Insights into the Cardioprotective Effects of Pyridoxine Treatment in Diabetic Rats: A Study on Cardiac Oxidative Stress, Cardiometabolic Status, and Cardiovascular Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Experimental Protocol
2.3. Induction of Diabetes Mellitus in Rats
2.4. Blood, Serum, and Plasma Biochemical Parameters Determination
2.5. Heart Weight Index (HWI) Calculation
2.6. Preparation of the Cardiac Tissue Samples
2.7. Assessing Antioxidant Enzymes in the Cardiac Tissue
2.8. Assessing LDH and MDH Activity in the Cardiac Tissue
2.9. Assessing LDH and MDH Isoforms in the Cardiac Tissue
2.10. Histomorphometric and Immunohistochemical Analysis of the Cardiac Tissue
2.11. Statistical Analysis
3. Results
3.1. Body Mass and Heart Weight Index
3.2. Biochemical Parameters
3.3. Activities of Antioxidant Enzymes in the Cardiac Tissue
3.4. Activities of LDH and MDH in the Cardiac Tissue
3.5. Activities of LDH and MDH Isoforms in the Cardiac Tissue
3.6. Histomorphometric and Immunohistochemical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Miyoshi, T.; Yoshida, M.; Akagi, S.; Saito, Y.; Ejiri, K.; Matsuo, N.; Ichikawa, K.; Iwasaki, K.; Naito, T.; et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int. J. Mol. Sci. 2022, 23, 3587. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, N.; Chacko, L.; Bhattacharya, H.; Vallamkondu, J.; Nag, S.; Dey, A.; Karmakar, T.; Reddy, P.H.; Kandimalla, R.; Dewanjee, S. Exploring the Complex Relationship between Diabetes and Cardiovascular Complications: Understanding Diabetic Cardiomyopathy and Promising Therapies. Biomedicines 2023, 11, 1126. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.L.; Xu, M.; Cen, X.F.; Qiu, H.L.; Guo, Y.Y.; Tang, Q.Z. Tectorigenin protects against cardiac fibrosis in diabetic mice heart via activating the adiponectin receptor 1-mediated AMPK pathway. Biomed. Pharmacother. 2024, 174, 116589. [Google Scholar] [CrossRef] [PubMed]
- Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose Response 2017, 15, 1559325817691158. [Google Scholar] [CrossRef] [PubMed]
- Daniel, O.O.; Adeoye, A.O.; Ojowu, J.; Olorunsogo, O.O. Inhibition of liver mitochondrial membrane permeability transition pore opening by quercetin and vitamin E in streptozotocin-induced diabetic rats. Biochem. Biophys. Res. Commun. 2018, 504, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y. Roles of Oxidative Stress and Inflammation in Vascular Endothelial Dysfunction-Related Disease. Antioxidants 2022, 11, 1958. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Higashi, Y. Pathophysiological Association between Diabetes Mellitus and Endothelial Dysfunction. Antioxidants 2021, 10, 1306. [Google Scholar] [CrossRef] [PubMed]
- Mutavdzin, S.; Gopcevic, K.; Stankovic, S.; Jakovljevic Uzelac, J.; Labudovic Borovic, M.; Djuric, D. The Effects of Folic Acid Administration on Cardiac Oxidative Stress and Cardiovascular Biomarkers in Diabetic Rats. Oxid. Med. Cell. Longev. 2019, 2019, 1342549. [Google Scholar] [CrossRef] [PubMed]
- Mutavdzin, S.; Gopcevic, K.; Stankovic, S.; Jakovljevic Uzelac, J.; Labudovic Borovic, M.; Djuric, D. The effect of folic acid administration on cardiac tissue matrix metalloproteinase activity and hepatorenal biomarkers in diabetic rats. Can. J. Physiol. Pharmacol. 2019, 97, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Calori, I.R.; Gusmão, L.A.; Tedesco, A.C. B6 vitamers as generators and scavengers of reactive oxygen species. J. Photochem. Photobiol. 2021, 7, 100041. [Google Scholar] [CrossRef]
