Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = kesterite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1812 KiB  
Review
Cadmium-Free Buffer Layer Materials for Kesterite Thin-Film Solar Cells: An Overview
by Nafees Ahmad and Guangbao Wu
Energies 2025, 18(12), 3198; https://doi.org/10.3390/en18123198 - 18 Jun 2025
Cited by 1 | Viewed by 549
Abstract
Kesterite (CZTS/CZTSSe) thin-film solar cells are considered an eco-friendly, earth-abundant, and low-cost photovoltaic technology that can fulfill our future energy needs. Due to its outstanding properties including tunable bandgap and high absorption coefficient, the power conversion efficiency (PCE) has reached over 14%. However, [...] Read more.
Kesterite (CZTS/CZTSSe) thin-film solar cells are considered an eco-friendly, earth-abundant, and low-cost photovoltaic technology that can fulfill our future energy needs. Due to its outstanding properties including tunable bandgap and high absorption coefficient, the power conversion efficiency (PCE) has reached over 14%. However, toxic cadmium sulfide (CdS) is commonly used as an n-type buffer layer in kesterite thin-film solar cells (KTFSCs) to form a better p–n junction with the p-type CZTS/CZTSSe absorber. In addition to its toxicity, the CdS buffer layer shows parasitic absorption at low wavelengths (400–500 nm) owing to its low bandgap (2.4 eV). For the last few years, several efforts have been made to substitute CdS with an eco-friendly, Cd-free, cost-effective buffer layer with alternative large-bandgap materials such as ZnSnO, Zn (O, S), In2Se3, ZnS, ZnMgO, and TiO2, which showed significant advances. Herein, we summarize the key findings of the research community using a Cd-free buffer layer in KTFSCs to provide a current scenario for future work motivating researchers to design new materials and strategies to achieve higher performance. Full article
Show Figures

Figure 1

21 pages, 2914 KiB  
Article
The Numerical Simulation of a Non-Fullerene Thin-Film Organic Solar Cell with Cu2FeSnS4 (CFTS) Kesterite as a Hole Transport Layer Using SCAPS-1D
by Edson L. Meyer, Sindisiwe Jakalase, Azile Nqombolo, Nicholas Rono and Mojeed A. Agoro
Coatings 2025, 15(3), 266; https://doi.org/10.3390/coatings15030266 - 23 Feb 2025
Cited by 3 | Viewed by 1127
Abstract
Global warming and environmental pollution due to the overuse and exploitation of fossil fuels are the main issues affecting humans’ well-being. Solar energy is considered to be one of the most promising candidates for providing human society with a clean and sustainable energy [...] Read more.
Global warming and environmental pollution due to the overuse and exploitation of fossil fuels are the main issues affecting humans’ well-being. Solar energy is considered to be one of the most promising candidates for providing human society with a clean and sustainable energy supply. Thin-film organic solar cells (TFOSCs) use organic semiconductors as light-absorbing layer materials. TFOSCs have attracted wide research interest due to several advantages, such as easy fabrication, affordability, light weight, and environmental friendliness. Over the years, TFOSCs have been dominated by donor–acceptor blends based on polymer donors and fullerene acceptors. However, a new class of non-fullerene acceptors (NFAs) has gained prominence in TFOSCs owing to their significant improvement in the power conversion efficiency (PCE) of non-fullerene-based devices. In this study, the One-Dimensional Solar Cell Capacitance Simulator (SCAPS-1D) numerical simulator was used to study the performance of a device with a configuration of FTO/PDINO/PBDB-T/ITIC/CFTS/Al. Here, the PBDB-T/ITIC polymer blend represents poly[(2,6-(4,8-bis(5-(2 ethylhexyl)thiophen-2-yl)benzo [1,2-b:4,5-b]dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo [1,2-c:4,5-c]dithiophene-4,8-dione)] (PBDB)/3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetraki(4-hexylphenyl)-dithieno[2,3-d:2,3-d]-s-indaceno [1,2-b:5,6-b]dithiophene) (ITIC) and the non-fullerene acceptor (NFA) and serves as the absorber layer. The electron transport layer (ETL) was 2,9-Bis[3-(dimethyloxidoamino)propyl]anthra[2,1,9-def:6,5,10-d’e’f’]diisoquinoline-1,3,8,10(2H,9H)-tetrone (PDINO), and Cu2FeSnS4 (CFTS) was used as a hole transport layer (HTL). This research article aims to address the global challenges of environmental pollution and global warming caused by the overuse of fossil fuels by exploring alternative energy solutions. Upon optimization, the device achieved a power conversion efficiency (PCE) of 16.86%, a fill factor (FF) of 79.12%, a short-circuit current density (JSC) of 33.19 mA cm−2, and an open-circuit voltage (VOC) of 0.64 V. The results obtained can guide the fabrication of NFA-based TFOSCs in the near future. Full article
Show Figures

