Planting Sustainability: A Comprehensive Review of Plant Fibres in Needle-Punching Nonwovens
Abstract
:1. Introduction
2. Materials and Methods
3. Natural Fibres
3.1. Plant Fibres
3.1.1. Jute
3.1.2. Flax
3.1.3. Hemp
3.1.4. Pineapple
3.1.5. Banana
4. Nonwovens Based on Natural Fibres
4.1. Plant-Based Nonwoven Fabrics
4.2. Blended Nonwoven Fabrics
4.2.1. Nonwoven Fabrics Based in Blends of Plant Fibres with Other Natural Fibres
4.2.2. Nonwoven Fabrics Based in Blends of Plant Fibres with Synthetic Fibres
Fibre Blend | Web Formation | Consolidation | Properties | Application | Ref. |
---|---|---|---|---|---|
35% Jute/35% PET/30% PP | Carding | Needle-punching | 1008 g/m2; 10 mm; α 0.10 (700 Hz)–0.71 (3200 Hz) | Acoustic insulation | [51] |
33.3% Jute/33.3% PET/33.3% PP | Carding | Needle-punching | 200 g/m2; 1,82 cm; AP: 254.1 cm3/cm2/s; TC: 0.182 W/mK | Thermal insulation | [42] |
90% Flax/10% PET | Carding | Needle-punching | 609 g/m2; 1.62 mm; α 0.43 (6300 Hz) | Acoustic insulation | [52] |
80% Flax/20% PET | 481 g/m2; 1.22 mm; α 0.54 (6300 Hz) | ||||
70% Flax/30% PET | 421 g/m2; 1.04 mm; α 0.51(6300 Hz) | ||||
30% Hemp/70% PLA | Carding | Needle-punching | 300 g/m2; AP: 25000 Pa s/m2 | Acoustic insulation | [55] |
40% Hemp/60% PLA | Air-laid | Needle-punching | 1367 g/m2; 12 mm; NRC: 0.25; α 0.38 (2000 Hz) 1662 g/m2; 12 mm; NRC: 0.21; α 0.38 (2000 Hz) | Acoustic insulation | [53] |
90% PALF/10% PET | Carding | Needle-punching/ Calendaring | 0.83 mm, 0.241 g cm3, 29.4 mW/mK−1, NRC 0.35, LAC 88.02% | Thermal and acoustic insulation | [29] |
0.83 mm, 0.241 g cm3 19.7 mW/mK−1, NRC 0.32, LAC 84.90% | |||||
75% PALF/25% PET | - | Thermal bonding | 0.514 g cm3, α 0.0638 (500 Hz)–0.4589 (5000 Hz) | Absorber material | [30] |
Thermal bonding + Double wave | 0.674 g cm3, α 0.0525 (100 Hz)–0.7086 (5000 Hz) | ||||
Thermal bonding + Tricot Knitted | 0.554 g cm3, α 0.0669 (500 Hz)–0.4816 (5000 Hz) | ||||
50% PALF/50% PET | Carding | Needle-punching | 2.45 mm, 20.51 g/m2, BL 12.2, EB 31.1 cm, AP 212.54 cm3/m/min | Technical textiles | [56] |
Needle-punching/ Thermal bonding | 5.16 mm, 70.21 g/m2, BL 61.3, EB 22.3 cm, 3.59 cm3/m/min | ||||
30% PALF/60% recycled PET/10% PE | - | - | 46 mm, 53 kg/m3, NRC 0.60, TC 33.3 mW/mk | Sound absorption | [54] |
50% Banana/50% PP | Carding | Needle-punching | 6.43 mm, 975.6 g/m2, FR 303.53 g cm, Lengthwise: TS 200.03 kgf, EL 72.9%, Widthwise: TS 10.61 kgf, EL 67.9%. 17.8 mW/mK−1, AP 70.367 cm3/cm2/min, α 7–13% | Car Interiors for Noise Control | [29] |
60% Banana (Mahalaxmi)/40% PP | Carding (cross laid) | Needle-punching | Dir1: 5.54 mm, 3.36 g/m2, BL 16.31%, EL 90.8%, BS 11.8 kg/cm2, BdL 7.05 cm Dir2: 5.21 mm, 2.46 g/m2, BL 13.49%, EL 107.8%, BS 12.9 kg/cm2, BdL 6.63 cm AP 151.3 cm3/cm2/s | - | [47] |
60% Banana (Shrimanti)/40% PP | Dir1: 5.29 mm, 3.57 g/m2, BL 19.72%, EL 87.4%, BS 14.5 kg/cm2, BdL 7.8 cm Dir2: 5.44 mm, 3.58 g/m2, BL 14.98%, EL 102.9%, BS 17.3 kg/cm2, BdL 7.29 cm AP 167.5 cm3/cm2/s | ||||
60% Banana (Graint Naine)/40% PP | Dir1: 5.3 mm, 3.99 g/m2, BL 18.21%, EL 88.2%, BS 13.3 kg/cm2, BdL 7.61 cm Dir2: 5.23 mm, 2.72 g/m2, BL 13.19%, EL 115.7%, BS 14.7 kg/cm2, BdL 7.01 cm AP 156.0 cm3/cm2/s | [47] | |||
Banana/PET/PP | Carding | Needle-punching | 7.35 mm, TS Dir1 0.32 MPa Dir2 0.17 MPa, BS 14.54 kg/cm2, FR 302 g-cm, EL Dir1 46%, Dir2 24%, TC 17.6 mW/mK, AP 86.64 cm3/cm2/s, α 0.4–15% (80–3880 Hz) | Acoustic properties | [57] |
