Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = jute fibre

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5306 KiB  
Proceeding Paper
Experimental and Numerical Investigation of Jute Fibre-Reinforced Composite, a Sustainable Material for Green Energy
by Kirubakaran Covallane, Daryl Johan, Rakesh Kumar Singh, Rahul Sinha, Digvijay Boodala, Krishna Kumar Jaiswal and Karthik Selva Kumar
Eng. Proc. 2025, 95(1), 17; https://doi.org/10.3390/engproc2025095017 - 19 Jun 2025
Viewed by 431
Abstract
Natural fibre-reinforced composites are becoming increasingly popular due to their affordability, sustainability, and biodegradability. These composites, made from recyclable materials, are suitable for various sustainable energy applications due to their remarkable mechanical properties and life cycle advantages. The biodegradable composite materials are a [...] Read more.
Natural fibre-reinforced composites are becoming increasingly popular due to their affordability, sustainability, and biodegradability. These composites, made from recyclable materials, are suitable for various sustainable energy applications due to their remarkable mechanical properties and life cycle advantages. The biodegradable composite materials are a sustainable alternative for energy applications. This composite construction uses Soric XF (Lantor Composites, Veenendaal, The Netherlands) as the fibre reinforcement core material and jute fibre, an eco-friendly and sustainable substitute for glass fibre reinforcement composite materials, as the outer face sheet obtained from jute bags. The dry fibres are piled as dry loads at various fibre orientation angles, including 0°, 45°, and 90°, and this orientation will be reflected in the composite strength. Vacuum-assisted resin transfer moulding (VARTM) is a technique used to fabricate this material at room temperature. Further, this research focuses on a comparative analysis of experimental and computational results involving composite materials with jute fibre as the outer face sheet and Soric XF as the fibre reinforcement core material. The experimental investigation included tensile ASTM D638-03 and flexural ASTM D790 to evaluate the composite’s mechanical properties and structural integrity under various load conditions. Simultaneously the computational simulations were performed using the ANSYS-Mechanical 2023 R2 to replicate these conditions and predict the composite’s performance. The experimental and simulated data were analysed and compared. This study demonstrates the efficacy of using computational tools to predict the behaviour of natural fibre composites. It underscores the importance of experimental validation for enhancing the reliability of simulation models. The results from the computational study are compared with the experimental results to study the predictive nature of the NFRC material. Full article
Show Figures

Figure 1

19 pages, 1102 KiB  
Review
Planting Sustainability: A Comprehensive Review of Plant Fibres in Needle-Punching Nonwovens
by Rita Marques, Cristina Oliveira, Joana C. Araújo, Diego M. Chaves, Diana P. Ferreira, Raul Fangueiro, Carla J. Silva and Lúcia Rodrigues
Textiles 2024, 4(4), 530-548; https://doi.org/10.3390/textiles4040031 - 20 Nov 2024
Cited by 1 | Viewed by 2473
Abstract
Natural fibres have garnered substantial attention because of their eco-friendly attributes and versatility, offering a sustainable alternative to synthetic ones. This review surveys plant fibres, including flax, hemp, jute, banana, and pineapple, emphasizing their diverse properties and applications in nonwoven materials. This research [...] Read more.
Natural fibres have garnered substantial attention because of their eco-friendly attributes and versatility, offering a sustainable alternative to synthetic ones. This review surveys plant fibres, including flax, hemp, jute, banana, and pineapple, emphasizing their diverse properties and applications in nonwoven materials. This research also examines the use of synthetic polymer composites blended with natural fibres to create high-performance nonwoven materials. Furthermore, this review outlines the primary applications of nonwovens manufactured with plant fibres through needle-punching. These applications span geotextiles, automotive interiors, construction materials, and more. The advantages, challenges, and sustainability aspects of incorporating natural fibres in needle-punched nonwovens are discussed. The focus is on mechanical and thermal properties and their adaptability for specific applications. This research provides valuable insights for researchers and industry professionals aiming to leverage the benefits of plant fibres in needle-punched nonwovens across various sectors. Full article
Show Figures