Figure 1

13 pages, 13568 KiB  
Article
Influence of Copper and Tin Oxidation States on the Phase Evolution of Solution-Processed Ag-Alloyed CZTS Photovoltaic Absorbers
by Abdeljalil Errafyg, Naoufal Ennouhi, Yassine Chouimi and Zouheir Sekkat
Energies 2024, 17(24), 6341; https://doi.org/10.3390/en17246341 - 17 Dec 2024
Viewed by 1155
Abstract
Kesterite-based semiconductors, particularly copper–zinc–tin–sulfide (CZTS), have garnered considerable attention as potential absorber layers in thin-film solar cells because of their abundance, nontoxicity, and cost-effectiveness. In this study, we explored the synthesis of Ag-alloyed CZTS (ACZTS) materials via the sol–gel method and deposited them [...] Read more.
Kesterite-based semiconductors, particularly copper–zinc–tin–sulfide (CZTS), have garnered considerable attention as potential absorber layers in thin-film solar cells because of their abundance, nontoxicity, and cost-effectiveness. In this study, we explored the synthesis of Ag-alloyed CZTS (ACZTS) materials via the sol–gel method and deposited them on a transparent fluorine-doped tin oxide (FTO) back electrode. A key challenge is the selection and manipulation of metal–salt precursors, with a particular focus on the oxidation states of copper (Cu) and tin (Sn) ions. Two distinct protocols, varying the oxidation states of the Cu and Sn ions, were employed to synthesize the ACZTS materials. The transfer from the solution to the precursor film was analyzed, followed by annealing at different temperatures under a sulfur atmosphere to investigate the behavior and growth of these materials during the final stage of annealing. Our results show that the precursor transformation from solution to film is highly sensitive to the oxidation states of these metal ions, significantly influencing the chemical reactions during sol–gel synthesis and subsequent annealing. Furthermore, the formation pathway of the kesterite phase at elevated temperatures differs between the two protocols. Structural, morphological, and optical properties were characterized via X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). Our findings highlight the critical role of the Cu and Sn oxidation states in the formation of high-quality kesterite materials. Additionally, we studied a novel approach for controlling the synthesis and phase evolution of kesterite materials via molecular inks, which could provide new opportunities for enhancing the efficiency of thin-film solar cells. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