5. Commercial Solutions and Market Trends
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Asabuwa Ngwabebhoh, F.; Saha, N.; Saha, T.; Saha, P. Bio-Innovation of New-Generation Nonwoven Natural Fibrous Materials for the Footwear Industry: Current State-of-the-Art and Sustainability Panorama. J. Nat. Fibers 2022, 19, 4897–4907. [Google Scholar] [CrossRef]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Thilagavathi, G.; Muthukumar, N.; Neela Krishnanan, S.; Senthilram, T. Development and Characterization of Pineapple Fibre Nonwovens for Thermal and Sound Insulation Applications. J. Nat. Fibers 2020, 17, 1391–1400. [Google Scholar] [CrossRef]
- Yan, Y. Developments in Fibers for Technical Nonwovens. In Advances in Technical Nonwovens; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 19–96. ISBN 9780081005842. [Google Scholar]
- Textile Exchange Materials Market Report. 2023. Available online: https://textileexchange.org/knowledge-center/reports/materials-market-report-2023/ (accessed on 11 November 2024).
- Kalebek, N.A.; Babaarslan, O. Non-Woven Fabrics; InTech: Rijeka, Croatia, 2017; ISBN 9535122711. [Google Scholar]
- Latif, R.; Wakeel, S.; Zaman Khan, N.; Noor Siddiquee, A.; Lal Verma, S.; Akhtar Khan, Z. Surface Treatments of Plant Fibers and Their Effects on Mechanical Properties of Fiber-Reinforced Composites: A Review. J. Reinf. Plast. Compos. 2019, 38, 15–30. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.Z.M.; Abdullah, U.H.; et al. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers 2022, 14, 3698. [Google Scholar] [CrossRef]
- Chen, Y.; Chiparus, O.; Sun, L.; Negulescu, I.; Parikh, D.V.; Calamari, T.A. Natural Fibers for Automotive Nonwoven Composites. J. Ind. Text. 2005, 35, 47–62. [Google Scholar] [CrossRef]
- Olhan, S.; Khatkar, V.; Behera, B.K. Review: Textile-Based Natural Fibre-Reinforced Polymeric Composites in Automotive Lightweighting. J. Mater. Sci. 2021, 56, 18867–18910. [Google Scholar] [CrossRef]
- Mann, G.S.; Azum, N.; Khan, A.; Rub, M.A.; Hassan, M.I.; Fatima, K.; Asiri, A.M. Green Composites Based on Animal Fiber and Their Applications for a Sustainable Future. Polymers 2023, 15, 601. [Google Scholar] [CrossRef]
- Misnon, M.I.; Islam, M.M.; Epaarachchi, J.A.; Lau, K. tak Potentiality of Utilising Natural Textile Materials for Engineering Composites Applications. Mater. Des. 2014, 59, 359–368. [Google Scholar] [CrossRef]
- Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M.R. Effect of Pineapple Leaf Fibre and Kenaf Fibre Treatment on Mechanical Performance of Phenolic Hybrid Composites. Fibers Polym. 2017, 18, 940–947. [Google Scholar] [CrossRef]
- Oliveira Glória, G.; Altoé, G.R.; Amoy Netto, P.; Muylaert Margem, F.; de Oliveira Braga, F.; Neves Monteiro, S. Density Weibull Analysis of Pineapple Leaf Fibers (PALF) with Different Diameters. Mater. Sci. Forum. 2016, 869, 384–390. [Google Scholar] [CrossRef]
- Sadrmanesh, V.; Chen, Y. Bast Fibres: Structure, Processing, Properties, and Applications. Int. Mater. Rev. 2019, 64, 381–406. [Google Scholar] [CrossRef]
- Labib, W.A. Plant-Based Fibres in Cement Composites: A Conceptual Framework. J. Eng. Fibers Fabr. 2022, 17, 15589250221078922. [Google Scholar] [CrossRef]