Graphical abstract

15 pages, 11438 KiB  
Article
Investigation on Erosion Resistance in Polyester–Jute Composites with Red Mud Particulate: Impact of Fibre Treatment and Particulate Addition
by Sundarakannan Rajendran, Vigneshwaran Shanmugam, Geetha Palani, Uthayakumar Marimuthu, Arumugaprabu Veerasimman, Kinga Korniejenko, Inna Oliinyk, Herri Trilaksana and Vickram Sundaram
Polymers 2024, 16(19), 2793; https://doi.org/10.3390/polym16192793 - 1 Oct 2024
Cited by 24 | Viewed by 1424
Abstract
This research investigates the manufacturing and characterisation of polyester-based composites reinforced with jute fibres and red mud particulates. The motivation stems from the need for sustainable, high-performance materials for applications in industries, like aerospace and automotive, where resistance to erosion is critical. Jute, [...] Read more.
This research investigates the manufacturing and characterisation of polyester-based composites reinforced with jute fibres and red mud particulates. The motivation stems from the need for sustainable, high-performance materials for applications in industries, like aerospace and automotive, where resistance to erosion is critical. Jute, a renewable fibre, combined with red mud, an industrial byproduct, offers an eco-friendly alternative to conventional composites. The composites were fabricated using compression moulding with varying red mud contents (10, 20, and 30 wt.%) and a fixed 40 wt.% of jute fibre. Fibre treatments included sodium hydroxide (NaOH) and silane treatments to improve bonding and performance. Erosion tests were performed using an air-jet erosion tester, examining the effects of the red mud content, fibre treatment, and impact angles. Scanning Electron Microscope (SEM) analysis provided insights into the erosion mechanisms. A distinctive reduction in erosion rates at higher impact angles (30°–60°) was observed, attributed to the semi-ductile nature of the composites. The addition of red mud enhanced erosion resistance, although an excess of 30 wt.% reduced resistance due to poor surface bonding. Silane-treated composites showed the lowest erosion rates. This study provides new insights into the interplay among material composition, fibre treatment, and erosion dynamics, contributing to the development of optimised, eco-friendly composite materials. Full article
(This article belongs to the Special Issue Progress in Recycling of (Bio)Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