- Stach, K.; Stach, W.; Augoff, K. Vitamin B6 in Health and Disease. Nutrients 2021, 13, 3229. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.D.; Danielski, L.G.; Novochadlo, M.M.; Goldim, M.P.S.; Joaquim, L.; Metzker, K.L.L.; Carli, R.J.D.E.; Denicol, T.; Cidreira, T.; Vieira, T.; et al. Vitamin B6 reduces oxidative stress in lungs and liver in experimental sepsis. An. Acad. Bras. Cienc. 2019, 91, e20190434. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.S. The Lactate and the Lactate Dehydrogenase in Inflammatory Diseases and Major Risk Factors in COVID-19 Patients. Inflammation 2022, 45, 2091–2123. [Google Scholar] [CrossRef] [PubMed]
- Ostapiv, R.D.; Humenyuk, S.L.; Manko, V.V. Activity and isozyme content of lactate dehydrogenase under long-term oral taurine administration to rats. Ukr. Biochem. J. 2015, 87, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Hahn, K.R.; Kang, M.S.; Choi, J.H.; Moon, S.M.; Yoon, Y.S.; Hwang, K.; Kim, D.W. Tat-malate dehydrogenase fusion protein protects neurons from oxidative and ischemic damage by reduction of reactive oxygen species and modulation of glutathione redox system. Sci. Rep. 2023, 13, 5653. [Google Scholar] [CrossRef] [PubMed]
- Hofhuis, J.; Schueren, F.; Nötzel, C.; Lingner, T.; Gärtner, J.; Jahn, O.; Thoms, S. The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code. Open Biol. 2016, 6, 160246. [Google Scholar] [CrossRef]
- National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011.
- Suidasari, S.; Uragami, S.; Yanaka, N.; Kato, N. Dietary vitamin B6 modulates the gene expression of myokines, Nrf2-related factors, myogenin and HSP60 in the skeletal muscle of rats. Exp. Ther. Med. 2017, 14, 3239–3246. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.T.; Gong, Y.; Zhou, B.; Yang, J.J.; Cheng, Y.; Zhao, J.G.; Qi, M.Y. Ursolic acid ameliorates oxidative stress, inflammation and fibrosis in diabetic cardiomyopathy rats. Biomed. Pharmacother. 2018, 97, 1461–1467. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Beers, R.F., Jr.; Sizer, I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952, 195, 133–160. [Google Scholar] [CrossRef] [PubMed]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef] [PubMed]
- Hollaar, L.; Van der Laarse, A. Interference of the measurement of lactate dehydrogenase (LDH) activity in human serum and plasma by LDH from blood cells. Clin. Chim. Acta 1979, 99, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Frieden, C.J.; Fernandez, S. Kinetic studies on pig heart cytoplasmic malate dehydrogenase. J. Biol. Chem. 1975, 250, 2106–2113. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, V.R.; Phillips, J.; Field, E.J. Lactic dehydrogenase isoenzymes in normal and pathological spinal fluids. J. Clin. Pathol. 1965, 18, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Kawano, T.; Kuroi, M.; Morishita, M.; Mori, M.; Kawakatsu, K. Zymographic demonstration of lactate and malate dehydrogenases isoenzymes in the rodent salivary glands. Histochemie 1970, 22, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Strother, R.M.; Thomas, T.G.; Otsyula, M.; Sanders, R.A.; Watkins, J.B., 3rd. Characterization of oxidative stress in various tissues of diabetic and galactose-fed rats. Int. J. Exp. Diabetes Res. 2001, 2, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Gimenes, C.; Gimenes, R.; Rosa, C.M.; Xavier, N.P.; Campos, D.H.; Fernandes, A.A.; Cezar, M.D.M.; Guirado, G.N.; Cicogna, A.C.; Takamoto, A.H.R.; et al. Low intensity physical exercise attenuates cardiac remodeling and myocardial oxidative stress and dysfunction in diabetic rats. J. Diabetes Res. 2015, 2015, 457848. [Google Scholar] [CrossRef] [PubMed]