24 pages, 3518 KiB  
Article
A Numerical Simulation Study of the Impact of Kesterites Hole Transport Materials in Quantum Dot-Sensitized Solar Cells Using SCAPS-1D
by Sindisiwe Jakalase, Azile Nqombolo, Edson L. Meyer, Mojeed A. Agoro and Nicholas Rono
Nanomaterials 2024, 14(24), 2016; https://doi.org/10.3390/nano14242016 - 15 Dec 2024
Cited by 3 | Viewed by 1643
Abstract
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells [...] Read more.
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells. Kesterite materials, known for their excellent optoelectronic properties and chemical stability, have gained attention for their potential as hole transport layer (HTL) materials in solar cells. In this study, the SCAPS-1D numerical simulator was used to analyze a solar cell with the configuration FTO/TiO2/MoS2/HTL/Ag. The electron transport layer (ETL) used was titanium dioxide (TiO2), while Cu2FeSnS4 (CFTS), Cu2ZnSnS4 (CZTSe), Cu2NiSnS4 (CNTS), and Cu2ZnSnSe4 (CZTSSe) kesterite materials were evaluated as HTLs. MoS2 quantum dot served as the absorber, with FTO as the anode and silver as the back metal contact. The CFTS material outperformed the others, yielding a PCE of 25.86%, a fill factor (FF) of 38.79%, a short-circuit current density (JSC) of 34.52 mA cm−2, and an open-circuit voltage (VOC) of 1.93 V. This study contributes to the advancement of high-performance QDSSCs. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

19 pages, 4533 KiB  
Article
Synthesis Strategy Toward Minimizing Adventitious Oxygen Contents in the Mechanochemically Made Semiconductor Kesterite Cu2ZnSnS4 Nanopowders
by Katarzyna Kapusta, Zbigniew Olejniczak and Jerzy F. Janik
Materials 2024, 17(24), 6091; https://doi.org/10.3390/ma17246091 - 13 Dec 2024
Viewed by 682
Abstract
A multipronged approach to the refined mechanochemical synthesis of the semiconductor kesterite Cu2ZnSnS4 with minimal quantities of adventitious oxygen as well as to optimizing handling procedures from that angle is described. Three precursor systems are used to provide a pool [...] Read more.
A multipronged approach to the refined mechanochemical synthesis of the semiconductor kesterite Cu2ZnSnS4 with minimal quantities of adventitious oxygen as well as to optimizing handling procedures from that angle is described. Three precursor systems are used to provide a pool of freshly made cubic prekesterite nanopowders with no semiconductor properties and the thermally annealed at 500 °C tetragonal kesterite nanopowders of the semiconductor. Based on the previously reported high propensity of such nanopowders to long-term deteriorating oxidation in ambient air, suitable modifications of all crucial synthesis steps are implemented, which are directed toward excluding or limiting the materials’ exposure to air. The nanopowders are comprehensively characterized by powder XRD, FT-IR/Raman/UV-Vis spectroscopies, solid-state 65Cu/119Sn MAS NMR, TGA/DTA-QMS analysis, SEM, BET/BJH specific surface area, and helium density determinations, and, significantly, are directly analyzed for oxygen and hydrogen contents. The important finding is that following the anaerobic procedures and realistically minimizing the materials’ exposure to air in certain manipulation steps results in the preparation of better oxidation-resistant nanopowders with a dramatic relative decrease in their oxygen content than previously reported. The adherence to the strict synthesis conditions that limit contact of the no-oxygen-containing kesterite nanopowders with ambient air is emphasized. Full article
Show Figures

Graphical abstract

13 pages, 5817 KiB  
Article
Cu2ZnSnS4 Nanoparticles as an Efficient Photocatalyst for the Degradation of Diclofenac in Water
by Giorgio Tseberlidis, Vanira Trifiletti, Amin Hasan Husien, Andrea L’Altrella, Simona Binetti and Fabio Gosetti
Appl. Sci. 2024, 14(21), 9923; https://doi.org/10.3390/app14219923 - 30 Oct 2024
Cited by 4 | Viewed by 1544
Abstract
Dangerous emerging water micropollutants like Diclofenac are harming ecosystems all over the planet, and immediate action is needed. The large bandgap photocatalysts conventionally used to degrade them need to be more efficient. Cu2ZnSnS4, a well-known light absorber in photovoltaics [...] Read more.
Dangerous emerging water micropollutants like Diclofenac are harming ecosystems all over the planet, and immediate action is needed. The large bandgap photocatalysts conventionally used to degrade them need to be more efficient. Cu2ZnSnS4, a well-known light absorber in photovoltaics with a bandgap of 1.5 eV, can efficiently harvest an abundant portion of the solar spectrum. However, its photocatalytic activity has so far only been reported in relation to the degradation of organic dyes, and it is usually used as a benchmark to assess the activity of a photocatalyst without testing its actual potential on a hazardous water micropollutant conventionally encountered in primary and secondary waters. Here, we report the promising photocatalytic activity of Cu2ZnSnS4 nanoparticles in the degradation of Diclofenac, chosen as a benchmark for dangerous emerging water micropollutants. Full article
Show Figures

