Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = l-malate dehydrogenase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6925 KiB  
Article
Transcriptome Analysis of the Effects of Selenium Form and Concentration on Rice Growth and Metabolism at the Seedling Stage
by Xinbo Jiang, Hairu Yu, Jiamin Yin, Fazl Ullah, Xilu Zhang, Di Chen, Shixin Li, Hongyan Zhao and Xijiu Jin
Agronomy 2025, 15(4), 867; https://doi.org/10.3390/agronomy15040867 - 30 Mar 2025
Viewed by 549
Abstract
Selenium (Se) is an essential trace element for humans, and the production of Se-enriched rice (Oryza sativa) is a key approach for Se supplementation. Nevertheless, the effects of different Se forms and concentrations on the metabolism and aboveground absorption pathways of [...] Read more.
Selenium (Se) is an essential trace element for humans, and the production of Se-enriched rice (Oryza sativa) is a key approach for Se supplementation. Nevertheless, the effects of different Se forms and concentrations on the metabolism and aboveground absorption pathways of rice seedlings are not yet well-understood. Therefore, we conducted a hydroponic experiment and used transcriptome analysis to study the absorption and transformation processes of sodium selenite (Na2SeO3) and selenomethionine (SeMet) in rice at the seedling stage. The aboveground (stem + leaf) Se concentration at the seedling stage was higher under the SeMet treatments, and low Se applications (<25 μM) significantly promoted rice growth. Selenocysteine (SeCys) and SeMet were the primary forms of Se in rice, accounting for 57–86.35% and 7.6–31.5%, respectively, while selenate [Se (VI)] significantly increased when Se levels exceeded 25 μM. In the transcriptome, differentially expressed genes (DEGs) were significantly enriched in the following pathways: carbon metabolism, amino acid biosynthesis, and glutathione metabolism. In the Na2SeO3 treatments, genes encoding phosphoglycerate mutase (PGM), triosephosphate isomerase (TPI), phosphofructokinase (PFK), pyruvate kinase (PK), malate dehydrogenase (MDH), polyamine oxidase (PAO), aspartate aminotransferase (AST), and glutathione S-transferase (GST) were upregulated, and the expression levels of differentially expressed genes (DEGs) decreased with increasing Se levels. SeMet treatments upregulated genes encoding PFK, PK, glutamine synthetase (NADH-GOGAT), and L-ascorbate peroxidase (APX), and expression levels of DEGs increased with increasing Se levels. This study provides important insights into the molecular mechanisms of the uptake and metabolism of different Se forms in rice at the seedling stage. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 4151 KiB  
Article
Evaluation of the Effects of Acorns on the Meat Quality and Transcriptome Profile of Finishing Yuxi Pigs
by Jinzhou Zhang, Chuankuan Zhang, Shuaitao Meng, Heming Wang, Dongyang Liu, Liping Guo and Zhiguo Miao
Animals 2025, 15(5), 614; https://doi.org/10.3390/ani15050614 - 20 Feb 2025
Viewed by 707
Abstract
In this study, we explored the effects of dietary acorn on the meat quality and transcriptome profile of finishing Yuxi pigs. A total of 90 pigs (99.60 ± 1.63 kg) were randomly assigned to three groups: the control group fed a commercial diet [...] Read more.
In this study, we explored the effects of dietary acorn on the meat quality and transcriptome profile of finishing Yuxi pigs. A total of 90 pigs (99.60 ± 1.63 kg) were randomly assigned to three groups: the control group fed a commercial diet (CN), and two treatment groups fed 100 (AC1) and 300 (AC2) g/kg of acorns, respectively. Each group contained five replicates with six pigs per replicate. After a 120-day treatment period, the AC2 group showed significantly higher pH24h, a*, intramuscular fat, and umami amino acid and significantly lower L*, cooking loss, and shear force than the CN group (p < 0.05). Further, the AC2 group showed significantly increased glycogen, ATP, and ADP, creatine kinase activity, and myofiber density and significantly decreased glycolytic potential, lactic acid, and lactate dehydrogenase, malate dehydrogenase, phosphofructokinase muscle, and pyruvate kinase activities (p < 0.05). The mRNA levels of MYH7, MYH2, and MYH1 were significantly upregulated in the AC2 group (p < 0.05). A transcriptome analysis further revealed significant differences in gene expression patterns between the AC2 and CN groups. These findings suggest that dietary acorns at 300 g/kg improve pork quality by inducing the conversion of myofiber types and regulating glycolysis. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