- Kalicki, B.; Lewicka, A.; Jęderka, K.; Leśniak, M.; Marszałkowska-Jakubik, J.; Lewicki, S. Vitamin B6 improves blood parameters in rats fed a protein-deficient diet and subjected to moderate, long-term exercise. Cent. Eur. J. Immunol. 2019, 44, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Kato, N.; Kimoto, A.; Zhang, P.; Bumrungkit, C.; Karunaratne, S.; Yanaka, N.; Kumrungsee, T. Relationship of Low Vitamin B6 Status with Sarcopenia, Frailty, and Mortality: A Narrative Review. Nutrients 2024, 16, 177. [Google Scholar] [CrossRef]
- De Geest, B.; Mishra, M. Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants 2022, 11, 784. [Google Scholar] [CrossRef] [PubMed]
- Vulesevic, B.; McNeill, B.; Giacco, F.; Maeda, K.; Blackburn, N.J.R.; Brownlee, M.; Milne, R.W.; Suuronen, E.J. Methylglyoxal-induced endothelial cell loss and inflammation contribute to the development of diabetic cardiomyopathy. Diabetes 2016, 65, 1699–1713. [Google Scholar] [CrossRef] [PubMed]
- Al-Rasheed, N.M.; Al-Rasheed, N.M.; Hasan, I.H.; Al-Amin, M.A.; Al-Ajmi, H.N.; Mohamad, R.A.; Mahmoud, A.M. Simvastatin ameliorates diabetic cardiomyopathy by attenuating oxidative stress and inflammation in rats. Oxid. Med. Cell. Longev. 2017, 2017, 1092015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kang, K.; Chen, S.; Su, Q.; Zhang, W.; Zeng, L.; Lin, X.; Peng, F.; Lin, J.; Chai, D. High serum lactate dehydrogenase as a predictor of cardiac insufficiency at follow-up in elderly patients with acute myocardial infarction. Arch. Gerontol. Geriatr. 2024, 117, 105253. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, K.M.; Abul Qais, F.; Hasan, H.; Naseem, I. Anti-diabetic study of vitamin B6 on hyperglycaemia induced protein carbonylation, DNA damage and ROS production in alloxan induced diabetic rats. Toxicol. Res. 2019, 8, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.A.; Robinson, E.S. Reducing the stress of drug administration: Implications for the 3Rs. Sci. Rep. 2015, 5, 14288. [Google Scholar] [CrossRef] [PubMed]
- Ahn, T.; Bae, C.-S.; Yun, C.-H. Acute stress-induced changes in hormone and lipid levels in mouse plasma. Vet. Med. 2016, 61, 57–64. [Google Scholar] [CrossRef]
- Rehman, T.; Shabbir, M.A.; Inam-Ur-Raheem, M.; Manzoor, M.F.; Ahmad, N.; Liu, Z.W.; Ahmad, M.H.; Siddeeg, A.; Abid, M.; Aadil, R.M. Cysteine and homocysteine as biomarker of various diseases. Food Sci. Nutr. 2020, 8, 4696–4707. [Google Scholar] [CrossRef] [PubMed]
- Simó-Servat, O.; Simó, R.; Hernández, C. Circulating biomarkers of diabetic retinopathy: An overview based on physiopathology. J. Diabetes Res. 2016, 2016, 5263798. [Google Scholar] [CrossRef] [PubMed]
- Kataria, N.; Yadav, P.; Kumar, R.; Kumar, N.; Singh, M.; Kant, R.; Kalyani, V. Effect of Vitamin B6, B9, and B12 Supplementation on Homocysteine Level and Cardiovascular Outcomes in Stroke Patients: A Meta-Analysis of Randomized Controlled Trials. Cureus 2021, 13, e14958. [Google Scholar] [CrossRef] [PubMed]
- Lindschinger, M.; Tatzber, F.; Schimetta, W.; Schmid, I.; Lindschinger, B.; Cvirn, G.; Stanger, O.; Lamont, E.; Wonisch, W. A randomized pilot trial to evaluate the bioavailability of natural versus synthetic vitamin B complexes in healthy humans and their effects on homocysteine, oxidative stress, and antioxidant levels. Oxid. Med. Cell. Longev. 2019, 2019, 6082613. [Google Scholar] [CrossRef] [PubMed]
