Increasing the Photovoltaic Efficiency of Semiconductor (Cu1−xAgx)2ZnSnS4 Thin Films through Ag Content Modification
Abstract
1. Introduction
2. Experimental Techniques
2.1. Chemicals
2.2. Constructing CAZTS Layers
2.3. Characterization and Measurements
3. Results and Discussion
3.1. EDAX and Structural Studies
3.2. Morphological Properties
3.3. Raman Spectra
3.4. Spectroscopic Ellipsometry
3.5. Features of p-n Junction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mitzi, D.B.; Yuan, M.; Liu, W.; Kellock, A.J.; Chey, S.J.; Deline, V.; Schrott, A.G. A high-efficiency solution-deposited thin-film photovoltaic device. Adv. Mater. 2008, 20, 3657–3662. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Kawaguchi, T.; Chantana, J.; Minemoto, T.; Harada, T.; Nakanishi, S.; Ikeda, S. Structural and Solar Cell Properties of a Ag-Containing Cu2ZnSnS4 Thin Film Derived from Spray Pyrolysis. ACS Appl. Mater. Interfaces 2018, 10, 5455–5463. [Google Scholar] [CrossRef]
- Bär, M.; Repins, I.; Contreras, M.A.; Weinhardt, L.; Noufi, R.; Heske, C. Chemical and electronic surface structure of 20%-efficient Cu(In,Ga)Se2 thin film solar cell absorbers. Appl. Phys. Lett. 2009, 95, 052106. [Google Scholar] [CrossRef]
- Sun, R.; Zhuang, D.; Zhao, M.; Gong, Q.; Scarpulla, M.; Wei, Y.; Ren, G.; Wu, Y. Beyond 11% efficient Cu2ZnSn(Se,S)4 thin film solar cells by cadmium alloying. Sol. Energy Mater. Sol. Cells 2017, 174, 494–498. [Google Scholar] [CrossRef]
- Todorov, T.K.; Reuter, K.B.; Mitzi, D.B. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. 2010, 22, E156–E159. [Google Scholar] [CrossRef]
- Fernandes, P.A.; Salomé, P.M.P.; da Cunha, A.F. CuxSnSx+1 (x = 2, 3) thin films grown by sulfurization of metallic precursors deposited by dc magnetron sputtering. Phys. Status Solidi C 2010, 7, 901–904. [Google Scholar] [CrossRef]
- Lee, S.G.; Kim, J.; Woo, H.S.; Jo, Y.; Inamdar, A.; Pawar, S.; Kim, H.S.; Jung, W.; Im, H.S. Structural, morphological, compositional, and optical properties of single step electrodeposited Cu2ZnSnS4 (CZTS) thin films for solar cell application. Curr. Appl. Phys. 2014, 14, 254–258. [Google Scholar] [CrossRef]
- Lincot, D.; Guillemoles, J.; Taunier, S.; Guimard, D.; Sicx-Kurdi, J.; Chaumont, A.; Roussel, O.; Ramdani, O.; Hubert, C.; Fauvarque, J.; et al. Chalcopyrite thin film solar cells by electrodeposition. Sol. Energy 2004, 77, 725–737. [Google Scholar] [CrossRef]
- Cunningham, D.; Rubcich, M.; Skinner, D. Cadmium telluride PV module manufacturing at BP Solar. Prog. Photovolt. Res. Appl. 2002, 10, 159–168. [Google Scholar] [CrossRef]
- Ahmed, S.; Reuter, K.B.; Gunawan, O.; Guo, L.; Romankiw, L.T.; Deligianni, H. A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2011, 2, 253–259. [Google Scholar] [CrossRef]
- Farinella, M.; Inguanta, R.; Spanò, T.; Livreri, P.; Piazza, S.; Sunseri, C. Electrochemical deposition of CZTS thin films on flexible substrate. Energy Procedia 2014, 44, 105–110. [Google Scholar] [CrossRef]
- Ge, J.; Yan, Y. Controllable multinary alloy electrodeposition for thin-film solar cell fabrication: A case study of kesterite Cu2ZnSnS4. iScience 2018, 1, 55–71. [Google Scholar] [CrossRef]
- Schäfer, W.; Nitsche, R. Tetrahedral quaternary chalcogenides of the type Cu2-II-IV-S4(Se4). Mater. Res. Bull. 1974, 9, 645–654. [Google Scholar] [CrossRef]
- Wang, K.; Gunawan, O.; Todorov, T.; Shin, B.; Chey, S.J.; Bojarczuk, N.A.; Mitzi, D.; Guha, S. Thermally evaporated Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 2010, 97, 143508. [Google Scholar] [CrossRef]