Figure 1

16 pages, 4858 KiB  
Article
Feasibility of Exceeding 20% Efficiency for Kesterite/c-Silicon Tandem Solar Cells Using an Alternative Buffer Layer: Optical and Electrical Analysis
by Naoufal Ennouhi, Safae Aazou, Abdeljalile Er-rafyg, Zakaria Laghfour and Zouheir Sekkat
Nanomaterials 2024, 14(21), 1722; https://doi.org/10.3390/nano14211722 - 29 Oct 2024
Cited by 1 | Viewed by 1427
Abstract
Tandem solar cells have the potential to be more efficient than the Shockley–Queisser limit imposed on single junction cells. In this study, optical and electrical modeling based on experimental data were used to investigate the possibility of boosting the performance of kesterite/c-Si tandem [...] Read more.
Tandem solar cells have the potential to be more efficient than the Shockley–Queisser limit imposed on single junction cells. In this study, optical and electrical modeling based on experimental data were used to investigate the possibility of boosting the performance of kesterite/c-Si tandem solar cells by inserting an alternative nontoxic TiO2 buffer layer into the kesterite top subcell. First, with SCAPS-1D simulation, we determined the data reported for the best kesterite (CZTS (Eg = 1.5 eV)) device in the experiments to be used as a simulation baseline. After obtaining metric parameters close to those reported, the influence on the optoelectronic characteristics of replacing CdS with a TiO2 buffer layer was studied and analyzed. Different top subcell absorbers (CZTS0.8Se0.2 (Eg = 1.4 eV), CZTS (Eg = 1.5 eV), CZTS (Eg = 1.6 eV), and CZT0.6Ge0.4S (Eg = 1.7 eV)) with different thicknesses were investigated under AM1.5 illumination. Then, to achieve current matching conditions, the c-Si bottom subcell, with an efficiency at the level of commercially available subcells (19%), was simulated using various top subcells transmitting light calculated using the transfer matrix method (TMM) for optical modeling. Adding TiO2 significantly enhanced the electrical and optical performance of the kesterite top subcell due to the decrease in parasitic light absorption and heterojunction interface recombination. The best tandem device with a TiO2 buffer layer for the top subcell with an optimum bandgap equal to 1.7 eV (CZT0.6Ge0.4S4) and a thickness of 0.8 µm achieved an efficiency of approximately 20%. These findings revealed that using a TiO2 buffer layer is a promising way to improve the performance of kesterite/Si tandem solar cells in the future. However, important optical and electrical breakthroughs are needed to make kesterite materials viable for tandem applications. Full article
Show Figures