- Chayarop, K.; Peungvicha, P.; Temsiririrkkul, R.; Wongkrajang, Y.; Chuakul, W.; Rojsanga, P. Hypoglycaemic activity of Mathurameha, a Thai traditional herbal formula aqueous extract, and its effect on biochemical profiles of streptozotocin-nicotinamide-induced diabetic rats. BMC Complement. Altern. Med. 2017, 17, 343. [Google Scholar] [CrossRef] [PubMed]
- Frankel, D.S.; Meigs, J.B.; Massaro, J.M.; Wilson, P.W.; O’Donnell, C.J.; D’Agostino, R.B.; Tofler, G.H. Von Willebrand factor, type 2 diabetes mellitus, and risk of cardiovascular disease: The framingham offspring study. Circulation 2008, 118, 2533–2539. [Google Scholar] [CrossRef] [PubMed]
- Lelas, A.; Greinix, H.T.; Wolff, D.; Eissner, G.; Pavletic, S.Z.; Pulanic, D. Von Willebrand Factor, Factor VIII, and Other Acute Phase Reactants as Biomarkers of Inflammation and Endothelial Dysfunction in Chronic Graft-Versus-Host Disease. Front. Immunol. 2021, 12, 676756. [Google Scholar] [CrossRef] [PubMed]
- Umadevi, B.; Roopkala, M.S.; Silvia, W.D.C.R.; Kumar, K.M.P. Role of von Willebrand factor in type 2 diabetes mellitus patients. J. Evol. Med. Dent. Sci. 2016, 5, 6075–6079. [Google Scholar]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef] [PubMed]
- Rosa, C.M.; Gimenes, R.; Campos, D.H.; Guirado, G.N.; Gimenes, C.; Fernandes, A.A.H.; Cicogna, A.C.; Queiroz, R.M.; Falcão-Pires, I.; Miranda-Silva, D.; et al. Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovasc. Diabetol. 2016, 15, 126. [Google Scholar] [CrossRef] [PubMed]
- Yilgor, A.; Demir, C. Determination of oxidative stress level and some antioxidant activities in refractory epilepsy patients. Sci. Rep. 2024, 14, 6688. [Google Scholar] [CrossRef] [PubMed]
- Balakina, A.; Prikhodchenko, T.; Amozova, V.; Stupina, T.; Mumyatova, V.; Neganova, M.; Yakushev, I.; Kornev, A.; Gadomsky, S.; Fedorov, B.; et al. Preparation, antioxidant properties and ability to increase intracellular no of a new pyridoxine derivative B6NO. Antioxidants 2021, 10, 1451. [Google Scholar] [CrossRef] [PubMed]
- Bajic, Z.; Sobot, T.; Skrbic, R.; Stojiljkovic, M.P.; Ponorac, N.; Matavulj, A.; Djuric, D.M. Homocysteine, vitamins B6 and Folic acid in experimental models of myocardial infarction and heart failure-How strong is that link? Biomolecules 2022, 12, 536. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Jain, S.K. Effect of vitamin B6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H2O2-treated U937 monocytes. Free Radic. Biol. Med. 2004, 36, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Y.; Yu, W.; Zhang, W.; Tang, H.; Yuan, W.E. In situ forming ROS-scavenging hybrid hydrogel loaded with polydopamine-modified fullerene nanocomposites for promoting skin wound healing. J. Nanobiotechnol. 2023, 21, 129. [Google Scholar] [CrossRef] [PubMed]
- Jakovljevic Uzelac, J.; Djukic, T.; Mutavdzin, S.; Stankovic, S.; Labudovic Borovic, M.; Rakocevic, J.; Milic, N.; Savic Radojevic, A.; Vasic, M.; Japundzic Zigon, N.; et al. The influence of subchronic co-application of vitamins B6 and folic acid on cardiac oxidative stress and biochemical markers in monocrotaline-induced heart failure in male Wistar albino rats. Can. J. Physiol. Pharmacol. 2020, 98, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, Q.; Coquille, S.; Iorio, A.; Sterpone, F.; Madern, D. Biochemical, structural and dynamical characterizations of the lactate dehydrogenase from Selenomonas ruminantium provide information about an intermediate evolutionary step prior to complete allosteric regulation acquisition in the super family of lactate and malate dehydrogenases. J. Struct. Biol. 2023, 215, 108039. [Google Scholar]