18 pages, 3014 KiB  
Article
Zinc Enhances Cadmium Accumulation in Shoots of Hyperaccumulator Solanum nigrum by Improving ATP-Dependent Transport and Alleviating Toxicity
by Jia Zheng, Yukang Yue, Yuting Zhu, Yufeng Wang, Wenwen Zheng, Linfeng Hu, Dianyun Hou, Fayuan Wang, Liming Yang and Hongxiao Zhang
Plants 2024, 13(17), 2528; https://doi.org/10.3390/plants13172528 - 9 Sep 2024
Cited by 3 | Viewed by 1665
Abstract
Solanum nigrum is a cadmium (Cd) and zinc (Zn) accumulator with potential for phytoextraction of soil contaminated with heavy metals. However, how Zn affects Cd accumulation in S. nigrum remains unclear. In this study, S. nigrum seedlings were treated with 100 μmol·L−1 [...] Read more.
Solanum nigrum is a cadmium (Cd) and zinc (Zn) accumulator with potential for phytoextraction of soil contaminated with heavy metals. However, how Zn affects Cd accumulation in S. nigrum remains unclear. In this study, S. nigrum seedlings were treated with 100 μmol·L−1 Zn (Zn100), 100 μmol·L−1 Cd (Cd100), and the Zn and Cd combination (Zn100+Cd100) for 10 days under hydroponic culture. Compared with Cd100, the Cd content in stems, leaves, and xylem saps was 1.8, 1.6, and 1.3 times more than that in Zn100+Cd100, respectively. In addition, the production of reactive oxygen species in leaves was significantly upregulated in Cd100 compared with the control, and it was downregulated in Zn100. Comparative analyses of transcriptomes and proteomes were conducted with S. nigrum leaves. Differentially expressed genes (DEGs) were involved in Cd uptake, transport, and sequestration, and the upregulation of some transporter genes of Zn transporters (ZIPs), a natural resistance associated macrophage protein (Nramp1), a metal–nicotianamine transporter (YSL2), ATP-binding cassette transporters (ABCs), oligopeptide transporters (OPTs), and metallothionein (MTs) and glutathione S-transferase (GSTs) genes was higher in Zn100+Cd100 than in Cd100. In addition, differentially expressed proteins (DEPs) involved in electron transport chain, ATP, and chlorophyll biosynthesis, such as malate dehydrogenases (MDHs), ATPases, and chlorophyll a/b binding proteins, were mostly upregulated in Zn100. The results indicate that Zn supplement increases Cd accumulation and tolerance in S. nigrum by upregulating ATP-dependent Cd transport and sequestration pathways. Full article
Show Figures

Graphical abstract

13 pages, 1889 KiB  
Article
Antibacterial Activity of Novel Agent N-2-Hydroxypropyl Trimethyl Ammonium Chloride Chitosan against Streptococcus mutans
by Yuan Gao, Xiaochen Gong, Qicheng Ruan, Chunjing Zhang and Kai Zhao
Molecules 2024, 29(17), 4126; https://doi.org/10.3390/molecules29174126 - 30 Aug 2024
Cited by 1 | Viewed by 1279
Abstract
Dental caries (DC) is one of the most common oral diseases and is mainly caused by Streptococcus mutans (S. mutans). The use of antibiotics against S. mutans usually has side effects, including developing resistance. N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC), a [...] Read more.
Dental caries (DC) is one of the most common oral diseases and is mainly caused by Streptococcus mutans (S. mutans). The use of antibiotics against S. mutans usually has side effects, including developing resistance. N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC), a natural product, has great potential utility in antibacterial agents owing to its low toxicity and good biocompatibility. Thus, the purpose of the present study was to explore the antimicrobial activity of N-2-HACC against S. mutans through the permeability of the cell wall, integrity of cell membrane, protein and nucleic acid synthesis, respiratory metabolism, and biofilm formation. Our results confirmed that the MIC of N-2-HACC against S. mutans was 0.625 mg/mL with a 90.01 ± 1.54% inhibition rate. SEM observed the formation of cavities on the surface of S. mutans after 12 h N-2-HACC treatment. The level of alkaline phosphatase (AKP) activity was higher in the N-2-HACC treatment group than in the control group, indicating that N-2-HACC can improve the permeability of the cell wall. Also, N-2-HACC treatment can destroy the cell membrane of S. mutans by increasing conductivity and absorbance at 260 nm, decreasing cell metabolic activity, and enhancing the fluorescence at 488 nm. Respiratory metabolism revealed that the activities of the Na+-K+-ATP enzyme, pyruvate kinase (PK), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH) were decreased after N-2-HACC treatment, revealing that N-2-HACC can inhibit glycolysis and the tricarboxylic acid cycle (TCA cycle) of S. mutans. Moreover, N-2-HACC can also decrease the contents of the nucleic acid and solution protein of S. mutans, interfere with biofilm formation, and decrease the mRNA expression level of biofilm formation-related genes. Therefore, these results verify that N-2-HACC has strong antibacterial activity against S. mutans, acting via cell membrane integrity damage, increasing the permeability of cell walls, interfering with bacterial protein and nucleic acid synthesis, perturbing glycolysis and the TCA cycle, and inhibiting biofilm formation. It is suggested that N-2-HACC may represent a new potential synthetically modified antibacterial material against S. mutans. Full article
Show Figures