- Maity, S.; Singha, K.; Gon, D.P.; Paul, P.; Singha, M. A Review on Jute Nonwovens: Manufacturing, Properties and Applications. Int. J. Text. Sci. 2012, 2012, 36–43. [Google Scholar] [CrossRef]
- Maity, S. Jute Needlepunched Nonwovens: Manufacturing, Properties, and Applications. J. Nat. Fibers 2016, 13, 383–396. [Google Scholar] [CrossRef]
- Das, D.; Pradhan, A.K.; Chattopadhyay, R.; Singh, S.N. Composite Nonwovens. Text. Prog. 2012, 44, 1–84. [Google Scholar] [CrossRef]
- Santos, A.S.; Ferreira, P.J.T.; Maloney, T. Bio-Based Materials for Nonwovens. Cellulose 2021, 28, 8939–8969. [Google Scholar] [CrossRef]
- Ahmed, A.T.M.F.; Islam, M.Z.; Mahmud, M.S.; Sarker, M.E.; Islam, M.R. Hemp as a Potential Raw Material toward a Sustainable World: A Review. Heliyon 2022, 8, e08753. [Google Scholar] [CrossRef]
- Manaia, J.P.; Manaia, A.T.; Rodriges, L. Industrial Hemp Fibers: An Overview. Fibers 2019, 7, 106. [Google Scholar] [CrossRef]
- Yano, H.; Fu, W. Hemp: A Sustainable Plant with High Industrial Value in Food Processing. Foods 2023, 12, 651. [Google Scholar] [CrossRef]
- Russell, S.J. Handbook of Non-Wovens; Woodhead Publishing: Cambridge, UK, 2022. [Google Scholar]
- Ecological Textiles Ecological Textiles’ Nonwovens. Available online: https://www.ecologicaltextiles.com/contents/en-uk/d11454_Fibres-and-nonwovens-hemp-wool-organic-cotton.html (accessed on 11 November 2024).
- Food and Agriculture Organization. Data Collection|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/statistics/data-collection/general/en (accessed on 24 October 2023).
- Hazarika, D.; Gogoi, N.; Jose, S.; Das, R.; Basu, G. Exploration of Future Prospects of Indian Pineapple Leaf, an Agro Waste for Textile Application. J. Clean. Prod. 2017, 141, 580–586. [Google Scholar] [CrossRef]
- Jose, S.; Salim, R.; Ammayappan, L. An Overview on Production, Properties, and Value Addition of Pineapple Leaf Fibers (PALF). J. Nat. Fibers 2016, 13, 362–373. [Google Scholar] [CrossRef]
- Thilagavathi, G.; Pradeep, E.; Kannaian, T.; Sasikala, L. Development of Natural Fiber Nonwovens for Application as Car Interiors for Noise Control. J. Ind. Text. 2010, 39, 267–278. [Google Scholar] [CrossRef]
- Khasanah, N.I.; Makki, A.I. Analysis Study of Nonwoven Pineapple Leaf Fibre, Nonwoven Pineapple Layered Double Weave and Tricot Knitting Fabric as Absorber Material. J. Phys. Conf. Ser. 2019, 1381, 012064. [Google Scholar] [CrossRef]
- John, M.J.; Sikampula, N.; Boguslavsky, L. Agave Nonwovens in Polypropylene Composites—Mechanical and Thermal Studies. J. Compos. Mater. 2015, 49, 669–676. [Google Scholar] [CrossRef]
- Shroff, A.; Karolia, A.; Narottamdas Shah, J. Bio-Softening of Banana Fiber for Nonwoven Application. Int. J. Sci. Res. 2015, 4, 524–527. [Google Scholar]
- Elfaleh, I.; Abbassi, F.; Habibi, M.; Ahmad, F.; Guedri, M.; Nasri, M.; Garnier, C. A Comprehensive Review of Natural Fibers and Their Composites: An Eco-Friendly Alternative to Conventional Materials. Results Eng. 2023, 19, 101271. [Google Scholar] [CrossRef]
- Unal, F.; Avinc, O.; Kumartaşlı, S.; Yavaş, A. The Use of Banana Fibers in Composite Materials. Text. Sci. Econ. 2021, 48. Available online: https://www.researchgate.net/publication/357026882_THE_USE_OF_BANANA_FIBERS_IN_COMPOSITE_MATERIALS (accessed on 11 November 2024).
