IoT sensor and the corresponding IoT software translation of the spectrometry measurements to protein and fat measurements. Moreover, it includes an experimental milk quality sensor evaluation that shows that sensor accuracy is ±0.14% for fat and ±0.07% for protein. Full article
(This article belongs to the Special Issue Advances in Physical, Chemical, and Biosensors)
Show Figures

Figure 1

18 pages, 1812 KiB  
Article
Testing Concrete for the Construction of Winemaking Tanks
by Eleftherios K. Anastasiou, Alexandros Liapis, Eirini-Chrysanthi Tsardaka, Alexandros Chortis and Argyris Gerovassiliou
Appl. Sci. 2025, 15(14), 7816; https://doi.org/10.3390/app15147816 - 11 Jul 2025
Viewed by 212
Abstract
This work focuses on the design of concrete for the construction of winemaking tanks, as well as coating behaviour and stability of the systems in wine immersion. More specifically, alternative laboratory concrete mixtures were investigated by replacing cement with natural pozzolan and using [...] Read more.
This work focuses on the design of concrete for the construction of winemaking tanks, as well as coating behaviour and stability of the systems in wine immersion. More specifically, alternative laboratory concrete mixtures were investigated by replacing cement with natural pozzolan and using silicate aggregates and quartz sand as filler in order to obtain self-compacting concrete of strength class C 20/25. The optimal mixture was selected and further tests were carried out on the mechanical properties of permeability, durability and thermal conductivity. Three coatings and plain concrete were tested for their leachability of heavy metals in wine. The results show that the selected composition with 20% cement replacement by natural pozzolan has the desired workability and strength and is comparable to a reference concrete without natural pozzolan. The leachability tests show that heavy metals do not leach out upon contact with wine, but only calcium and potassium oxide, which can be easily addressed by coating or treating the surface of the concrete. Also, the optimum coating did not influence the pH of the wine. Full article
(This article belongs to the Special Issue Emerging Concrete Technologies and Applications)
Show Figures

Figure 1

22 pages, 7210 KiB  
Article
Polyethylene Storage Tanks Strengthened Externally with Fiber-Reinforced Polymer Laminates
by Ghassan Hachem, Wassim Raphael and Rafic Faddoul
Polymers 2025, 17(13), 1858; https://doi.org/10.3390/polym17131858 - 3 Jul 2025
Viewed by 527
Abstract
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this [...] Read more.
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this study, a method of external strengthening using fiber-reinforced polymer (FRP) laminates is proposed and explored. The research involves a combination of laboratory testing on carbon fiber-reinforced polymer (CFRP)-strengthened polyethylene strips and finite element simulations aimed at assessing bond strength, anchorage length, and structural behavior. Results from tensile tests indicate that slippage tends to occur unless the anchorage length exceeds approximately 450 mm. To evaluate surface preparation, grayscale image analysis was used, showing that mechanical sanding increased intensity variation by over 127%, pointing to better bonding potential. Simulation results show that unreinforced tanks under seismic loads display stress levels beyond their elastic limit, along with signs of elephant foot buckling—common in thin-walled cylindrical structures. Applying CFRPs in a full-wrap setup notably reduced these effects. This approach offers a viable alternative to full tank replacement, especially in regions where cost, access, or operational constraints make replacement impractical. The applicability is particularly valuable in seismically active and densely populated areas, where rapid, non-invasive retrofitting is essential. Based on the experimental findings, a simple formula is proposed to estimate the anchorage length required for effective crack repair. Overall, the study demonstrates that CFRP retrofitting, paired with proper surface treatment, can significantly enhance the seismic performance of polyethylene tanks while avoiding costly and disruptive replacement strategies. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