- Shin, B.; Gunawan, O.; Zhu, Y.; Bojarczuk, N.A.; Chey, S.J.; Guha, S. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt. Res. Appl. 2011, 21, 72–76. [Google Scholar] [CrossRef]
- Tiwari, K.J.; Chetty, R.; Mallik, R.C.; Malar, P. Solid state synthesis and e-beam evaporation growth of Cu2ZnSnSe4 for solar energy absorber applications. Sol. Energy 2017, 153, 173–180. [Google Scholar] [CrossRef]
- Katagiri, H.; Jimbo, K.; Yamada, S.; Kamimura, T.; Maw, W.S.; Fukano, T.; Ito, T.; Motohiro, T. Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Express 2008, 1, 041201. [Google Scholar] [CrossRef]
- Hong, C.W.; Shin, S.W.; Suryawanshi, M.P.; Gil Gang, M.; Heo, J.; Kim, J.H. Chemically deposited CdS buffer/kesterite Cu2ZnSnS4 solar cells: Relationship between CdS thickness and device performance. ACS Appl. Mater. Interfaces 2017, 9, 36733–36744. [Google Scholar] [CrossRef]
- Cazzaniga, A.; Crovetto, A.; Yan, C.; Sun, K.; Hao, X.; Estelrich, J.R.; Canulescu, S.; Stamate, E.; Pryds, N.; Hansen, O.; et al. Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition. Sol. Energy Mater. Sol. Cells 2017, 166, 91–99. [Google Scholar] [CrossRef]
- Li, M.; Xie, Y.; Lin, F.R.; Li, Z.; Yang, S.; Jen, A.K.-Y. Self-assembled monolayers as emerging hole-selective layers enable high-performance thin-film solar cells. Innovation 2023, 4, 100369. [Google Scholar] [CrossRef]
- Chen, H.; Yin, Z.; Ma, Y.; Cai, D.; Zheng, Q. Solution-processed polymer bilayer heterostructures as hole-transport layers for high-performance opaque and semitransparent organic solar cells. Mater. Today Energy 2023, 35, 10322. [Google Scholar] [CrossRef]
- Moholkar, A.; Shinde, S.; Babar, A.; Sim, K.-U.; Kwon, Y.-B.; Rajpure, K.; Patil, P.; Bhosale, C.; Kim, J. Development of CZTS thin films solar cells by pulsed laser deposition: Influence of pulse repetition rate. Sol. Energy 2011, 85, 1354–1363. [Google Scholar] [CrossRef]
- Lokhande, A.; Chalapathy, R.; Jang, J.; Babar, P.; Gang, M.; Lokhande, C.; Kim, J.H. Fabrication of pulsed laser deposited Ge doped CZTSSe thin film based solar cells: Influence of selenization treatment. Sol. Energy Mater. Sol. Cells 2016, 161, 355–367. [Google Scholar] [CrossRef]
- Agawane, G.; Vanalakar, S.; Kamble, A.; Moholkar, A.; Kim, J. Fabrication of Cu2(ZnxMg1−x)SnS4 thin films by pulsed laser deposition technique for solar cell applications. Mater. Sci. Semicond. Process. 2018, 76, 50–54. [Google Scholar] [CrossRef]
- Guo, Q.; Ford, G.M.; Yang, W.-C.; Walker, B.C.; Stach, E.A.; Hillhouse, H.W.; Agrawal, R. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 2010, 132, 17384–17386. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, C.; Pawar, S.; Inamdar, A.I.; Jo, Y.; Han, J.; Hong, J.; Park, Y.S.; Kim, D.-Y.; Jung, W.; et al. Optimization of sputtered ZnS buffer for Cu2ZnSnS4 thin film solar cells. Thin Solid Films 2014, 566, 88–92. [Google Scholar] [CrossRef]
- Barkhouse, D.A.R.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Mitzi, D.B. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell. Prog. Photovolt. Res. Appl. 2011, 20, 6–11. [Google Scholar] [CrossRef]
- Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitzi, D.B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 2013, 4, 1301465. [Google Scholar] [CrossRef]