Graphical abstract

19 pages, 3477 KiB  
Article
Insights into the Cardioprotective Effects of Pyridoxine Treatment in Diabetic Rats: A Study on Cardiac Oxidative Stress, Cardiometabolic Status, and Cardiovascular Biomarkers
by Slavica Mutavdzin Krneta, Kristina Gopcevic, Sanja Stankovic, Jovana Jakovljevic Uzelac, Dušan Todorovic, Milica Labudovic Borovic, Jelena Rakocevic and Dragan Djuric
Diagnostics 2024, 14(14), 1507; https://doi.org/10.3390/diagnostics14141507 - 12 Jul 2024
Cited by 1 | Viewed by 1213
Abstract
The aims of this study were to examine the effects of pyridoxine administration on the activities of cardiac antioxidant stress enzymes superoxide dismutase (SOD) and catalase (CAT) and enzyme indicators of cardiometabolic status, lactate and malate dehydrogenase (LDH, MDH), as well as LDH [...] Read more.
The aims of this study were to examine the effects of pyridoxine administration on the activities of cardiac antioxidant stress enzymes superoxide dismutase (SOD) and catalase (CAT) and enzyme indicators of cardiometabolic status, lactate and malate dehydrogenase (LDH, MDH), as well as LDH and MDH isoforms’ distribution in the cardiac tissue of healthy and diabetic Wistar male rats. Experimental animals were divided into five groups: C1—control (0.9% sodium chloride—NaCl—1 mL/kg, intraperitoneally (i.p.), 1 day); C2—second control (0.9% NaCl 1 mL/kg, i.p., 28 days); DM—diabetes mellitus (streptozotocin 100 mg/kg in 0.9% NaCl, i.p., 1 day); P—pyridoxine (7 mg/kg, i.p., 28 days); and DM + P—diabetes mellitus and pyridoxine (streptozotocin 100 mg/kg, i.p., 1 day and pyridoxine 7 mg/kg, i.p., 28 days). Pyridoxine treatment reduced CAT and MDH activity in diabetic rats. In diabetic rats, the administration of pyridoxine increased LDH1 and decreased LDH4 isoform activities, as well as decreased peroxisomal MDH and increased mitochondrial MDH activities. Our findings highlight the positive effects of pyridoxine administration on the complex interplay between oxidative stress, antioxidant enzymes, and metabolic changes in diabetic cardiomyopathy. Full article
(This article belongs to the Special Issue Diagnosis, Prognosis, and Management of Cardiovascular Disease)
Show Figures