15 pages, 2284 KiB  
Article
Acoustic Analysis of Fish Tanks for Marine Bioacoustics Research
by Jesús Carbajo, Pedro Poveda, Naeem Ullah and Jaime Ramis
J. Mar. Sci. Eng. 2025, 13(7), 1253; https://doi.org/10.3390/jmse13071253 - 28 Jun 2025
Viewed by 353
Abstract
Underwater sounds play a key role in biodiversity as many marine animals use these to know their environment and to communicate among themselves. Unfortunately, anthropogenic noise makes this communication more difficult due to masking effects and may also produce harmful effects that compromise [...] Read more.
Underwater sounds play a key role in biodiversity as many marine animals use these to know their environment and to communicate among themselves. Unfortunately, anthropogenic noise makes this communication more difficult due to masking effects and may also produce harmful effects that compromise their preservation and survival. Many researchers have studied the influence of underwater noise on marine species in laboratory conditions using fish tanks. Consequently, studying the acoustic response of these fish tanks constitutes an essential task to better understand the results obtained in those experiments. In this work, a theoretical model and acoustic measurements were used to assess the uncertainty of a fish tank setup. The proposed methodology aims to improve the effectiveness of those studies involving fish tanks by an in-depth analysis of the sound field spatial distribution. Preliminary results show that this distribution depends on the frequency of the generated sound, the water level, and the measurement depth thus confirming the importance of analyzing the range of applicability of these setups. Full article
(This article belongs to the Special Issue Recent Advances in Marine Bioacoustics)
Show Figures

Figure 1

15 pages, 1104 KiB  
Article
An Investigation of Nile Tilapia (Oreochromis niloticus) Movement Trajectories Under Ammonia Stress Using Image Processing Techniques
by Muhammed Nurullah Arslan, Güray Tonguç, Beytullah Ahmet Balci and Tuba Sari
Life 2025, 15(7), 1004; https://doi.org/10.3390/life15071004 - 24 Jun 2025
Viewed by 457
Abstract
This study examined the behavioral responses of Nile Tilapia (Oreochromis niloticus), a key aquaculture species, to ammonia stress using non-invasive image processing techniques. The experiment was conducted under controlled laboratory conditions and involved four groups exposed to ammonium chloride concentrations (0, [...] Read more.
This study examined the behavioral responses of Nile Tilapia (Oreochromis niloticus), a key aquaculture species, to ammonia stress using non-invasive image processing techniques. The experiment was conducted under controlled laboratory conditions and involved four groups exposed to ammonium chloride concentrations (0, 100, 200, and 400 mg·lt−1). Movement trajectories of individual fish were recorded over 10 h using high-resolution cameras positioned above and beside glass tanks. Images were processed with the Optical Flow Farneback algorithm in Python, implemented in Visual Studio Code with OpenCV and NumPy libraries, achieving a 91.40% accuracy rate in tracking fish positions. The results revealed that increasing ammonia levels restricted movement areas while elevating movement irregularity and activity. The 0 mg·lt−1 group utilized the glass tank homogeneously, covering 477 m. In contrast, the 100 mg·lt−1 group showed clustering in specific areas (796 m). At 200 mg·lt−1, clustering intensified, particularly along the glass tank’s left edge (744 m), and at 400 mg·lt−1, fish exhibited severe restriction near the water surface with markedly increased activity (928 m). Statistical analyses using Kruskal–Wallis and Dunn tests confirmed significant differences between the 400 mg·lt−1 group and others. No difference was observed between the 0 mg·lt−1 and 100 mg·lt−1 group, indicating tolerance to lower concentrations. The study highlights the importance of ammonia levels in water quality management and reveals the potential of image processing techniques for automation and stress monitoring in aquaculture. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