22 pages, 12819 KiB  
Article
Experimental Analysis of Shear-Strengthened RC Beams with Jute and Jute–Glass Hybrid FRPs Using the EBR Technique
by Luciana P. Maciel, Paulo S. B. Leão Júnior, Manoel J. M. Pereira Filho, Wassim R. El Banna, Roberto T. Fujiyama, Maurício P. Ferreira and Aarão F. Lima Neto
Buildings 2024, 14(9), 2893; https://doi.org/10.3390/buildings14092893 - 12 Sep 2024
Cited by 3 | Viewed by 1292
Abstract
The hybridisation of fibre-reinforced polymers (FRPs), particularly with the combination of natural and synthetic fibres, is a prominent option for their development. In the context of the construction industry, there is a notable gap in research on the use of jute and glass [...] Read more.
The hybridisation of fibre-reinforced polymers (FRPs), particularly with the combination of natural and synthetic fibres, is a prominent option for their development. In the context of the construction industry, there is a notable gap in research on the use of jute and glass fibres for the strengthening of concrete structures. This paper presents comprehensive experimental results from tests on seven reinforced concrete (RC) beams strengthened for shear using synthetic, natural, and hybrid jute–glass FRP composites. The beams were reinforced using the externally bonded reinforcement (EBR) technique with U-wrap bonding. A beam without any strengthening was tested and set as a reference for the other beams. Two beams were tested with synthetic FRP shear strengthenings, one with carbon fibre-reinforced polymer (CFRP) and another with glass fibre-reinforced polymer (GFRP). The remaining tests were on RC beams strengthened with natural jute fibre-reinforced polymer (JFRP) and hybrid jute–glass FRP. The paper discusses the experimental behaviour of the tested beams in terms of vertical displacements, crack widths, and strains on steel bars, concrete, and FRP. The experimental strengths are also compared with theoretical estimates obtained using ACI 440.2R and fib Bulletin 90. The tests confirm the effectiveness of natural jute FRP and jute–glass hybrid FRP as an option for the shear strengthening of reinforced concrete beams. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 23408 KiB  
Article
Degradation of Biodegradable Nonwoven Mulches in the Winter Period
by Dragana Kopitar and Paula Marasovic
Polymers 2024, 16(16), 2279; https://doi.org/10.3390/polym16162279 - 11 Aug 2024
Cited by 1 | Viewed by 1582
Abstract
An open field experiment from November 2022 to May 2023 in Croatia, which is characterized by a continental humid climate, evaluated nonwoven mulches made from viscose, jute, and hemp fibres blended with PLA fibres. The blends of viscose and jute fibres (90:10, 80:20, [...] Read more.
An open field experiment from November 2022 to May 2023 in Croatia, which is characterized by a continental humid climate, evaluated nonwoven mulches made from viscose, jute, and hemp fibres blended with PLA fibres. The blends of viscose and jute fibres (90:10, 80:20, and 70:30 ratios) were produced using mechanical web formation on cards with needle punching for bonding webs. Additionally, hemp fibres were blended with PLA fibres in a ratio of 80:20. Winter conditions caused significant structural changes in the mulches, including shrinkage, increased mass per unit area, thickness, and reduced air permeability. The amount of PLA fibre in the nonwoven mulch blends significantly affected nonwoven fabric structure change during exposure to winter conditions. After 180 days, the breaking force of all mulches increased by 30% to 277%. The soil beneath jute and hemp mulches maintained higher temperatures and moisture levels compared to viscose mulches. Soil organic carbon content varied with fibre type and was higher under jute and hemp mulches. K2O content was significantly higher in soils covered by mulches. All mulches effectively suppressed weeds. The experiment results showed that the newly produced nonwoven mulches could replace the conventional agro foil. Results also suggest that choosing biodegradable nonwoven mulches produced from fibres obtained from natural and renewable sources can influence soil fertility and the availability of nutrients, ultimately affecting plant growth and agricultural productivity. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials III)
Show Figures

Figure 1

17 pages, 6096 KiB  
Article
Laboratory Study of Asphalt Concrete for Base Course with Reclaimed Asphalt, Recycling Agents, and Jute Fibres
by Peter Gallo, Majda Belhaj and Jan Valentin
Appl. Sci. 2024, 14(1), 239; https://doi.org/10.3390/app14010239 - 27 Dec 2023
Cited by 3 | Viewed by 1661
Abstract
The way we treat materials after their lifespan is changing. We are finding a new, more effective way to deal with waste: using it, rather than depositing it in landfills. Since bitumen mixtures are the most popular paving materials by far, and their [...] Read more.
The way we treat materials after their lifespan is changing. We are finding a new, more effective way to deal with waste: using it, rather than depositing it in landfills. Since bitumen mixtures are the most popular paving materials by far, and their lifespan is limited, there is a constant availability of old asphalt pavement or reclaimed asphalt (RA). To restore the aged binder properties, we can use recycling agents. In this study, two commercialized biobased recycling agents were used. Furthermore, jute fibers were used as a reinforcement. The influence of the different fiber content and fiber length was investigated in mixtures without the recycling agents. In addition, alkali-treated fibers were used in some mixes for better fiber compatibility with the bitumen matrix. Air voids content, moisture, freeze–thaw susceptibility, stiffness modulus (IT-CY), resistance to crack propagation, and complex modulus tests were conducted. The addition of recycling agents led to a decrease in stiffness. A lower indirect tensile strength ratio (ITSR), increased stiffness, and best crack propagation results were recorded in some mixtures with fibers and recycling agents. Full article
(This article belongs to the Special Issue Sustainability in Asphalt Pavement and Road Construction)
Show Figures