Figure 1

14 pages, 4761 KiB  
Article
Efficacy and Antifungal Mechanism of Rosemary Essential Oil against Colletotrichum gloeosporioides
by Tiantian Yuan, Yang Hua, Dangquan Zhang, Chaochen Yang, Yong Lai, Mingwan Li, Shen Ding, Song Li and Yuanyuan Chen
Forests 2024, 15(2), 377; https://doi.org/10.3390/f15020377 - 18 Feb 2024
Cited by 13 | Viewed by 6040
Abstract
The antifungal activity and mechanism of rosemary essential oil against Colletotrichum gloeosporioides, the walnut anthracnose pathogen, were investigated using scanning electron microscopy (SEM), index determination and transcriptome technique. The results showed that rosemary essential oil could inhibit the growth of C. gloeosporioides [...] Read more.
The antifungal activity and mechanism of rosemary essential oil against Colletotrichum gloeosporioides, the walnut anthracnose pathogen, were investigated using scanning electron microscopy (SEM), index determination and transcriptome technique. The results showed that rosemary essential oil could inhibit the growth of C. gloeosporioides with minimum inhibitory (MIC) and fungicidal (MFC) concentrations of 15.625 μL/mL and 31.25 μL/mL, respectively. Scanning electron microscopy revealed that the mycelium morphology became shriveled, twisted, and severely deformed after being treated with rosemary essential oil. The activity of chitinase, which decomposes fungal cell wall components in C. gloeosporioides, increased. The ergosterol content in the plasma membrane decreased, while the cell contents including nucleic acids, soluble protein and soluble reducing sugar were released resulting in the extracellular electrical conductivity being changed. For metabolic activity, the enzymes succinate dehydrogenase (SDH), malate dehydrogenase (MDH), ATPase and ATP decreased, whereas phosphofructokinase (PFK) increased. Transcriptome sequencing results showed that the antifungal mechanism of rosemary essential oil involves the destruction of the cell wall and membrane, inhibition of genetic material synthesis, and cell division and differentiation. The results are helpful to understand the efficacy and antifungal mechanism of rosemary essential oil against C. gloeosporioides and provide a theoretical basis for the development of rosemary essential oil as a biological control agent. Full article
Show Figures

Figure 1

17 pages, 1234 KiB  
Article
Effects of Dietary Supplementation with Chitosan on the Muscle Composition, Digestion, Lipid Metabolism, and Stress Resistance of Juvenile Tilapia (Oreochromis niloticus) Exposed to Cadmium-Induced Stress
by Qin Zhang, Yi Xie, Yuanhui Zhang, Enhao Huang, Liuqing Meng, Yongqiang Liu and Tong Tong
Animals 2024, 14(4), 541; https://doi.org/10.3390/ani14040541 - 6 Feb 2024
Cited by 12 | Viewed by 2412
Abstract
The aim of this study was to investigate the effects of dietary chitosan supplementation on the muscle composition, digestion, lipid metabolism, and stress resistance, and their related gene expression, of juvenile tilapia (Oreochromis niloticus) subjected to cadmium (Cd2+) stress. [...] Read more.
The aim of this study was to investigate the effects of dietary chitosan supplementation on the muscle composition, digestion, lipid metabolism, and stress resistance, and their related gene expression, of juvenile tilapia (Oreochromis niloticus) subjected to cadmium (Cd2+) stress. Juvenile tilapia with an initial body weight of 21.21 ± 0.24 g were fed with a formulated feed containing five different levels (0%, 0.5%, 1.0%, 1.5%, and 2.0%) of chitosan for 60 days, while the water in all experimental groups contained a Cd2+ concentration of 0.2 mg/L. The results showed that, compared with the control group (0% chitosan), the contents of crude fat and crude protein in the muscle, the activities of lipase, trypsin, and amylase in the intestine, as well as the relative expression levels of metallothionein (mt), cytochrome P450 1A (cyp1a), carnitine palmitoyltransferase-1 (cpt-1), peroxisome proliferator-activated receptor alpha (pparα), peroxisome proliferator-activated receptor gamma (pparγ), hormone-sensitive lipase (hsl), lipoprotein lipase (lpl), malate dehydrogenase (mdh), leptin (lep), fatty acid synthase (fas), sterol regulatory element-binding protein 1 (srebp1), and stearoyl-CoA desaturase (scd) genes in the liver of juveniles were significantly increased (p < 0.05). In conclusion, dietary chitosan supplementation could alleviate the effects of Cd2+ stress on the muscle composition, digestive enzymes, lipid metabolism, and stress resistance, and their related gene expression, of juvenile tilapia, and to some extent reduce the toxic effect of Cd2+ stress on tilapia. Full article
(This article belongs to the Special Issue Morphological and Physiological Research on Fish)
Show Figures