- Manickam, P.; Kandhavadivu, P. Development of Banana Nonwoven Fabric for Eco-Friendly Packaging Applications of Rural Agriculture Sector. J. Nat. Fibers 2022, 19, 3158–3170. [Google Scholar] [CrossRef]
- Sakthivel, J.C.; Murugan, R. Study on the Mechanical Properties of Banana and Jute Nonwovens. J. Inst. Eng. (India) Ser. E 2020, 101, 169–173. [Google Scholar] [CrossRef]
- Motaleb, K.Z.M.A.; Mizan, R.A.; Milašius, R. Development and Characterization of Eco-Sustainable Banana Fiber Nonwoven Material: Surface Treatment, Water Absorbency and Mechanical Properties. Cellulose 2020, 27, 7889–7900. [Google Scholar] [CrossRef]
- Patel, M.; Bhrambhatt, D. Nonwoven Technology for Unconventional Fabrics; Academia Press: Prague, Czech Republic, 2015. [Google Scholar]
- Martin, N.; Davies, P.; Baley, C. Evaluation of the Potential of Three Non-Woven Flax Fiber Reinforcements: Spunlaced, Needlepunched and Paper Process Mats. Ind. Crops Prod. 2016, 83, 194–205. [Google Scholar] [CrossRef]
- Boominathan, S.; Bhuvaneshwari, M.; Sangeetha, K.; Pachiyappan, K.M.; Devaki, E. Influence of Fiber Blending on Thermal and Acoustic Properties Nonwoven Material. J. Nat. Fibers 2022, 19, 11193–11203. [Google Scholar] [CrossRef]
- Paul, P.; Ahirwar, M.; Behera, B.K. Acoustic Behaviour of Needle Punched Nonwoven Structures Produced from Various Natural and Synthetic Fibers. Appl. Acoust. 2022, 199, 109043. [Google Scholar] [CrossRef]
- Thirumurugan, V.; Kumar, R.; Das, S. Thermal Insulation Properties of Jute, Polypropylene and Recycled Polyester Nonwoven Fabrics for Automotive Textiles. Indian J. Fibre Text. Res. (IJFTR) 2021, 46, 186–190. [Google Scholar]
- Samanta, K.K.; Mustafa, I.; Debnath, S.; Das, E.; Basu, G.; Ghosh, S.K. Study of Thermal Insulation Performance of Layered Jute Nonwoven: A Sustainable Material. J. Nat. Fibers 2020, 19, 4249–4262. [Google Scholar] [CrossRef]
- Kozłowski, R.; Mieleniak, B.; Muzyczek, M.; Mańkowski, J. Development of Insulation Composite Based on FR Bast Fibers and Wool. In Proceedings of the International Conference on Flax and Other Bast Plants, Saskatoon, SK, Canada, 21–23 July 2008; ID Number: 68. ISBN 9780980966404. [Google Scholar]
- Bhuvaneshwari, M.; Sangeetha, K. Development of Natural Fiber Nonwovens for Thermal Insulation. Int. J. Appl. Eng. Res. 2018, 13, 14903–14907. [Google Scholar]
- Kenned, J.J.; Sankaranarayanasamy, K.; Binoj, J.S.; Chelliah, S.K. Thermo-Mechanical and Morphological Characterization of Needle Punched Non-Woven Banana Fiber Reinforced Polymer Composites. Compos. Sci. Technol. 2020, 185, 107890. [Google Scholar] [CrossRef]
- Shivankar, V.S.; Mukhopadhyay, S. Some Studies on 100% Banana Parallel Laid and 60:40% Banana: Polypropylene Cross Laid Non-Woven Fabrics. Fash. Text. 2019, 6, 7. [Google Scholar] [CrossRef]