Figure 1

26 pages, 10024 KiB  
Article
Performance and Degradation of Nonwoven Mulches Made of Natural Fibres and PLA Polymer—Open Field Study
by Paula Marasović, Dragana Kopitar, Ružica Brunšek and Ivana Schwarz
Polymers 2023, 15(22), 4447; https://doi.org/10.3390/polym15224447 - 17 Nov 2023
Cited by 9 | Viewed by 2128
Abstract
The need for sustainable alternatives to conventional plastic mulches in agriculture has led to the development of various types of biodegradable mulches made from natural fibres and biopolymers to reduce environmental pollution and mitigate soil pollution caused by conventional plastic mulch usage. Degradation, [...] Read more.
The need for sustainable alternatives to conventional plastic mulches in agriculture has led to the development of various types of biodegradable mulches made from natural fibres and biopolymers to reduce environmental pollution and mitigate soil pollution caused by conventional plastic mulch usage. Degradation, impact on soil temperature and humidity, and weed suppression properties of needle-punched nonwoven mulches of different mass per unit area, made of jute, hemp, viscose, and PLA biopolymer, are investigated. Their biodegradation is determined by changes in the mulch properties (mass per unit area, thickness, air permeability, tensile properties, microscopic images, and FTIR analyses) during 300 days of exposure to the environmental conditions in the period from May 2022 to February 2023. The change in mass per unit area, thickness, air permeability, and tensile properties of nonwoven mulches did not show a tendency to degrade during exposure to environmental conditions. The microscopic and FTIR analysis showed the degradation of the fibres from the mulches during the exposure time to a certain extent. The environmental conditions influence the change in the dimensions of the mulches (shrinkage and expansion)—which impact periodically tested mass results per unit area—as well as their thickness and air permeability. The nonwoven mulches provide higher temperatures compared to bare soil, though not as high as those observed beneath traditional agricultural foil. When comparing the humidity in bare soil and soil covered by mulches during the plant growth period (June to October), it was found that soil humidity was higher beneath all mulches. The nonwoven mulches provide superior soil moisture retention compared to conventionally used agrofoil. Almost all nonwoven mulches effectively suppressed weed growth, except hemp mulches. The newly produced mulches have the potential to replace traditional agrofoil, offering improved conditions for plant growth, effective weed control, and faster degradation without causing harm to the environment. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

21 pages, 9829 KiB  
Article
Ethiopian Bamboo Fiber Aging Process and Reinforcement: Advancing Mechanical Properties of Bamboo Fiber-Epoxy Composites for Automobile Applications
by Yalew Dessalegn, Balkeshwar Singh, Barisso Bino Safayo, Mohammed Jameel, Nazia Hossain, Ahmad Rashedi and Gulam Mohammed Sayeed Ahmed
J. Compos. Sci. 2023, 7(9), 375; https://doi.org/10.3390/jcs7090375 - 7 Sep 2023
Cited by 2 | Viewed by 1984
Abstract
The purpose of this paper is to evaluate the properties of Ethiopian bamboo fibre polymer composites as headliners in the automobile industry. Bamboo fibres are developed using the roll milling technique, and bamboo fibre epoxy composites (BFEPCS) are developed using a compression mould [...] Read more.
The purpose of this paper is to evaluate the properties of Ethiopian bamboo fibre polymer composites as headliners in the automobile industry. Bamboo fibres are developed using the roll milling technique, and bamboo fibre epoxy composites (BFEPCS) are developed using a compression mould and a hot press machine. The mechanical properties are measured based on the recommended procedure of the ASTM. In total, 40% of the volume fraction of fibres is used to produce polymer composites. An accurate evaluation of its mechanical properties is thus critical for predicting its behaviour during a vehicle’s interior impact assessment. Conventional headliner materials are heavier, non-biodegradable, expensive, and non-sustainable during processing compared to the currently researched materials. Three representatives of bamboo plants are harvested in three regions of bamboo species, three groups of ages, and two harvesting months. Two-year-old bamboo fibres have the highest mechanical properties of all ages, and November has a higher mechanical properties compared to February. Inji-bara and Kom-bolcha have the highest and lowest mechanical properties, respectively. BFEPCs have high mechanical properties compared to BFPPCs. The mechanical properties of the current research findings have higher measured values compared to Jute felt PU, CFPU, GFMPU, BFPP, BFEP, PP foam, and TPU. The flexural strength of BFPCs has higher properties compared to their tensile strength. Ethiopian bamboo fibres and their polymer composites have the best mechanical properties for the composite industry, which is used for headliner materials in the automobile industry, compared to conventional headliner materials. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, Volume II)
Show Figures