Figure 1

17 pages, 7270 KiB  
Article
Effects of Aerobic Treadmill Training on Oxidative Stress Parameters, Metabolic Enzymes, and Histomorphometric Changes in Colon of Rats with Experimentally Induced Hyperhomocysteinemia
by Marija Stojanović, Dušan Todorović, Kristina Gopčević, Ana Medić, Milica Labudović Borović, Sanja Despotović and Dragan Djuric
Int. J. Mol. Sci. 2024, 25(4), 1946; https://doi.org/10.3390/ijms25041946 - 6 Feb 2024
Cited by 2 | Viewed by 1773
Abstract
The aim of this study was to investigate the effects of aerobic treadmill training regimen of four weeks duration on oxidative stress parameters, metabolic enzymes, and histomorphometric changes in the colon of hyperhomocysteinemic rats. Male Wistar albino rats were divided into four groups [...] Read more.
The aim of this study was to investigate the effects of aerobic treadmill training regimen of four weeks duration on oxidative stress parameters, metabolic enzymes, and histomorphometric changes in the colon of hyperhomocysteinemic rats. Male Wistar albino rats were divided into four groups (n = 10, per group): C, 0.9% NaCl 0.2 mL/day subcutaneous injection (s.c.) 2x/day; H, homocysteine 0.45 µmol/g b.w./day s.c. 2x/day; CPA, saline (0.9% NaCl 0.2 mL/day s.c. 2x/day) and an aerobic treadmill training program; and HPA, homocysteine (0.45 µmol/g b.w./day s.c. 2x/day) and an aerobic treadmill training program. The HPA group had an increased level of malondialdehyde (5.568 ± 0.872 μmol/mg protein, p = 0.0128 vs. CPA (3.080 ± 0.887 μmol/mg protein)), catalase activity (3.195 ± 0.533 U/mg protein, p < 0.0001 vs. C (1.467 ± 0.501 U/mg protein), p = 0.0012 vs. H (1.955 ± 0.293 U/mg protein), and p = 0.0003 vs. CPA (1.789 ± 0.256 U/mg protein)), and total superoxide dismutase activity (9.857 ± 1.566 U/mg protein, p < 0.0001 vs. C (6.738 ± 0.339 U/mg protein), p < 0.0001 vs. H (6.015 ± 0.424 U/mg protein), and p < 0.0001 vs. CPA (5.172 ± 0.284 U/mg protein)) were detected in the rat colon. In the HPA group, higher activities of lactate dehydrogenase (2.675 ± 1.364 mU/mg protein) were detected in comparison to the CPA group (1.198 ± 0.217 mU/mg protein, p = 0.0234) and higher activities of malate dehydrogenase (9.962 (5.752–10.220) mU/mg protein) were detected in comparison to the CPA group (4.727 (4.562–5.299) mU/mg protein, p = 0.0385). Subchronic treadmill training in the rats with hyperhomocysteinemia triggers the colon tissue antioxidant response (by increasing the activities of superoxide dismutase and catalase) and elicits an increase in metabolic enzyme activities (lactate dehydrogenase and malate dehydrogenase). This study offers a comprehensive assessment of the effects of aerobic exercise on colonic tissues in a rat model of hyperhomocysteinemia, evaluating a range of biological indicators including antioxidant enzyme activity, metabolic enzyme activity, and morphometric parameters, which suggested that exercise may confer protective effects at both the physiological and morphological levels. Full article
(This article belongs to the Special Issue Homocysteine in Protein Structure and Function and Human Disease)
Show Figures

Figure 1

14 pages, 3484 KiB  
Article
Dictyostelium Differentiation-Inducing Factor 1 Promotes Glucose Uptake via Direct Inhibition of Mitochondrial Malate Dehydrogenase in Mouse 3T3-L1 Cells
by Yuzuru Kubohara, Yuko Fukunaga, Ayako Shigenaga and Haruhisa Kikuchi
Int. J. Mol. Sci. 2024, 25(3), 1889; https://doi.org/10.3390/ijms25031889 - 4 Feb 2024
Cited by 3 | Viewed by 1958
Abstract
Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this [...] Read more.
Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography–tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10–40 μM dose-dependently suppressed growth, whereas LW6 at 20 μM, but not at 2–10 μM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10–40 μM significantly promoted glucose uptake, with the strongest effect at 20 μM DIF-1, whereas LW6 at 2–20 μM significantly promoted glucose uptake, with the strongest effect at 10 μM LW6. Western blot analyses showed that LW6 (10 μM) and DIF-1 (20 μM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells. Full article
(This article belongs to the Special Issue Insulin, Glucose Metabolism, and Obesity)
Show Figures