- Sun, K.; Liu, F.; Yan, C.; Zhou, F.; Huang, J.; Shen, Y.; Liu, R.; Hao, X. Influence of sodium incorporation on kesterite Cu2ZnSnS4 solar cells fabricated on stainless steel substrates. Sol. Energy Mater. Sol. Cells 2016, 157, 565–571. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.; Zhou, F.; Liu, F.; Sun, K.; Yan, C.; Stride, J.A.; Hao, X. Understanding the key factors of enhancing phase and compositional controllability for 6% efficient pure-sulfide Cu2ZnSnS4 solar cells prepared from quaternary wurtzite nanocrystals. Chem. Mater. 2016, 28, 3649–3658. [Google Scholar] [CrossRef]
- Ericson, T.; Larsson, F.; Törndahl, T.; Frisk, C.; Larsen, J.; Kosyak, V.; Hägglund, C.; Li, S.; Platzer-Björkman, C. Zinc-Tin-Oxide Buffer Layer and Low Temperature Post Annealing Resulting in a 9.0% Efficient Cd-Free Cu2ZnSnS4 Solar Cell. Sol. RRL 2017, 1, 1700001. [Google Scholar] [CrossRef]
- Erkan, M.E.; Chawla, V.; Scarpulla, M.A. Reduced defect density at the CZTSSe/CdS interface by atomic layer deposition of Al2O3. J. Appl. Phys. 2016, 119, 194504. [Google Scholar] [CrossRef]
- Crovetto, A.; Yan, C.; Iandolo, B.; Zhou, F.; Stride, J.; Schou, J.; Hao, X.; Hansen, O. Lattice-matched Cu2ZnSnS4/CeO2 solar cell with open circuit voltage boost. Appl. Phys. Lett. 2016, 109, 233904. [Google Scholar] [CrossRef]
- Ben Messaoud, K.; Buffière, M.; Brammertz, G.; Lenaers, N.; Boyen, H.-G.; Sahayaraj, S.; Meuris, M.; Amlouk, M.; Poortmans, J. Synthesis and characterization of (Cd,Zn)S buffer layer for Cu2ZnSnSe4solar cells. J. Phys. D Appl. Phys. 2017, 50, 285501. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Liu, W.; Wu, L.; Ge, B.; Lin, S.; Gao, S.; Zhou, Z.; Liu, F.; Sun, Y.; et al. Restraining the Band Fluctuation of CBD-Zn(O,S) Layer: Modifying the Hetero-Junction Interface for High Performance Cu2ZnSnSe4 Solar Cells With Cd-Free Buffer Layer. Sol. RRL 2017, 1, 1700075. [Google Scholar] [CrossRef]
- Bras, P.; Sterner, J. Influence of H2S annealing and buffer layer on CZTS solar cells sputtered from a quaternary compound target. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 0328–0331. [Google Scholar]
- Nagoya, A.; Asahi, R.; Kresse, G. First-principles study of Cu2ZnSnS4and the related band offsets for photovoltaic applications. J. Phys. Condens. Matter 2011, 23, 404203. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.A.; Javed, S.; Islam, M.; Mujahid, M.; Safdar, A. Arrays of CZTS sensitized ZnO/ZnS and ZnO/ZnSe core/shell nanorods for liquid junction nanowire solar cells. Sol. Energy Mater. Sol. Cells 2016, 146, 121–128. [Google Scholar] [CrossRef]
- Qasem, A.; Hassan, A.A.; Rajhi, F.Y.; Abbas, H.-A.S.; Shaaban, E.R. Effective role of cadmium doping in controlling the linear and non-linear optical properties of non-crystalline Cd–Se–S thin films. J. Mater. Sci. Mater. Electron. 2021, 33, 1953–1965. [Google Scholar] [CrossRef]
- Sun, K.; Yan, C.; Liu, F.; Huang, J.; Zhou, F.; Stride, J.A.; Green, M.; Hao, X. Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer. Adv. Energy Mater. 2016, 6, 1600046. [Google Scholar] [CrossRef]
- Qasem, A.; Alshahrani, B.; Yakout, H.A.; Abbas, H.-A.S.; Shaaban, E.R. Tuning structural, optical, electrical and photovoltaic characteristics of n-type CdS1−xSbx layers for optimizing the performance of n-(CdS:Sb)/p-Si solar cells. Appl. Phys. A 2021, 127, 849. [Google Scholar] [CrossRef]
- Yan, C.; Liu, F.; Sun, K.; Song, N.; Stride, J.A.; Zhou, F.; Hao, X.; Green, M. Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers. Sol. Energy Mater. Sol. Cells 2016, 144, 700–706. [Google Scholar] [CrossRef]