28 pages, 2554 KiB  
Article
Design, Calibration, and Performance Evaluation of a High-Fidelity Spraying Rainfall Simulator for Soil Erosion Research
by Vukašin Rončević, Nikola Živanović, Lazar Radulović, Ratko Ristić, Seyed Hamidreza Sadeghi, María Fernández-Raga and Sergio A. Prats
Water 2025, 17(13), 1863; https://doi.org/10.3390/w17131863 - 23 Jun 2025
Viewed by 387
Abstract
Rainfall simulators are essential tools in soil research, providing a controlled and repeatable approach to studying rainfall-induced erosion. However, the development of high-fidelity rainfall simulators remains a challenge. This study aimed to design, construct, and calibrate a spraying-type rainfall simulator and validate assessment [...] Read more.
Rainfall simulators are essential tools in soil research, providing a controlled and repeatable approach to studying rainfall-induced erosion. However, the development of high-fidelity rainfall simulators remains a challenge. This study aimed to design, construct, and calibrate a spraying-type rainfall simulator and validate assessment criteria optimized for soil erosion research. The simulator’s design is based on a modified simulator model previously described in the literature and following the defined criteria. The calibration of the simulator was conducted in two phases, on slopes of 0° and 15°, measuring rainfall intensity, drop size, and its spatial distribution, and calculating drop falling velocity, kinetic energy, and momentum. The simulator consists of structural support, a water tank, a water-moving mechanism, a flow regulation system, and sprayers, contributing to its simplicity, cost-effectiveness, durability, rigidity, and stability, ensuring smooth simulator operation. The calibration of the rainfall simulator demonstrated that rainfall intensity increased from 1.4 mm·min−1 to 4.6 mm·min−1 with higher pressure in the hydraulic system (1.0 to 2.0 bar), while spatial uniformity remained within 79–91% across different nozzle configurations. The selected Rain Bird HE-VAN series nozzles proved highly effective in simulating rainfall, achieving drop diameters ranging from 0.8 mm to 1.9 mm, depending on pressure and nozzle type. The rainfall simulator successfully replicates natural rainfall characteristics, offering a controlled environment for investigating soil erosion processes. Drop velocity values varied between 2.5 and 2.9 m·s−1, influencing kinetic energy, which ranged from 0.6 J·min−1·m−2 to 2.9 J·min−1·m−2, and impact momentum, which was measured between 0.005 N·s and 0.032 N·s. The simulator design suggests that it is suitable for future applications in both field and laboratory soil erosion research, ensuring repeatability and adaptability for various experimental conditions. Calibration results emphasized the significance of nozzle selection and water pressure adjustments. These factors significantly affect rainfall intensity, drop size, kinetic energy, and momentum, parameters that are critical for accurate erosion modeling. Full article
Show Figures

Figure 1

16 pages, 3012 KiB  
Review
Application of Large-Scale Rotating Platforms in the Study of Complex Oceanic Dynamic Processes
by Xiaojie Lu, Guoqing Han, Yifan Lin, Qian Cao, Zhiwei You, Jingyuan Xue, Xinyuan Zhang and Changming Dong
J. Mar. Sci. Eng. 2025, 13(6), 1187; https://doi.org/10.3390/jmse13061187 - 18 Jun 2025
Viewed by 1007
Abstract
As the core components of geophysical dynamic system, oceans and atmospheres are dominated by the Coriolis force, which governs complex dynamic phenomena such as internal waves, gravity currents, vortices, and others involving multi-scale spatiotemporal coupling. Due to the limitations of in situ observations, [...] Read more.
As the core components of geophysical dynamic system, oceans and atmospheres are dominated by the Coriolis force, which governs complex dynamic phenomena such as internal waves, gravity currents, vortices, and others involving multi-scale spatiotemporal coupling. Due to the limitations of in situ observations, large-scale rotating tanks have emerged as critical experimental platforms for simulating Earth’s rotational effects. This review summarizes recent advancements in rotating tank applications for studying oceanic flow phenomena, including mesoscale eddies, internal waves, Ekman flows, Rossby waves, gravity currents, and bottom boundary layer dynamics. Advanced measurement techniques, such as particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF), have enabled quantitative analyses of internal wave breaking-induced mixing and refined investigations of vortex merging dynamics. The findings demonstrate that large-scale rotating tanks provide a controllable experimental framework for unraveling the physical essence of geophysical fluid motions. Such laboratory experimental endeavors in a rotating tank can be applied to more extensive scientific topics, in which the rotation and stratification play important roles, offering crucial support for climate model parameterization and coupled ocean–land–atmosphere mechanisms. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

20 pages, 2984 KiB  
Article
Comparative LCA Analysis of Selected Recycling Methods for Carbon Fibers and Socio-Economic Analysis
by Nikolina Poranek, Krzysztof Pikoń, Natalia Generowicz-Caba, Maciej Mańka, Joanna Kulczycka, Dimitrios Marinis, Ergina Farsari, Eleftherios Amanatides, Anna Lewandowska, Marcin Sajdak, Sebastian Werle and Szymon Sobek
Materials 2025, 18(11), 2660; https://doi.org/10.3390/ma18112660 - 5 Jun 2025
Viewed by 493
Abstract
Carbon fiber is essential in many industries. Since primary production is highly energy-intensive, recycling technologies are being sought. A goal of the research was to develop at a laboratory scale a chemical recycling method aimed at recovering carbon fiber. Two variants of the [...] Read more.
Carbon fiber is essential in many industries. Since primary production is highly energy-intensive, recycling technologies are being sought. A goal of the research was to develop at a laboratory scale a chemical recycling method aimed at recovering carbon fiber. Two variants of the method have been established and environmentally compared with a primary production version. Methods: The life cycle assessment methodology has been used to assess and quantify the environmental impacts. The cradle to gate analysis was performed with the functional unit defined as a production of 1 kg of carbon fiber. Results: The best environmental option turned out to be a developed chemical recycling technology named Scenario 1. It is a solvolysis performed using an ambient-pressure-operated batch reactor connected to a reflux condenser and an inert gas supply tank, using an ethylene glycol and potassium hydroxide solution. The worst case appeared to be the second variant of the chemical recycling, named Scenario 2 (plasma-enhanced nitric acid solvolysis). Conclusions: In Scenario 1, a production of the ethylene glycol was recognized as a key environmental driver, while in Scenarios 2 and 3 the energy-related impact was the most influential. Full article
(This article belongs to the Special Issue Advances in Waste Materials’ Valorization)
Show Figures