Figure 1

13 pages, 1953 KiB  
Article
Photoelectrochemical Enzyme Biosensor for Malate Using Quantum Dots on Indium Tin Oxide/Plastics as a Sensing Surface
by Tereza Hlaváčová and Petr Skládal
Biosensors 2024, 14(1), 11; https://doi.org/10.3390/bios14010011 - 24 Dec 2023
Cited by 3 | Viewed by 2382
Abstract
A photoelectrochemical biosensor for malate was developed using an indium tin oxide (ITO) layer deposited on a poly(ethylene terephthalate) plastic sheet as a transparent electrode material for the immobilization of malate dehydrogenase together with CdTe quantum dots. Different approaches were compared for the [...] Read more.
A photoelectrochemical biosensor for malate was developed using an indium tin oxide (ITO) layer deposited on a poly(ethylene terephthalate) plastic sheet as a transparent electrode material for the immobilization of malate dehydrogenase together with CdTe quantum dots. Different approaches were compared for the construction of the bioactive layer; the highest response was achieved by depositing malate dehydrogenase together with CdTe nanoparticles and covering it with a Nafion/water (1:1) mixture. The amperometric signal of this biosensor was recorded during irradiation with a near-UV LED in the flow-through mode. The limit of detection was 0.28 mmol/L, which is adequate for analyzing malic acid levels in drinks such as white wines and fruit juices. The results confirm that the cheap ITO layer deposited on the plastic sheet after cutting into rectangular electrodes allows for the economic production of photoelectrochemical (bio)sensors. The combination of NAD+-dependent malate dehydrogenase with quantum dots was also compatible with such an ITO surface. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Figure 1

21 pages, 3950 KiB  
Article
Effects of Vine Water Status on Malate Metabolism and γ-Aminobutyric Acid (GABA) Pathway-Related Amino Acids in Marselan (Vitis vinifera L.) Grape Berries
by Zhennan Zhan, Yanxia Zhang, Kangqi Geng, Xiaobin Xue, Alain Deloire, Dongmei Li and Zhenping Wang
Foods 2023, 12(23), 4191; https://doi.org/10.3390/foods12234191 - 21 Nov 2023
Cited by 4 | Viewed by 2043
Abstract
Malic acid is the predominant organic acid in grape berries, and its content is affected by abiotic factors such as temperature (fruit zone microclimate) and water (vine water status). The objectives of this study were to explore the potential mechanisms behind the effects [...] Read more.
Malic acid is the predominant organic acid in grape berries, and its content is affected by abiotic factors such as temperature (fruit zone microclimate) and water (vine water status). The objectives of this study were to explore the potential mechanisms behind the effects of vine water status on the biosynthesis and degradation of berry malic acid and the potential downstream effects on berry metabolism. This study was conducted over two growing seasons in 2021 and 2022, comprising three watering regimes: no water stress (CK), light water stress (LWS), and moderate water stress (MWS). Compared to CK, a significantly higher level of malic acid was found in berries from the MWS treatment when the berry was still hard and green (E-L 33) in both years. However, water stress reduced the malic acid content at the ripe berry harvest (E-L 38) stage. The activities of NAD-malate dehydrogenase (NAD-MDH) and pyruvate kinase (PK) were enhanced by water stress. Except for the E-L 33 stage, the activity of phosphoenolpyruvate carboxylase (PEPC) was reduced by water stress. The highest phosphoenolpyruvate carboxykinase (PEPCK) activity was observed at the berry veraison (E-L 35) stage and coincided with the onset of a decrease in the malate content. Meanwhile, the expression of VvPEPCK was consistent with its enzyme activity. This study showed that water stress changed the content of some free amino acids (GABA, proline, leucine, aspartate, and glutamate), two of which (glutamate and GABA) are primary metabolites of the GABA pathway. Full article
(This article belongs to the Special Issue Quality Control and Process Monitoring of Grape and Wine)
Show Figures