- Chokshi, S.; Parmar, V.; Gohil, P.; Chaudhary, V. Chemical Composition and Mechanical Properties of Natural Fibers. J. Nat. Fibers 2020, 19, 3942–3953. [Google Scholar] [CrossRef]
- Ariharasudhan, S.; Chandrasekaran, P.; Dhinakaran, M.; Rameshbabu, V.; Sundaresan, S.; Natarajan, S.; Arunraj, A. Study of Banana/Cotton Blended Nonwoven Fabric for Lead and Zinc Adsorption. AIP Conf. Proc. 2022, 2446, 170008. [Google Scholar]
- Periyasamy, A.P. Nonwoven Fabrics from Agricultural and Industrial Waste for Acoustic and Thermal Insulation Applications. Textiles 2023, 3, 182–200. [Google Scholar] [CrossRef]
- Parikh, D.V.; Chen, Y.; Sun, L. Reducing Automotive Interior Noise with Natural Fiber Nonwoven Floor Covering Systems. Text. Res. J. 2006, 76, 813–820. [Google Scholar] [CrossRef]
- Muthukumar, N.; Thilagavathi, G.; Neelakrishnan, S.; Poovaragan, P.T. Sound and Thermal Insulation Properties of Flax/Low Melt PET Needle Punched Nonwovens. J. Nat. Fibers 2017, 16, 245–252. [Google Scholar] [CrossRef]
- Belakova, D.; Seile, A.; Kukle, S.; Plamus, T. Non-Wovens as Sound Reducers. Latv. J. Phys. Tech. Sci. 2018, 55, 64–76. [Google Scholar] [CrossRef]
- Suphamitmongkol, W.; Khanoonkon, N.; Rungruangkitkrai, N.; Boonyarit, J.; Changniam, C.; Sampoompuang, C.; Chollakup, R. Potential of Pineapple Leaf Fibers as Sound and Thermal Insulation Materials in Thailand. Prog. Appl. Sci. Technol. 2023, 13, 26–32. [Google Scholar] [CrossRef]
- Yilmaz, N.D.; Powell, N.B.; Banks-Lee, P.; Michielsen, S. Multi-Fiber Needle-Punched Nonwoven Composites: Effects of Heat Treatment on Sound Absorption Performance. J. Ind. Text. 2013, 43, 231–246. [Google Scholar] [CrossRef]
- Hayavadana, J.; Jacob, M.; Sampath, G. Diversified Products of PALF. Man Made Text. India 2003, 46, 301–305. [Google Scholar]
- Islam, S.; Mominul Alam, S.M. Investigation of the Acoustic Properties of Needle Punched Nonwoven Produced of Blend with Sustainable Fibers. Int. J. Cloth. Sci. Technol. 2018, 30, 444–458. [Google Scholar] [CrossRef]
- Hempitecture HempWool Technical Data-Sheet 2024. Available online: https://www.hempitecture.com/wp-content/uploads/2024/11/HempWool_Technical-Data-Sheet.pdf (accessed on 11 November 2024).
- Thermo Hemp Combi Jute. Available online: https://www.ecologicalbuildingsystems.com/product/thermo-hemp-combi-jute (accessed on 11 November 2024).
- KOBE ECO HEMP FLEX. Available online: https://www.kobe-cz.eu/en/vyroba/prirodni-vlakna/kobe-eco-hemp-flex/ (accessed on 11 November 2024).
- Kobevlies, V. Available online: https://kobe-cz.eu/en/vyroba/prirodni-vlakna/kobevlies-v/ (accessed on 11 November 2024).
- Home—Ananas Anam. Available online: https://www.ananas-anam.com/ (accessed on 24 October 2023).
- PAFiR—PALF Textile Reinforcements for Biocomposites. Available online: https://pafir.bio/ (accessed on 24 October 2023).