- Mansouri, S.; Shahriari, A.; Kalantar, H.; Moini Zanjani, T.; Haghi Karamallah, M. Role of malate dehydrogenase in facilitating lactate dehydrogenase to support the glycolysis pathway in tumors. Biomed. Rep. 2017, 6, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G. NAD+ metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal. Transduct. Target. Ther. 2020, 5, 227. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, J.Y.; Chen, K.C.; Wang, C.H.; Liu, G.Y.; Ye, J.A.; Chou, Y.T.; Lin, Y.C.; Lyu, C.J.; Chang, R.Y.; Liu, Y.L.; et al. Suppression of the human malic enzyme 2 modifies energy metabolism and inhibits cellular respiration. Commun. Biol. 2023, 6, 548. [Google Scholar] [CrossRef] [PubMed]
- Tejpal, C.S.; Chatterjee, N.S.; Elavarasan, K.; Lekshmi, R.G.K.; Anandan, R.; Asha, K.K.; Ganesan, B.; Mathew, S. Thiamine and pyridoxine loaded vanillic acid grafted chitosan modulates lactate and malate dehydrogenase in albino rats. Fish. Technol. 2017, 54, 197–201. [Google Scholar]
- Hatting, M.; Tavares, C.; Sharabi, K.; Rines, A.K.; Puigserver, P. Insulin regulation of gluconeogenesis. Ann. N. Y. Acad. Sci. 2018, 1411, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Aloud, A.A.; Veeramani, C.; Govindasamy, C.; Alsaif, M.A.; Al-Numair, K.S. Galangin, a natural flavonoid reduces mitochondrial oxidative damage in streptozotocin-induced diabetic rats. Redox. Rep. 2018, 23, 29–34. [Google Scholar] [CrossRef]
- Ebeneasan, P.; Jainu, M. Combined therapy with insulin and vildagliptin causes cardiac dysfunction in diabetic rats. Indian J. Pharm. Sci. 2018, 80, 575–580. [Google Scholar] [CrossRef]
- Turecký, L.; Kupčová, V.; Uhlíková, E.; Mojto, V. Peroxisomal enzymes in the liver of rats with experimental diabetes mellitus type 2. Physiol. Res. 2014, 63 (Suppl. S4), S585–S591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Y.; Yao, H.; Deng, S.; Gao, T.; Shang, L.; Chen, X.; Cui, X.; Zeng, J. Peroxisomal β-oxidation stimulates cholesterol biosynthesis in the liver in diabetic mice. J. Biol. Chem. 2022, 298, 101572. [Google Scholar] [CrossRef] [PubMed]
- Araz Server, E.; Kalaycık Ertugay, Ç.; Baykal Koca, S.; Longur, E.S.; Yiğit, Ö.; Demirhan, H.; Çakır, Y. Predictive Role of Ki-67 and Proliferative-Cell Nuclear Antigen (PCNA) in Recurrent Cholesteatoma. J. Int. Adv. Otol. 2019, 15, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Bologna-Molina, R.; Mosqueda-Taylor, A.; Molina-Frechero, N.; Mori-Estevez, A.D.; Sánchez-Acuña, G. Comparison of the value of PCNA and Ki-67 as markers of cell proliferation in ameloblastic tumors. Med. Oral. Patol. Oral. Cir. Bucal. 2013, 18, e174–e179. [Google Scholar] [CrossRef]
- Fraser, G.J.; Hamed, S.S.; Martin, K.J.; Hunter, K.D. Shark tooth regeneration reveals common stem cell characters in both human rested lamina and ameloblastoma. Sci. Rep. 2019, 9, 15956. [Google Scholar] [CrossRef] [PubMed]
Parameters | Groups (Mean ± SEM) | p Value | ||||
---|---|---|---|---|---|---|
C1 | C2 | DM | P | DM + P | ||
Homocysteine (mmol/L) | 9.0 ± 0.46 | 10.4 ± 0.64 | 8.3 ± 0.39 | 11.1 ± 0.36 | 5.3 ± 0.29 ¤¤,^^ | <0.001 |