Figure 1

14 pages, 4353 KiB  
Article
Selection of Suitable Reference Genes for RT-qPCR Gene Expression Analysis in Centipedegrass under Different Abiotic Stress
by Xiaoyun Wang, Xin Shu, Xiaoli Su, Yanli Xiong, Yi Xiong, Minli Chen, Qi Tong, Xiao Ma, Jianbo Zhang and Junming Zhao
Genes 2023, 14(10), 1874; https://doi.org/10.3390/genes14101874 - 26 Sep 2023
Cited by 5 | Viewed by 1750
Abstract
As a C4 warm-season turfgrass, centipedegrass (Eremochloa ophiuroides (Munro) Hack.) is known for its exceptional resilience to intensive maintenance practices. In this research, the most stably expressed reference genes in the leaves of centipedegrass under different stress treatments, including salt, cold, drought, [...] Read more.
As a C4 warm-season turfgrass, centipedegrass (Eremochloa ophiuroides (Munro) Hack.) is known for its exceptional resilience to intensive maintenance practices. In this research, the most stably expressed reference genes in the leaves of centipedegrass under different stress treatments, including salt, cold, drought, aluminum (Al), and herbicide, were screened by the quantitative real-time PCR (RT-qPCR) technique. The stability of 13 candidate reference genes was evaluated by software GeNorm V3.4, NormFinder V20, BestKeeper V1.0, and ReFinder V1.0. The results of this experiment demonstrated that the expression of the UBC (ubiquitin-conjugating enzyme) remained the most stable under cold and Al stress conditions. On the other hand, the MD (malate dehydrogenase) gene exhibited the best performance in leaf tissues subjected to salt and drought stresses. Under herbicide stress, the expression level of the RIP (60S ribosomal protein L2) gene ranked the highest. The expression levels of abiotic stress-associated genes such as PIP1, PAL, COR413, ALMT9, and BAR were assessed to validate the reliability of the selected reference genes. This study provides valuable information and reference points for gene expression under abiotic stress conditions in centipedegrass. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

14 pages, 5863 KiB  
Article
Effects of 1-Methylcyclopropene Treatment on the Quality and Malic Acid Metabolism of ‘Xiangjiao’ Plum under Low-Temperature Storage
by Shutong Wu, Zhiqiang Zhu, Yunze Han, Shujuan Ji, Shunchang Cheng, Qian Zhou, Xin Zhou, Meilin Li and Baodong Wei
Horticulturae 2023, 9(9), 952; https://doi.org/10.3390/horticulturae9090952 - 22 Aug 2023
Cited by 1 | Viewed by 1483
Abstract
‘Xiangjiao’ plum (Prunus salicina Lindl.) is a stone fruit that is vulnerable to the chilling injury (CI) that is caused by low-temperature stress. The effects of 1-methylcyclopropene (1-MCP) and ethylene absorbent (EA) treatments on the fruit quality and malic acid metabolism of [...] Read more.
‘Xiangjiao’ plum (Prunus salicina Lindl.) is a stone fruit that is vulnerable to the chilling injury (CI) that is caused by low-temperature stress. The effects of 1-methylcyclopropene (1-MCP) and ethylene absorbent (EA) treatments on the fruit quality and malic acid metabolism of ‘Xiangjiao’ plum stored at 4 °C were compared in this study. Compared with the control check (CK) and EA treatment, fumigation with 1.0 mg·L−1 of 1-MCP for 24 h could more significantly maintain the sensory and physiological quality of the fruit, increase the activity of antioxidant enzymes, and prolong the storage time of plums. Furthermore, 1-MCP treatment can regulate the high expression of the tonoplast dicarboxylate transporter (tDT) and phosphoenolpyruvate carboxylase (PEPC) gene, regulate the high expression of the NAD-malate dehydrogenase (NAD-MDH) gene at the end of storage, and inhibit the expression of the NADP-malic enzyme (NADP-ME) gene. These changes resulted in increased NAD-MDH enzyme activity and decreased NADP-ME enzyme activity, which inhibited the degradation of malic acid that is caused by CI. As a result, 1-MCP can effectively maintain the storage quality of ‘Xiangjiao’ plum, reduce the loss of pleasant sour taste, and improve the edible flavor and commercial value of the fruit. Full article
Show Figures