Figure 1

18 pages, 2660 KiB  
Article
Determination of Critical Period for Sustainable Weed Management and Yield of Jute (Corchorus olitorius L.) under Sub-Tropical Condition
by Mohammad Shahadat Hossain, Uttam Kumer Sarker, Sirajam Monira, Md. Imran Ali, Ahmed Khairul Hasan, Md. Salahuddin Kaysar, Md. Parvez Anwar, Mahfuza Begum, Md. Harun Rashid, Md. Harunur Rashid, Abeer Hashem, Graciela Dolores Avila-Quezada, Elsayed Fathi Abd_Allah and Md. Romij Uddin
Sustainability 2023, 15(12), 9282; https://doi.org/10.3390/su15129282 - 8 Jun 2023
Cited by 4 | Viewed by 2248
Abstract
A field investigation was run to ascertain the critical period of weed control in jute (Corchorus olitorius). The study consisted of two distinct sets of treatments, with one set of weeds being left to invade the crop for a longer period [...] Read more.
A field investigation was run to ascertain the critical period of weed control in jute (Corchorus olitorius). The study consisted of two distinct sets of treatments, with one set of weeds being left to invade the crop for a longer period of time, specifically, for 15, 30, 45 and 60 days after sowing (DAS) and up to harvest. In the other set of treatments, the plants remained weed-free for progressively longer periods, i.e., 15, 30, 45 and 60 DAS, and until harvest. The reduction in fibre yield (FY) was recorded as 53.39% when weed interference was permitted from the beginning to harvest, as opposed to the season-long weed-free period. The critical period for weed competition (CPWC) of jute was calculated as being 11 to 68 DAS and 19 to 59 DAS, based on results of 5% and 10% yield loss, respectively. Under the 5% yield loss condition, although yield was higher (3.36 t ha−1), the benefit cost ratio (BCR) was lower (1.65), whereas yield was slightly lower (3.19 t ha−1) but BCR was higher (1.73) with respect to 10% yield loss. Therefore, jute fields should be kept weed free from 19 to 59 days after sowing, and a weed management strategy should be undertaken accordingly. Full article
Show Figures

Figure 1

23 pages, 5746 KiB  
Article
Effect of Silica Fume on Engineering Performance and Life Cycle Impact of Jute-Fibre-Reinforced Concrete
by Rawaz Kurda
Sustainability 2023, 15(11), 8465; https://doi.org/10.3390/su15118465 - 23 May 2023
Cited by 7 | Viewed by 2650
Abstract
The brittleness of plain concrete (PC) is a result of its lack of tensile strength and poor resistance to cracking, which in turn limits its potential uses. The addition of dispersed fibres into the binding material has been demonstrated to have a positive [...] Read more.
The brittleness of plain concrete (PC) is a result of its lack of tensile strength and poor resistance to cracking, which in turn limits its potential uses. The addition of dispersed fibres into the binding material has been demonstrated to have a positive impact on the tensile properties of PC. Nevertheless, using new or engineered fibres in concrete significantly increases the overall cost and carbon footprint of concrete. Consequently, the main obstacle in creating environmentally friendly fibre-reinforced concrete is the traditional design process with energy-intensive materials. This study investigated how the engineering properties and life cycle impact of concrete were influenced by varying the volume fractions of jute fibre (JF). The impact of incorporating silica fume (SF) as a partial replacement of Portland cement was also studied. The studied parameters included mechanical behaviour, non-destructive durability indicators, and the life cycle impact of concrete using JF and SF. The efficiency of JF in mechanical performance improved with the increase in age and with the addition of SF. When using both SF and 0.3% JF, there was an improvement of around 28% in the compressive strength (CS). When 0.3% JF was added, in the presence and absence of SF, the splitting tensile strength (STS) improvement was around 20% and 40%, respectively. The addition of JF improved the residual flexural strength (FS) and flexural ductility of PC. The SF addition overcame the drawbacks of the poor resistance of JF-reinforced concrete (JFRC) against water absorption (WA) and rapid chloride ion penetration (RCIP). Full article
Show Figures