Figure 1

15 pages, 4199 KiB  
Article
A Portable Wave Tank and Wave Energy Converter for Engineering Dissemination and Outreach
by Nicholas Ross, Delaney Heileman, A. Gerrit Motes, Anwi Fomukong, Giorgio Bacelli, Steven J. Spencer, Dominic D. Forbush, Kevin Dullea and Ryan G. Coe
Hardware 2025, 3(2), 5; https://doi.org/10.3390/hardware3020005 - 4 Jun 2025
Viewed by 657
Abstract
Wave energy converters are a nascent energy generation technology that harnesses the power in ocean waves. To assist in communicating both fundamental and complex concepts of wave energy, a small-scale portable wave tank and wave energy converter have been developed. The system has [...] Read more.
Wave energy converters are a nascent energy generation technology that harnesses the power in ocean waves. To assist in communicating both fundamental and complex concepts of wave energy, a small-scale portable wave tank and wave energy converter have been developed. The system has been designed using commercial off-the-shelf components, and all design hardware and software are openly available for replication. This project builds on prior research conducted at Sandia National Laboratories, particularly in the areas of WEC device design and control systems. By showcasing the principles of causal feedback control and innovative device design, SIWEED not only serves as a practical demonstration tool but also enhances the educational experience for users. This paper presents the detailed system design of this tool. Furthermore, via testing and analysis, we demonstrate the basic functionality of the system. Full article
Show Figures

Figure 1

20 pages, 14467 KiB  
Article
Optimization of 3D Borehole Electrical Resistivity Tomography (ERT) Measurements for Real-Time Subsurface Imaging
by Marios Karaoulis
Water 2025, 17(11), 1695; https://doi.org/10.3390/w17111695 - 3 Jun 2025
Viewed by 480
Abstract
In this work, we explore the optimization of 3D Electrical Resistivity Tomography (ERT) measurement protocols for a 3D borehole grid configuration. Currently, there is no widely accepted standard measurement scheme for such setups. The use of numerous electrodes and the possibility of cross-borehole [...] Read more.
In this work, we explore the optimization of 3D Electrical Resistivity Tomography (ERT) measurement protocols for a 3D borehole grid configuration. Currently, there is no widely accepted standard measurement scheme for such setups. The use of numerous electrodes and the possibility of cross-borehole configurations lead to an extremely large number of potential electrode combinations. However, not all these combinations contribute significantly to the final resistivity model, and a complete measurement cycle requires substantial time to perform. This becomes particularly problematic in dynamic subsurface conditions, where changes may occur during data acquisition. In such cases, the measurements collected within a single cycle may reflect different subsurface states. Conversely, attempting to shorten acquisition time can result in too few measurements to resolve the subsurface structure at high resolution. Furthermore, most existing approaches assume a uniform half-space model and treat all measurements equally, failing to prioritize those that are most sensitive to actual subsurface changes. To address these challenges, we propose a 3D measurement optimization approach that yields an efficient acquisition scheme. This method produces inversion results comparable to those obtained from much larger datasets while reducing both measurement and processing requirements. Our optimization is based on a sensitivity-driven selection algorithm that accounts for the real subsurface structure rather than assuming a generic half-space. The proposed methodology is validated using synthetic data and tested with experimental data obtained from a laboratory tank setup. These experimental measurements were used to monitor permeation grouting; a technique applied to reduce permeability and/or increase the strength of granular soils through targeted injection. Full article
(This article belongs to the Special Issue Application of Geophysical Methods for Hydrogeology—Second Edition)
Show Figures