Figure 1

19 pages, 4526 KiB  
Article
Increasing the Photovoltaic Efficiency of Semiconductor (Cu1−xAgx)2ZnSnS4 Thin Films through Ag Content Modification
by A. M. Bakry, Lamiaa S. El-Sherif, S. Hassaballa and Essam R. Shaaban
J. Compos. Sci. 2024, 8(8), 322; https://doi.org/10.3390/jcs8080322 - 15 Aug 2024
Cited by 1 | Viewed by 1231
Abstract
The research referred to in this study examines the morphological, structural, and optical characteristics of kesterite (Cu1−xAgx)2ZnSnS4 (CAZTS) thin films, which are produced using a process known as thermal evaporation (TE). The study’s main goal was [...] Read more.
The research referred to in this study examines the morphological, structural, and optical characteristics of kesterite (Cu1−xAgx)2ZnSnS4 (CAZTS) thin films, which are produced using a process known as thermal evaporation (TE). The study’s main goal was to determine how different Ag contents affect the characteristics of CAZTS systems. X-ray diffraction (XRD) and Raman spectroscopy were used to confirm the crystal structure of the CAZTS thin films. Using a mathematical model of spectroscopic ellipsometry, the refractive index (n) represented the real part of the complex thin films, the extinction coefficient (k) portrayed the imaginary part, and the energy bandgap of the fabricated thin films was calculated. The energy bandgap is a crucial parameter for solar cell applications, as it determines the wavelength of light that the material can absorb. The energy bandgap was found to decrease from 1.74 eV to 1.55 eV with the increasing Ag content. The ITO/n-CdS/p-CAZTS/Mo heterojunction was well constructed, and the primary photovoltaic characteristics of the n-CdS/p-CAZTS junctions were examined for use in solar cells. Different Ag contents of the CAZTS layers were used to determine the dark and illumination (current–voltage) characteristics of the heterojunctions. The study’s findings collectively point to CAZTS thin layers as potential absorber materials for solar cell applications. Full article
(This article belongs to the Section Metal Composites)
Show Figures

Figure 1

15 pages, 6600 KiB  
Article
Insight into the Role of Rb Doping for Highly Efficient Kesterite Cu2ZnSn(S,Se)4 Solar Cells
by Chang Miao, Yingrui Sui, Yue Cui, Zhanwu Wang, Lili Yang, Fengyou Wang, Xiaoyan Liu and Bin Yao
Molecules 2024, 29(15), 3670; https://doi.org/10.3390/molecules29153670 - 2 Aug 2024
Viewed by 1313
Abstract
Various copper-related defects in the absorption layer have been a key factor impeding the enhancement of the efficiency of Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. Alkali metal doping is considered to be a good strategy to ameliorate this problem. In this article, [...] Read more.
Various copper-related defects in the absorption layer have been a key factor impeding the enhancement of the efficiency of Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. Alkali metal doping is considered to be a good strategy to ameliorate this problem. In this article, Rb-doped CZTSSe (RCZTSSe) thin films were synthesized using the sol–gel technique. The results show that the Rb atom could successfully enter into the CZTSSe lattice and replace the Cu atom. According to SEM results, a moderate amount of Rb doping aided in enhancing the growth of grains in CZTSSe thin films. It was proven that the RCZTSSe thin film had the densest surface morphology and the fewest holes when the doping content of Rb was 2%. In addition, Rb doping successfully inhibited the formation of CuZn defects and correlative defect clusters and promoted the electrical properties of RCZTSSe thin films. Finally, a remarkable power conversion efficiency of 7.32% was attained by the champion RCZTSSe device with a Rb content of 2%. Compared with that of un-doped CZTSSe, the efficiency improved by over 30%. This study offers new insights into the influence of alkali metal doping on suppressing copper-related defects and also presents a viable approach for improving the efficiency of CZTSSe devices. Full article
(This article belongs to the Special Issue Preparation and Application of Key Materials for Solar Cells)
Show Figures