Fibre | Density g/cm3 | Tensile Strength MPa | Elastic Modulus GPa | Elongation % |
---|---|---|---|---|
Jute | 1.3–1.5 | 320–850 | 8–78 | 1.0–2.0 |
Hemp | 1.1–1.6 | 270–1750 | 14–90 | 0.8–4.0 |
Flax | 1.3–1.5 | 340–2000 | 14–103 | 1.0–3.3 |
Sisal | 1.3–1.6 | 363–700 | 9–40 | 2.0–15 |
Coir | 1.2–1.6 | 95–230 | 2.8–7.0 | 15–51 |
Ramie | 1.0–1.5 | 200–1000 | 24.5–130 | 1.0–4.0 |
Kenaf | 1.4–1.5 | 223–1200 | 11–60 | 1.0–4.0 |
Banana | 0.5–1.5 | 711–789 | 4.0–33 | 2.0–4.0 |
Pineapple | 0.7–1.5 | 150–1627 | 11–82 | 1.6–3.0 |
Fibre | Composition, % | ||
---|---|---|---|
Cellulose | Hemicellulose | Lignin | |
Jute | 41–72 | 12–22 | 11–26 |
Hemp | 55–80 | 12–22 | 3–13 |
Flax | 43–75 | 5–21 | 2–4 |
Sisal | 67–80 | 10–16 | 5–17 |
Coir | 32–50 | 0.2–28 | 40–47 |
Ramie | 68–91 | 5–16.7 | 1–17 |
Kenaf | 30–57 | 18–24 | 8–21 |
Banana | 48–65 | 6–16 | 5–22 |
Pineapple | 55–82 | 18–20 | 5–12 |
Fibre | Web Formation | Consolidation | Properties | Application | Ref. |
---|---|---|---|---|---|
Jute | Carding | Needle-punching | 519.1 g/m2; NRC 0.056 635.8 g/m2; NRC 0.06 719.6 g/m2; NRC 0.074 | Acoustic insulation | [41] |
Jute | Carding | Needle-punching | 300 g/m2; TI: 301 m2K/kW 500 g/m2; TI: 523 m2K/kW 1000 g/m2; TI: 1060 m2K/kW 1500 g/m2; TI: 1491 m2K/kW 2000 g/m2; TI: 2164 m2K/kW | Thermal insulation | [43] |
Jute | Carding | Needle-punching | 230 g/m2; 2.14 cm; AP: 302.7 cm3/cm2/s; TC: 0.190 W/mK | Thermal insulation | [42] |
Flax | Carding | Needle-punching | 561.6 g/m2; NRC 0.06 541.8 g/m2; NRC 0.058 200.5 g/m2; NRC 0.046 | Acoustic insulation | [41] |
Flax FR | - | Needle-punching | 500 g/m2; 5.0 mm; 0.23 m2K/W; α: 0.45 | Thermal and acoustic insulation | [44] |
Hemp | Carding | Needle-punching | 6.14 mm; 525 g/m2; 0.049 W/mK | Thermal insulation | [45] |
Pineapple | Carding | Needle-punching | 3.48 mm, 0.201 g cm3, 21.1 mW/mK−1, NRC 0.55, LAC 65.06% | Thermal and acoustic insulation | [29] |
1.03 mm, 0.194 g cm3 39.3 mW/mK−1, NRC 0.29, LAC 91.50% | |||||
Banana | Carding | Needle-punching/Latex coated | - | Vegetables packaging | [35] |
Banana | Carding | Needle-punching | - | Composite reinforcement | [46] |
Banana | Carding | Needle-punching | 466 and 690 g/m2 | Nonwoven production | [32] |
Banana (Mahalaxmi) | Carding (Parallel laid) | Needle-punching | Dir1: 5.2 mm, 2.44 g/m2, BL 0.28 kgf, EL 41.8%, BS 13.3 kg/cm2, BdL 4.83 cm Dir2: 5.18 mm, 2.46 g/m2, BL 1.04 kgf, EL 20.5%, BS 15.7 kg/cm2, BdL 5.26 cm | - | [47] |
Banana (Shrimanti) | Dir1: 5.53 mm, 2.73 g/m2, BL 4.6 kgf, EL 22.2%, BS 16.6 kg/cm2, BdL 5.99 cm Dir2: 5.9 mm, 3 g/m2, BL 5.01 kgf, EL 9.9%, BS 22.4 kg/cm2, BdL 6.54 cm | ||||