Figure 1

19 pages, 5726 KiB  
Article
Experimental Characterisation of Lime-Based Textile-Reinforced Mortar Systems Made of Either Jute or Flax Fabrics
by Marco Pepe, Rosario Lombardi, Giuseppe Ferrara, Stefano Agnetti and Enzo Martinelli
Materials 2023, 16(2), 709; https://doi.org/10.3390/ma16020709 - 11 Jan 2023
Cited by 15 | Viewed by 2231
Abstract
Existing buildings are often in need of strengthening interventions, and several technical solutions have been recently developed for this purpose. Among them, the use of textile-reinforced mortar (TRM) composites has gained consensus as a technically viable and economically convenient option. Moreover, TRM has [...] Read more.
Existing buildings are often in need of strengthening interventions, and several technical solutions have been recently developed for this purpose. Among them, the use of textile-reinforced mortar (TRM) composites has gained consensus as a technically viable and economically convenient option. Moreover, TRM has the potential to be employed as a reversible and sustainable strengthening technique for masonry buildings. In this context, the present paper aims to investigate the mechanical properties of TRM systems consisting of sustainable phases, such as lime-based matrices and natural fabrics produced by waiving fibers obtained from plants, such as Jute or Flax. This class composite system can be referred to as natural TRM and is denoted by the acronym NTRM. The present study moves from the geometric and mechanical characterisation of fibres and fabrics and, after having also investigated the properties of the mortar, it reports the results of tensile tests carried out on specimens of the NTRM systems under consideration, with the main aim of providing the empirical bases of the relationships between the geometric and physical properties of the constituents and the resulting mechanical response of the composite system. The obtained results show that the considered Flax-TRM system has an apparent composite behavior, as its response to tension is clearly characterised by the well-known three stages corresponding to the elastic response, the formation of cracks, and the reinforcement response up to rupture. Conversely, the Jute-TRM system needs to be further improved in terms of balance between the properties of the matrix and the internal reinforcement. Further studies will be devoted to this specific aspect and, more generally, to investigating the relationships between constituents’ properties and the NTRM behavior. Full article
(This article belongs to the Special Issue Advances in Sustainable Inorganic Matrix Composites for Construction)
Show Figures