LDH (U/L) | 3887.1 ± 358.5 | 4438.4 ± 331.7 | 3913.6 ± 249.3 | 3291.9 ± 169.3 | 4977.1 ± 449.1 ^^ | 0.014 |
Fibrinogen (g/L) | 2.6 ± 0.3 | 2.2 ± 0.1 | 1.2 ± 0.2 * | 1.7 ± 0.1 | 1.9 ± 0.3 | 0.001 |
vWF (% d.N.) | 214.3 ± 30.4 | 99.4 ± 4.3 | 467.9 ± 43.6 ** | 196.7 ± 11.4 | 376.6 ± 38.5 ^^ | <0.001 |
Parameters | Groups (Mean ± SEM) | p Value | ||||
---|---|---|---|---|---|---|
C1 | C2 | DM | P | DM + P | ||
TC (mmol/L) | 1.38 ± 0.06 | 1.53 ± 0.07 | 2.32 ± 0.13 ** | 1.78 ± 0.06 # | 1.98 ± 0.09 ¤ | <0.001 |
HDL-C (mmol/L) | 1.12 ± 0.05 | 0.64 ± 0.03 ** | 1.51 ± 0.11 ** | 0.57 ± 0.03 | 0.73 ± 0.04 ¤¤,^^ | <0.001 |
LDL-C (mmol/L) | 0.09 ± 0.01 | 0.53 ± 0.06 ** | 0.28 ± 0.06 ** | 0.77 ± 0.07 # | 0.52 ± 0.11 ¤,^ | <0.001 |
TG (mmol/L) | 0.58 ± 0.04 | 0.78 ± 0.04 * | 2.03 ± 0.22 ** | 0.96 ± 0.10 | 1.77 ± 0.29 ¤ | <0.001 |
Parameters | Groups (Mean ± SEM) | p Value | ||||
---|---|---|---|---|---|---|
C1 | C2 | DM | P | DM + P | ||
LV wall thickness (μm) | 2528.7 (2137.8–3264.7) | 2242.6 (1810.0–2290.6) | 2117.6 (2033.3–2409.6) | 2515.8 (2440.0–3262.7) # | 2055.6 (1654.0–2432.6) ^ | 0.039 |
IVS thickness (μm) | 2429.5 (2113.5–2782.5) | 2014.5 (1709.5–2394.5) | 1875.8 (1666.6–2047.9) * | 2635.4 (2594.2–3330.7) # | 1781.4 (1703.0–1987.2) ^ | 0.007 |
RV wall thickness (μm) | 878.9 (648.3–994.7) | 821.8 (712.9–963.4) | 765.3 (478.1–848.9) | 1049.3 (877.1–1208.7) | 779.7 (561.7–1219.0) | 0.192 |
Parameters | Groups [Median (Minimal–Maximal Value)] | |||||
---|---|---|---|---|---|---|
C1 | C2 | DM | P | DM + P | p Value | |
PCNA + LV (%) | 4 (3–7) | 5.5 (3–7) | 2 (1–3) * | 4 (2–8) # | 3.5 (2–5) | 0.008 |
PCNA + RV (%) | 6 (5–7) | 4.5 (4–6) | 2.5 (1–4) * | 5 (4–8) # | 3.5 (3–6) ¤ | 0.007 |
PCNA + IVS (%) | 4 (4–5) | 6.5 (3–8) * | 1.5 (0–3) * | 4 (3–5) # | 2 (1–3) ^ | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutavdzin Krneta, S.; Gopcevic, K.; Stankovic, S.; Jakovljevic Uzelac, J.; Todorovic, D.; Labudovic Borovic, M.; Rakocevic, J.; Djuric, D. Insights into the Cardioprotective Effects of Pyridoxine Treatment in Diabetic Rats: A Study on Cardiac Oxidative Stress, Cardiometabolic Status, and Cardiovascular Biomarkers. Diagnostics 2024, 14, 1507. https://doi.org/10.3390/diagnostics14141507
Mutavdzin Krneta S, Gopcevic K, Stankovic S, Jakovljevic Uzelac J, Todorovic D, Labudovic Borovic M, Rakocevic J, Djuric D. Insights into the Cardioprotective Effects of Pyridoxine Treatment in Diabetic Rats: A Study on Cardiac Oxidative Stress, Cardiometabolic Status, and Cardiovascular Biomarkers. Diagnostics. 2024; 14(14):1507. https://doi.org/10.3390/diagnostics14141507
Chicago/Turabian StyleMutavdzin Krneta, Slavica, Kristina Gopcevic, Sanja Stankovic, Jovana Jakovljevic Uzelac, Dušan Todorovic, Milica Labudovic Borovic, Jelena Rakocevic, and Dragan Djuric. 2024. "Insights into the Cardioprotective Effects of Pyridoxine Treatment in Diabetic Rats: A Study on Cardiac Oxidative Stress, Cardiometabolic Status, and Cardiovascular Biomarkers" Diagnostics 14, no. 14: 1507. https://doi.org/10.3390/diagnostics14141507
APA StyleMutavdzin Krneta, S., Gopcevic, K., Stankovic, S., Jakovljevic Uzelac, J., Todorovic, D., Labudovic Borovic, M., Rakocevic, J., & Djuric, D. (2024). Insights into the Cardioprotective Effects of Pyridoxine Treatment in Diabetic Rats: A Study on Cardiac Oxidative Stress, Cardiometabolic Status, and Cardiovascular Biomarkers. Diagnostics, 14(14), 1507. https://doi.org/10.3390/diagnostics14141507