Figure 1

15 pages, 2900 KiB  
Article
It Is Useless to Resist: Biofilms in Metalworking Fluid Systems
by Giulia von Känel, Lara Ylenia Steinmann, Britta Mauz, Robert Lukesch and Peter Küenzi
Life 2025, 15(6), 890; https://doi.org/10.3390/life15060890 - 30 May 2025
Viewed by 403
Abstract
Biofouling, the undesirable deposition of microorganisms on surfaces, is ubiquitous in aqueous systems. This is no different for systems running with water-miscible metalworking fluids (MWFs), which additionally contain many organic chemicals that create favorable conditions for growth and metabolism. Biofilm formation is thus [...] Read more.
Biofouling, the undesirable deposition of microorganisms on surfaces, is ubiquitous in aqueous systems. This is no different for systems running with water-miscible metalworking fluids (MWFs), which additionally contain many organic chemicals that create favorable conditions for growth and metabolism. Biofilm formation is thus inevitable, as there is no shortage of wetted surfaces in metalworking systems. MWF manufacturers tried in vain to offer resistance by using biocides and biostatic compounds as ingredients in concentrates and as tank-side additives. We report here that such elements, alone or as components of MWFs, did not prevent biofilm formation and had negligible effects on pre-established laboratory biofilms. Moreover, biofilms in metalworking systems are interwoven with residues, sediments, and metal swarfs generated during machining. Again, co-incubation of such “real” biofilms with MWFs had no significant effect on population size—but on population composition! The implications of this finding are unclear but could provide a starting point for the treatment of biofouling, as biofilm population structure might be of importance. Finally, we show that bacteria gain function in biofilms and that they were able to degrade a toxic amine in MWFs, which the same bacteria were unable to do in planktonic form. Full article
(This article belongs to the Special Issue Microbial Diversity and Function in Aquatic Environments)
Show Figures

Figure 1

13 pages, 979 KiB  
Proceeding Paper
Germination and Drying as a Traditional Processing Method for Soybean Incorporation in Fish Feed in Togo
by Toï N’feide, Soudah Boma, Abdoul-Mountholib Kondi, Ekanao Tedihou, N’pagyendou Lare, Kossi T. A. Apaloo, Mouhamadou Amadou Ly, Yao Lombo and Essodina Talaki
Proceedings 2025, 118(1), 8; https://doi.org/10.3390/proceedings2025118008 - 19 May 2025
Viewed by 419
Abstract
The effects of germination (fresh germinated soybean [SG1F]) and post-germination drying (dried germinated soybean [SG1S]) on the crude protein (CP) levels, aflatoxin content, survival, and growth performance of Nile tilapia fry (Oreochromis niloticus) were evaluated. Raw soybean (SC) and roasted soybean [...] Read more.
The effects of germination (fresh germinated soybean [SG1F]) and post-germination drying (dried germinated soybean [SG1S]) on the crude protein (CP) levels, aflatoxin content, survival, and growth performance of Nile tilapia fry (Oreochromis niloticus) were evaluated. Raw soybean (SC) and roasted soybean (ST) served as controls. Laboratory analyses revealed CP contents of 11.74%, 38.72%, 38.42%, and 34.72% for SG1F, SG1S, RT, and RS, respectively. Aflatoxin levels were 2.3 µg/kg for SG1S, 1.66 µg/kg for RS, 1.60 µg/kg for RT, and 0.00 µg/kg for SG1F. Experimental diets, formulated to be isoproteic (35.44%) and isolipidic (8.73%), were prepared using flour from these soybean treatments and tested on tilapia fry with an average initial weight of 11.86 ± 2.15 g. The study was conducted in a completely randomized design with three replicates in 1 m3 tanks stocked at 35 fry per tank over 56 days. Weight gains were 23.40 ± 10.21 g, 18.93 ± 8.67 g, 16.30 ± 9.92 g, and 16.07 ± 5.55 g for RT, RS, SG1S, and SG1F, respectively. Survival rates were 100%, 90.67%, 89.33%, and 88% for SG1F, RS, RT, and SG1S, respectively. Daily growth rates showed a consistent upward trend for all diets from the start to the end of the experiment. Full article
Show Figures