- Platzer-Björkman, C.; Frisk, C.; Larsen, J.K.; Ericson, T.; Li, S.-Y.; Scragg, J.J.S.; Keller, J.; Larsson, F.; Törndahl, T. Reduced interface recombination in Cu2ZnSnS4 solar cells with atomic layer deposition Zn1−xSnxOy buffer layers. Appl. Phys. Lett. 2015, 107, 243904. [Google Scholar] [CrossRef]
- Yang, K.; Sim, J.; Jeon, B.; Son, D.; Kim, D.; Sung, S.; Hwang, D.; Song, S.; Khadka, D.B.; Kim, J.; et al. Effects of Na and MoS2 on Cu2ZnSnS4 thin-film solar cell. Prog. Photovolt. Res. Appl. 2014, 23, 862–873. [Google Scholar] [CrossRef]
- Zhou, F.; Zeng, F.; Liu, X.; Liu, F.; Song, N.; Yan, C.; Pu, A.; Park, J.; Sun, K.; Hao, X. Improvement of Jsc in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface. ACS Appl. Mater. Interfaces 2015, 7, 22868–22873. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Li, Y.; Yao, B.; Ding, Z.; Deng, R.; Jiang, Y.; Sui, Y. Band offsets of Ag2ZnSnSe4/CdS heterojunction: An experimental and first-principles study. J. Appl. Phys. 2017, 121, 215305. [Google Scholar] [CrossRef]
- Qasem, A.; Alrafai, H.; Alshahrani, B.; Said, N.M.; Hassan, A.A.; Yakout, H.; Shaaban, E. Adapting the structural, optical and thermoelectrical properties of thermally annealed silver selenide (AgSe) thin films for improving the photovoltaic characteristics of the fabricated n-AgSe/p-CdTe solar cells. J. Alloys Compd. 2022, 899, 163374. [Google Scholar] [CrossRef]
- Yeh, M.-Y.; Lei, P.-H.; Lin, S.-H.; Yang, C.-D. Copper-zinc-tin-sulfur thin film using spin-coating technology. Materials 2016, 9, 526. [Google Scholar] [CrossRef]
- Elsaeedy, H.; Qasem, A.; Yakout, H.; Mahmoud, M. The pivotal role of TiO2 layer thickness in optimizing the performance of TiO2/P-Si solar cell. J. Alloys Compd. 2021, 867, 159150. [Google Scholar] [CrossRef]
- Assem, E.E.; Ashour, A.; Shaaban, E.R.; Qasem, A. Implications changing of the CdS window layer thickness on photovoltaic characteristics of n-CdS/i-AgSe/p-CdTe solar cells. Chalcogenide Lett. 2022, 19, 825–839. [Google Scholar] [CrossRef]
x | Cu (mV) | Ag (at/%) | Zn (at/%) | Sn (at/%) | S (at/%) |
---|---|---|---|---|---|
0 | 21.06 | 0 | 11.71 | 11.83 | 55.4 |
0.1 | 19.11 | 2.03 | 11.81 | 11.94 | 55.11 |
0.2 | 17.21 | 4.05 | 11.78 | 11.93 | 55.03 |
0.3 | 15.04 | 6.12 | 11.68 | 11.91 | 55.25 |
0.4 | 12.88 | 8.52 | 11.82 | 11.87 | 54.91 |
0.5 | 10.88 | 10.21 | 11.85 | 11.93 | 55.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
M. Bakry, A.; El-Sherif, L.S.; Hassaballa, S.; Shaaban, E.R. Increasing the Photovoltaic Efficiency of Semiconductor (Cu1−xAgx)2ZnSnS4 Thin Films through Ag Content Modification. J. Compos. Sci. 2024, 8, 322. https://doi.org/10.3390/jcs8080322
M. Bakry A, El-Sherif LS, Hassaballa S, Shaaban ER. Increasing the Photovoltaic Efficiency of Semiconductor (Cu1−xAgx)2ZnSnS4 Thin Films through Ag Content Modification. Journal of Composites Science. 2024; 8(8):322. https://doi.org/10.3390/jcs8080322
Chicago/Turabian StyleM. Bakry, A., Lamiaa S. El-Sherif, S. Hassaballa, and Essam R. Shaaban. 2024. "Increasing the Photovoltaic Efficiency of Semiconductor (Cu1−xAgx)2ZnSnS4 Thin Films through Ag Content Modification" Journal of Composites Science 8, no. 8: 322. https://doi.org/10.3390/jcs8080322
APA StyleM. Bakry, A., El-Sherif, L. S., Hassaballa, S., & Shaaban, E. R. (2024). Increasing the Photovoltaic Efficiency of Semiconductor (Cu1−xAgx)2ZnSnS4 Thin Films through Ag Content Modification. Journal of Composites Science, 8(8), 322. https://doi.org/10.3390/jcs8080322