Figure 1

20 pages, 11591 KiB  
Article
Experimental Investigation on the Axial Compressive Behaviour of Cold-Formed Steel-Concrete Composite Columns Infilled with Various Types of Fibre-Reinforced Concrete
by Florence More Dattu Shanker More and Senthil Selvan Subramanian
Buildings 2023, 13(1), 151; https://doi.org/10.3390/buildings13010151 - 6 Jan 2023
Cited by 13 | Viewed by 2788
Abstract
The exceptional structural strength and low cost of steel-concrete composite columns make them a popular choice for civil engineering structures. Numerous forms of composite columns, including steel tubes filled with concrete, have been produced recently in response to various construction situations. Cold-formed steel [...] Read more.
The exceptional structural strength and low cost of steel-concrete composite columns make them a popular choice for civil engineering structures. Numerous forms of composite columns, including steel tubes filled with concrete, have been produced recently in response to various construction situations. Cold-formed steel tubular columns with concrete filling have higher strength and ductility due to their capacity to withstand inner buckling and postpone outward buckling. The objective of this research is to determine the ductile and strength performance of composite columns containing various forms of fibre-reinforced concrete when subjected to axial compression. Several different kinds of fibre-reinforced concrete (FRC) are employed as additives in hollow steel columns, including steel FRC, carbon FRC, glass FRC, coir FRC, jute FRC, and sisal FRC. Axial compression tests were performed on 24 columns, including three hollow steel columns and 21 composite columns. Three distinct slenderness ratios were developed and used. Axial bearing capacity, compressive stress-strain curves, ductility, peak strain, axial shortening, and toughness were among the topics covered by the axial compression test. Experimental findings demonstrated that all conventional composite columns experienced failure through overall buckling, Local buckling and crushing of concrete infill, which was transformed into more ductile failure using fibre-reinforced concrete infills. The test results revealed that fibre-reinforced concrete-infilled steel columns outperformed conventional composite columns in terms of strength, ductility, and energy absorption capacity. The percentage increase in load-carrying capacity was observed as 203.88%, 193.48% and 190.03% when compared to hollow cold-formed steel tubular columns in medium, short and stub columns, respectively. Under assessment of stub, short, and medium columns, the load-strain plots demonstrated that the steel fibre-reinforced concrete in-filled columns performed well in terms of ductility. Localized buckling and crushing of the concrete infill caused the composite columns with low slenderness ratios to fail. In contrast, concrete-filled steel tube columns with higher slenderness ratios showed column failure through the overall buckling of the composite column. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 6267 KiB  
Article
Experimental Investigation on the Mechanical and Physical Properties of Glass/Jute Hybrid Laminates
by Thaís da Costa Dias, Amanda Albertin Xavier da Silva, Maikson Luiz Passaia Tonatto and Sandro Campos Amico
Polymers 2022, 14(21), 4742; https://doi.org/10.3390/polym14214742 - 5 Nov 2022
Cited by 12 | Viewed by 2684
Abstract
Natural fibres have been partly substituting synthetic fibres in polymer composites due to their renewable character and many other advantages, and sometimes, they can be hybridized into a single composite for a better combination of properties. This work aims to study the effect [...] Read more.
Natural fibres have been partly substituting synthetic fibres in polymer composites due to their renewable character and many other advantages, and sometimes, they can be hybridized into a single composite for a better combination of properties. This work aims to study the effect of hybridization and stacking sequence on the mechanical and physical properties of the glass/jute laminates. For that, pure jute, pure glass and glass/jute hybrids were manufactured by vacuum infusion process using orthophthalic polyester resin. The composites were characterized via C-scan analysis, density, volume fraction of constituents and optical microscopy analyses. Mechanical properties were obtained from tensile, compression and shear tests. The longitudinal properties were higher than transverse properties for all laminates. The hybrids presented intermediate density and mechanical properties compared to pure glass and pure jute laminates. The hybrids produced similar density and tensile modulus, but with small differences in tensile strength and compressive strength which were justified based on variations in resin and void content due to the influence of the stacking sequence (glass/jute interlayer regions). In addition, the pure glass and the hybrid laminates displayed acceptable failure morphology in the in-plane shear test, but not the pure jute laminate. Full article
Show Figures