Figure 1

17 pages, 4856 KiB  
Article
Research on Real-Time Control Strategy of Air-Conditioning Water System Based on Model Predictive Control
by Dehan Liu, Jing Zhao, Yibing Wu and Zhe Tian
Buildings 2025, 15(10), 1654; https://doi.org/10.3390/buildings15101654 - 14 May 2025
Viewed by 516
Abstract
The optimization of the operation strategy for building HVAC systems is the key to achieving energy conservation and consumption reduction in air-conditioning systems. This study proposes an online real-time control strategy for the air-conditioning water system based on the model predictive control (MPC) [...] Read more.
The optimization of the operation strategy for building HVAC systems is the key to achieving energy conservation and consumption reduction in air-conditioning systems. This study proposes an online real-time control strategy for the air-conditioning water system based on the model predictive control (MPC) principle, implemented and validated on the integrated energy experimental platform. The experimental system simulates load generation and dissipation processes using a water tank, where hourly varying heating power output emulates the dynamic cooling loads of buildings. By regulating the chilled water system through different algorithms, the temperature tracking control performance and cooling supply regulation accuracy were rigorously validated. The control module was written in the Python 3.8 environment, and Niagara 4 software was used as an intermediate software to achieve data interaction and logical control with the laboratory system. The experimental results show that this algorithm can follow the hourly optimized parameters with a low overshoot in the short-term domain. Meanwhile, it can achieve the optimal control of cooling capacity and energy consumption in the long-term domain. Compared with the PID strategy, the temperature following control accuracy can be improved by 9.64%, and the cooling capacity can be saved by 6.24%. Compared with the day-ahead MPC algorithm, the temperature following control accuracy can be relatively improved by 16.52%, and the cooling capacity can be saved by 1.24%. Full article
Show Figures

Figure 1

6 pages, 556 KiB  
Case Report
Stimulator of InterferoN Genes (STING)-Associated Vasculopathy with Onset in Infancy Syndrome (SAVI) Associated with Disseminated Molluscum Contagiosum Under Baricitinib Treatment
by Thilo Gambichler, Yusa Devrim and Laura Susok
Dermato 2025, 5(2), 6; https://doi.org/10.3390/dermato5020006 - 2 Apr 2025
Viewed by 671
Abstract
Background/objectives: Stimulator of Interferon Genes (STING)-associated vasculopathy with onset in infancy (SAVI) is a rare autoinflammatory disorder caused by gain-of-function mutations in the TMEM173 gene. These mutations result in chronic activation of the STING pathway and excessive type I interferon production, leading to [...] Read more.
Background/objectives: Stimulator of Interferon Genes (STING)-associated vasculopathy with onset in infancy (SAVI) is a rare autoinflammatory disorder caused by gain-of-function mutations in the TMEM173 gene. These mutations result in chronic activation of the STING pathway and excessive type I interferon production, leading to systemic inflammation, vascular abnormalities, interstitial lung disease, and skin ulcerations. Janus kinase (JAK) inhibitors, including baricitinib, have shown promise in mitigating systemic and organ-specific manifestations. However, these inhibitors broadly suppress immune pathways, potentially increasing vulnerability to infections. Case presentation: This case report describes a 21-year-old woman with SAVI (due to a heterozygous TMEM173 mutation) who developed disseminated molluscum contagiosum (MC) while receiving baricitinib therapy. Laboratory results revealed lymphopenia, low CD4/CD8 ratio, and impaired immune cell activity, suggesting compromised antiviral immunity. Discussion: Despite SAVI’s association with excessive type I interferon signaling, this chronic hyperactivation may cause immune dysregulation, exhausting T cells and natural killer cells vital for viral defense. Furthermore, baricitinib suppresses interferon signaling via the JAK-STAT pathway, reducing inflammatory damage in SAVI but also impairing antiviral responses. Moreover, MC viruses evade host immune defenses by antagonizing STING and TANK-binding kinase 1-mediated interferon activation, further contributing to infection risk. This report is the first to document MC in a SAVI patient and highlights the rare complication of disseminated MC due to impaired type I interferon signaling and immune suppression from baricitinib therapy. This case underscores the need for vigilance regarding viral infections in SAVI patients treated with JAK inhibitors. Full article
(This article belongs to the Special Issue What Is Your Diagnosis?—Case Report Collection)
Show Figures

Figure 1

Back to TopTop