Figure 1

12 pages, 2208 KiB  
Article
Production of L-Malic Acid by Metabolically Engineered Aspergillus nidulans Based on Efficient CRISPR–Cas9 and Cre-loxP Systems
by Ziqing Chen, Chi Zhang, Lingling Pei, Qi Qian and Ling Lu
J. Fungi 2023, 9(7), 719; https://doi.org/10.3390/jof9070719 - 30 Jun 2023
Cited by 12 | Viewed by 2960
Abstract
Aspergillus nidulans has been more extensively characterized than other Aspergillus species considering its morphology, physiology, metabolic pathways, and genetic regulation. As it has a rapid growth rate accompanied by simple nutritional requirements and a high tolerance to extreme cultural conditions, A. nidulans is [...] Read more.
Aspergillus nidulans has been more extensively characterized than other Aspergillus species considering its morphology, physiology, metabolic pathways, and genetic regulation. As it has a rapid growth rate accompanied by simple nutritional requirements and a high tolerance to extreme cultural conditions, A. nidulans is a promising microbial cell factory to biosynthesize various products in industry. However, it remains unclear for whether it is also a suitable host for synthesizing abundant L-malic acid. In this study, we developed a convenient and efficient double-gene-editing system in A. nidulans strain TN02A7 based on the CRISPR–Cas9 and Cre-loxP systems. Using this gene-editing system, we made a L-malic acid-producing strain, ZQ07, derived from TN02A7, by deleting or overexpressing five genes (encoding Pyc, pyruvate carboxylase; OahA, oxaloacetate acetylhydrolase; MdhC, malate dehydrogenase; DctA, C4-dicarboxylic acid transporter; and CexA, citric acid transporter). The L-malic acid yield in ZQ07 increased to approximately 9.6 times higher (up to 30.7 g/L titer) than that of the original unedited strain TN02A7, in which the production of L-malic acid was originally very low. The findings in this study not only demonstrate that A. nidulans could be used as a potential host for biosynthesizing organic acids, but also provide a highly efficient gene-editing strategy in filamentous fungi. Full article
(This article belongs to the Special Issue Metabolic Engineering of Aspergillus via CRISPR-Based Systems)
Show Figures

Figure 1

16 pages, 2407 KiB  
Article
Light-Dependent Expression and Promoter Methylation of the Genes Encoding Succinate Dehydrogenase, Fumarase, and NAD-Malate Dehydrogenase in Maize (Zea mays L.) Leaves
by Alexander T. Eprintsev, Dmitry N. Fedorin and Abir U. Igamberdiev
Int. J. Mol. Sci. 2023, 24(12), 10211; https://doi.org/10.3390/ijms241210211 - 16 Jun 2023
Cited by 6 | Viewed by 1812
Abstract
The expression and methylation of promoters of the genes encoding succinate dehydrogenase, fumarase, and NAD-malate dehydrogenase in maize (Zea mays L.) leaves depending on the light regime were studied. The genes encoding the catalytic subunits of succinate dehydrogenase showed suppression of expression [...] Read more.
The expression and methylation of promoters of the genes encoding succinate dehydrogenase, fumarase, and NAD-malate dehydrogenase in maize (Zea mays L.) leaves depending on the light regime were studied. The genes encoding the catalytic subunits of succinate dehydrogenase showed suppression of expression upon irradiation by red light, which was abolished by far-red light. This was accompanied by an increase in promoter methylation of the gene Sdh1-2 encoding the flavoprotein subunit A, while methylation was low for Sdh2-3 encoding the iron-sulfur subunit B under all conditions. The expression of Sdh3-1 and Sdh4 encoding the anchoring subunits C and D was not affected by red light. The expression of Fum1 encoding the mitochondrial form of fumarase was regulated by red and far-red light via methylation of its promoter. Only one gene encoding the mitochondrial NAD-malate dehydrogenase gene (mMdh1) was regulated by red and far-red light, while the second gene (mMdh2) did not respond to irradiation, and neither gene was controlled by promoter methylation. It is concluded that the dicarboxylic branch of the tricarboxylic acid cycle is regulated by light via the phytochrome mechanism, and promoter methylation is involved with the flavoprotein subunit of succinate dehydrogenase and the mitochondrial fumarase. Full article
(This article belongs to the Special Issue Molecular Mechanism of Photosynthetic Acclimation and Photoprotection)
Show Figures

Figure 1

Back to TopTop