Figure 1

11 pages, 7675 KiB  
Article
Structural and Compositional Analysis of CZTSSe Thin Films by Varying S/(S+Se) Ratio
by Mohamed Yassine Zaki, Florinel Sava, Iosif Daniel Simandan, Claudia Mihai and Alin Velea
Energies 2024, 17(15), 3684; https://doi.org/10.3390/en17153684 - 26 Jul 2024
Cited by 1 | Viewed by 1277
Abstract
The development of kesterite (Cu2ZnSn(S,Se)4, CZTSSe) thin films for photovoltaic applications is highly necessary, given their composition of Earth-abundant, environmentally friendly elements and their compatibility with established photovoltaic technologies. This study presents a novel synthesis approach for CZTSSe films [...] Read more.
The development of kesterite (Cu2ZnSn(S,Se)4, CZTSSe) thin films for photovoltaic applications is highly necessary, given their composition of Earth-abundant, environmentally friendly elements and their compatibility with established photovoltaic technologies. This study presents a novel synthesis approach for CZTSSe films with varied S/(S+Se) ratios, ranging from 0.83 to 0.44, by a two-step magnetron sputtering deposition/annealing process. The first step consists in an initial deposition of stacked Mo/SnS2/Cu layers, which, upon thermal treatment in a sulfur atmosphere, were transformed into Cu2SnS3 (CTS) films. In the second step, further deposition of ZnSe and subsequent annealing in a tin and selenium atmosphere resulted in the formation of a CZTSSe phase. These processes were optimized to fabricate high-quality and single-phase CZTSSe films, thereby mitigating the formation of secondary phases. Characterization techniques, including scanning electron microscopy, demonstrated a clear correlation between decreased S/(S+Se) ratios and enhanced film densification and grain size. Moreover, grazing incidence X-ray diffraction and Raman spectroscopy confirmed a compositional and structural transition from close to CZTS to nearly a CZTSe phase as the S/(S+Se) ratios decreased. This study advances kesterite-based solar cell technology by enhancing the structural properties and crystallinity of the absorber layer, necessary for improving photovoltaic performance. Full article
(This article belongs to the Special Issue Advances on Solar Energy Materials and Solar Cells)
Show Figures

Figure 1

17 pages, 3819 KiB  
Article
Solvothermal Synthesis of Cu2ZnSnSe4 Nanoparticles and Their Visible-Light-Driven Photocatalytic Activity
by Rodrigo Henríquez, Paula Salazar Nogales, Paula Grez Moreno, Eduardo Muñoz Cartagena, Patricio Leyton Bongiorno, Pablo Zerega Garate, Elena Navarrete-Astorga and Enrique A. Dalchiele
Nanomaterials 2024, 14(13), 1079; https://doi.org/10.3390/nano14131079 - 24 Jun 2024
Cited by 4 | Viewed by 1716
Abstract
Cu2ZnSnSe4 (CZTSe) nanoparticles (NPs) were successfully synthesized via a solvothermal method. Their structural, compositional, morphological, optoelectronic, and electrochemical properties have been characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Field-emission scanning electron microscopy (FE-SEM), transmission electron microscope [...] Read more.
Cu2ZnSnSe4 (CZTSe) nanoparticles (NPs) were successfully synthesized via a solvothermal method. Their structural, compositional, morphological, optoelectronic, and electrochemical properties have been characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Field-emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), UV–vis absorption spectroscopy, and electrochemical impedance spectroscopy (EIS) techniques. Porosimetry and specific surface area in terms of the Brunauer–Emmett–Teller (BET) technique have also been studied. XRD indicates the formation of a polycrystalline kesterite CZTSe phase. Raman peaks at 173 and 190 cm−1 confirm the formation of a pure phase. TEM micrographs revealed the presence of nanoparticles with average sizes of ~90 nm. A BET surface area of 7 m2/g was determined. The CZTSe NPs showed a bandgap of 1.0 eV and a p-type semiconducting behavior. As a proof of concept, for the first time, the CZTSe NPs have been used as a visible-light-driven photocatalyst to Congo red (CR) azo dye degradation. The nanophotocatalyst material under simulated sunlight results in almost complete degradation (96%) of CR dye after 70 min, following a pseudo-second-order kinetic model (rate constant of 0.334 min−1). The prepared CZTSe was reusable and can be repeatedly used to remove CR dye from aqueous solutions. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