Figure 1

19 pages, 14234 KiB  
Article
Impact of Fibres on the Mechanical and Durable Behaviour of Fibre-Reinforced Concrete
by Florence More Dattu Shanker More and Senthil Selvan Subramanian
Buildings 2022, 12(9), 1436; https://doi.org/10.3390/buildings12091436 - 13 Sep 2022
Cited by 48 | Viewed by 6623
Abstract
Numerous studies have been conducted recently on fibre reinforced concrete (FRC), a material that is frequently utilized in the building sector. The utilization of FRC has grown in relevance recently due to its enhanced mechanical qualities over normal concrete. Due to increased environmental [...] Read more.
Numerous studies have been conducted recently on fibre reinforced concrete (FRC), a material that is frequently utilized in the building sector. The utilization of FRC has grown in relevance recently due to its enhanced mechanical qualities over normal concrete. Due to increased environmental degradation in recent years, natural fibres were developed and research is underway with the goal of implementing them in the construction industry. In this work, several natural and artificial fibres, including glass, carbon, steel, jute, coir, and sisal fibres are used to experimentally investigate the mechanical and durability properties of fibre-reinforced concrete. The fibres were added to the M40 concrete mix with a volumetric ratio of 0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%. The compressive strength of the conventional concrete and fibre reinforced concrete with the addition of 1.5% steel, 1.5% carbon, 1.0% glass, 2.0% coir, 1.5% jute and 1.5% sisal fibres were 4.2 N/mm2, 45.7 N/mm2, 41.5 N/mm2, 45.7 N/mm2, 46.6 N/mm2, 45.7 N/mm2 and 45.9 N/mm2, respectively. Comparing steel fibre reinforced concrete to regular concrete results in a 13.69% improvement in compressive strength. Similarly, the compressive strengths were increased by 3.24%, 13.69%, 15.92%, 13.68% and 14.18% for carbon, glass, coir, jute, and sisal fibre reinforced concrete respectively when equated with plain concrete. With the optimum fraction of fibre reinforced concrete, mechanical and durability qualities were experimentally investigated. A variety of durability conditions, including the Rapid Chloride Permeability Test, water absorption, porosity, sorptivity, acid attack, alkali attack, and sulphate attack, were used to study the behaviour of fiber reinforced concrete. When compared to conventional concrete, natural fibre reinforced concrete was found to have higher water absorption and sorptivity. The rate of acid and chloride attacks on concrete reinforced with natural fibres was significantly high. The artificial fibre reinforced concrete was found to be more efficient than the natural fibre reinforced concrete. The load bearing capacity, anchorage and the ductility of the concrete improved with the addition of fibres. According to the experimental findings, artificial fibre reinforced concrete can be employed to increase the structure’s strength and longevity as well as to postpone the propagation of cracks. A microstructural analysis of concrete was conducted to ascertain its morphological characteristics. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 10587 KiB  
Article
An Experimental and Numerical Investigation into the Durability of Fibre/Polymer Composites with Synthetic and Natural Fibres
by Abdalrahman Alajmi, Rajab Abousnina, Abdullah Shalwan, Sultan Alajmi, Golnaz Alipour, Tafsirojjaman Tafsirojjaman and Geoffrey Will
Polymers 2022, 14(10), 2024; https://doi.org/10.3390/polym14102024 - 16 May 2022
Cited by 7 | Viewed by 4517
Abstract
Progress in engineering research has shifted the interest from traditional monolithic materials to modern materials such as fibre reinforced composites (FRC). This paradigm shift can be attributed to the unique mechanical characteristics of FRCs such as high strength to weight ratio, good flexural [...] Read more.
Progress in engineering research has shifted the interest from traditional monolithic materials to modern materials such as fibre reinforced composites (FRC). This paradigm shift can be attributed to the unique mechanical characteristics of FRCs such as high strength to weight ratio, good flexural strength, and fracture toughness. At present, synthetic composites dominate the automotive, aerospace, sporting, and construction industries despite serious drawbacks such as costly raw materials, high manufacturing costs, non-recyclability, toxicity, and non-biodegradability. To address these issues, naturally occurring plant fibres (such as jute, hemp, sisal) are being increasingly researched as potential reinforcements for biodegradable or non-biodegradable polymer matrices to produce environmentally friendly composites. In this study, sisal fibres were selected owing to their low production costs, sustainability, recyclability, and biodegradability. The hydrothermal ageing and mechanical characteristics of sisal fibre-reinforced epoxy (SFRE) composites were determined and compared with glass fibre-reinforced epoxy (GFRE) synthetic composites. Moreover, a first-of-its-kind numerical model have been developed to study the hydrothermal ageing and mechanical characteristics of SFRE, along with GFRE, using ANSYS software. Moreover, microstructural analysis of flexural tested GFRE and SFRE samples were carried out to identify the microstructural properties of the composites. Both experimental and numerical results exhibited an influence of short- or long-term hydrothermal treatment on the flexural properties of glass and sisal fibre-based composites. In the case of GFRE, the moisture uptake and fibre-matrix de-bonding existed, but it is less severe as compared to the SFRE composites. It was found that the dosage of sisal fibres largely determines the ultimate mechanical performance of the composite. Nonetheless, the experimental and numerical flexural strengths of SFRE were comparable to GFRE composites. This exhibited that the SFRE composites possess the potentiality as a sustainable material for advanced applications. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites in Construction Materials)
Show Figures

Graphical abstract

Back to TopTop