29 pages, 5686 KiB  
Review
Recent Progress and Challenges in Controlling Secondary Phases in Kesterite CZT(S/Se) Thin Films: A Critical Review
by Mohamed Yassine Zaki and Alin Velea
Energies 2024, 17(7), 1600; https://doi.org/10.3390/en17071600 - 27 Mar 2024
Cited by 13 | Viewed by 2728
Abstract
Kesterite-based copper zinc tin sulfide (CZTS) and copper zinc tin selenide (CZTSe) thin films have attracted considerable attention as promising materials for sustainable and cost-effective thin-film solar cells. However, the successful integration of these materials into photovoltaic devices is hindered by the coexistence [...] Read more.
Kesterite-based copper zinc tin sulfide (CZTS) and copper zinc tin selenide (CZTSe) thin films have attracted considerable attention as promising materials for sustainable and cost-effective thin-film solar cells. However, the successful integration of these materials into photovoltaic devices is hindered by the coexistence of secondary phases, which can significantly affect device performance and stability. This review article provides a comprehensive overview of recent progress and challenges in controlling secondary phases in kesterite CZTS and CZTSe thin films. Drawing from relevant studies, we discuss state-of-the-art strategies and techniques employed to mitigate the formation of secondary phases. These include a range of deposition methods, such as electrodeposition, sol-gel, spray pyrolysis, evaporation, pulsed laser deposition, and sputtering, each presenting distinct benefits in enhancing phase purity. This study highlights the importance of employing various characterization techniques, such as X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, for the precise identification of secondary phases in CZTS and CZTSe thin films. Furthermore, the review discusses innovative strategies and techniques aimed at mitigating the occurrence of secondary phases, including process optimization, compositional tuning, and post-deposition treatments. These approaches offer promising avenues for enhancing the purity and performance of kesterite-based thin-film solar cells. Challenges and open questions in this field are addressed, and potential future research directions are proposed. By comprehensively analyzing recent advancements, this review contributes to a deeper understanding of secondary phase-related issues in kesterite CZT(S/Se) thin films, paving the way for enhanced performance and commercial viability of thin-film solar cell technologies. Full article
(This article belongs to the Special Issue Advances on Solar Energy Materials and Solar Cells)
Show Figures

Figure 1

18 pages, 31596 KiB  
Article
Synthesis of BaZrS3 and BaS3 Thin Films: High and Low Temperature Approaches
by Tim Freund, Sumbal Jamshaid, Milad Monavvar and Peter Wellmann
Crystals 2024, 14(3), 267; https://doi.org/10.3390/cryst14030267 - 9 Mar 2024
Cited by 4 | Viewed by 3057
Abstract
Current research efforts in the field of the semiconducting chalcogenide perovskites are directed towards the fabrication of thin films and subsequently determine their performance in the photovoltaic application. These efforts are motivated by the outstanding properties of this class of materials in terms [...] Read more.
Current research efforts in the field of the semiconducting chalcogenide perovskites are directed towards the fabrication of thin films and subsequently determine their performance in the photovoltaic application. These efforts are motivated by the outstanding properties of this class of materials in terms of stability, high absorption coefficient near the band edge and no significant health concerns compared to their halide counterparts. The approach followed here is to use stacked precursor layers and is adopted from other chalcogenide photovoltaic materials like the kesterites and chalcopyrites. The successful synthesis of BaZrS3 from stacked layers of BaS and Zr and annealing at high temperatures (~1100 °C) with the addition of elemental sulfur is demonstrated. However, the film shows the presence of secondary phases and a flawed surface. As an alternative to this, BaS3 could be used as precursor due to its low melting point of 554 °C. Previously, the fabrication of BaS3 films was demonstrated, but in order to utilize them in the fabrication of BaZrS3 thin films, their microstructure and processing are further improved in this work by reducing the synthesis temperature to 300 °C, resulting in a smoother surface. This work lays the groundwork for future research in the fabrication of chalcogenide perovskites utilizing stacked layers and BaS3. Full article
(This article belongs to the Special Issue Perovskites – New and Old Materials)
Show Figures

Figure 1

17 pages, 3208 KiB  
Article
Thermogravimetric/Thermal–Mass Spectroscopy Insight into Oxidation Propensity of Various Mechanochemically Made Kesterite Cu2ZnSnS4 Nanopowders
by Katarzyna Lejda, Janusz Partyka and Jerzy F. Janik
Materials 2024, 17(6), 1232; https://doi.org/10.3390/ma17061232 - 7 Mar 2024
Cited by 2 | Viewed by 1228
Abstract
Thermogravimetry coupled with thermal analysis and quadrupole mass spectroscopy TGA/DTA-QMS were primarily used to assess the oxidation susceptibility of a pool of nanocrystalline powders of the semiconductor kesterite Cu2ZnSnS4 for prospective photovoltaic applications, which were prepared via the mechanochemically assisted [...] Read more.
Thermogravimetry coupled with thermal analysis and quadrupole mass spectroscopy TGA/DTA-QMS were primarily used to assess the oxidation susceptibility of a pool of nanocrystalline powders of the semiconductor kesterite Cu2ZnSnS4 for prospective photovoltaic applications, which were prepared via the mechanochemically assisted synthesis route from two different precursor systems. Each system, as confirmed by XRD patterns, yielded first the cubic polytype of kesterite with defunct semiconductor properties, which, after thermal annealing at 500 °C under neutral gas atmosphere, was converted to the tetragonal semiconductor polytype. The TGA/DTA-QMS determinations up to 1000 °C were carried out under a neutral argon Ar atmosphere and under a dry, oxygen-containing gas mixture of O2:Ar = 1:4 (vol.). The mass spectroscopy data confirmed that under each of the gas atmospheres, a distinctly different, multistep evolution of such oxygen-bearing gaseous compounds as sulfur oxides SO2/SO3, carbon dioxide CO2, and water vapor H2O was taking place. The TGA/DTA changes in correlation with the nature of evolving gases helped in the elucidation of the plausible chemistry linked to kesterite oxidation, both in the stage of nanopowder synthesis/storage at ambient air conditions and during forced oxidation up to 1000 °C in the dry, oxygen-containing gas mixture. Full article
Show Figures

Figure 1

14 pages, 4665 KiB  
Article
Understanding the Effects of Post-Deposition Sequential Annealing on the Physical and Chemical Properties of Cu2ZnSnSe4 Thin Films
by Diana-Stefania Catana, Mohamed Yassine Zaki, Iosif-Daniel Simandan, Angel-Theodor Buruiana, Florinel Sava and Alin Velea
Surfaces 2023, 6(4), 466-479; https://doi.org/10.3390/surfaces6040031 - 19 Nov 2023
Cited by 5 | Viewed by 2512
Abstract
Cu2ZnSnSe4 thin films have been synthesized by employing two magnetron-sputtering depositions, interlaced with two sequential post-deposition heat treatments in low vacuum, Sn+Se and Se–rich atmospheres at 550 °C. By employing successive structural analysis methods, namely Grazing Incidence X–Ray Diffraction (GIXRD) [...] Read more.
Cu2ZnSnSe4 thin films have been synthesized by employing two magnetron-sputtering depositions, interlaced with two sequential post-deposition heat treatments in low vacuum, Sn+Se and Se–rich atmospheres at 550 °C. By employing successive structural analysis methods, namely Grazing Incidence X–Ray Diffraction (GIXRD) and Raman Spectroscopy, secondary phases such as ZnSe coexisting with the main kesterite phase have been identified. SEM peered into the surface morphology of the samples, detecting structural defects and grain profiles, while EDS experiments showed off–stoichiometric elemental composition. The optical bandgaps in our samples were calculated by a widely used extrapolation method from recorded transmission spectra, holding values from 1.42 to 2.01 eV. Understanding the processes behind the appearance of secondary phases and occurring structural defects accompanied by finding ways to mitigate their impact on the solar cells’ properties is the prime goal of the research beforehand. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Figure 1

Back to TopTop