Banana (Graint Naine) | Dir1: 5.4 mm, 2.81 g/m2, BL 1.08 kgf, EL 34.5%, BS 13.3 kg/cm2, BdL 4.83 cm Dir2: 5.6 mm, 3.52 g/m2, BL 2.06 kgf, EL 18.4%, BS 15.7 kg/cm2, BdL 5.26 cm | ||||
Banana | Carding | Needle-punching | 6.9 mm, 513 kg/m2, AP 34.21 cm3/cm2/s, Porosity 94.61%, BS 0.89 kg/cm2, TC 47 mW/mK, NRC 0.418 | Thermal and Acoustic properties | [40] |
5.4 mm, 513 kg/m2, AP 56.32 cm3/cm2/s, Porosity 94.48%, BS 0.68 kg/cm2, TC 43 mW/mK, NRC 0.217 | |||||
Banana | Carding | Needle-punching | 5.72 mm, 588 kg/m2, AP 60 cm3/cm2/s, PS 28 μm, 1 BS 15.2 kg/cm2, 1 PR 0.292 kN, 1 TS Dir1 93 N, Dir2 8 N | Comparative study | [36] |
Fibre Blend | Web Formation | Consolidation | Properties | Application | Ref. |
---|---|---|---|---|---|
50% Flax FR/50% Wool | - | Needle-punching | 520 g/m2; 5.5 mm; 0.22 m2K/W; α: 0.45; AP: 1225 dm3/cm2/s | Thermal and acoustic insulation | [44] |
90% Agave/10% PALF | Carding | Needle-punching | 300 g/m2, 1.2 mm | Preparation of PP composites | [31] |
40% Coffee Husk/40% Banana/20% cotton | Carding | Needle-punching | 5.2 mm, 520 g/m2, Porosity 76.3%, AP 1 78 cm3/cm2/s, TC 1 0.26 W/mK, α 1 0.60–0.65 (700–6300 Hz) | Acoustic and thermal insulation | [50] |
75% Banana/25% cotton | Carding (parallel layers) | Needle-punching | 7.8 mm, 400 g/m2 T 0.98 g/tex, EL 35.1%, AP 107.2 cm3/cm2/s, BeL Dir1 4.2 cm, Dir2 5.1 cm, AR 66 mg (weight loss), PS 30 microns | Lead and zinc adsorption | [49] |
Sansevieria stuckyi:Banana:Hemp (1:1:1) | Carding | Needle-punching | 5.1–6.8 mm, 378–495 g/m2, AP 24.73–59.43 cm3/cm2/s, Porosity 94.23–94.84%, BS 1.21–1.56 kg/cm2, TC 29–32 mW/mK, NRC 0.487–0.264 | Thermal and Acoustic Properties | [40] |
Sansevieria stuckyi:Banana:Hemp (1:1:2) | 4.8–5.7 mm, 345–432 g/m2, AP 25.34–56.43 cm3/cm2/s, Porosity 95.4–95.5%, BS 0.97–1.13 kg/cm2, TC 23–28 mW/mK, NRC 0.539–0.269 | ||||
Sansevieria stuckyi:Banana:Hemp (1:2:3) | 4.2–5.3 mm, 314–402 g/m2, AP 22.79–49.22 cm3/cm2/s, Porosity 96.61–98.03%, BS 0.78–0.64 kg/cm2, TC 25–21 mW/mK, NRC 0.577–0.276 | ||||
80% Banana/20% Jute | Carding | Needle-punching | 5.25 mm, 583 g/m2, AP 65 cm3/cm2/s, PS 34 μm, 1 BS 7.5 kg/cm2, 1 PR 0.291 kN, 1 TS Dir1 90 N, Dir2 9 N | Comparative study | [36] |
60% Banana/40% Jute | 5.21 mm, 582 g/m2, AP 98 cm3/cm2/s, PS 38 μm, 1 BS 4.9 kg/cm2, 1 PR 0.287 kN, +TS Dir1 90 N, Dir2 8 N | ||||
40% Banana/60% Jute | 5.05 mm, 578 g/m2, AP 122 cm3/cm2/s, PS 40 μm, 1 BS 4.0 kg/cm2, 1 PR 0.274 kN, 1 TS Dir1 86 N, Dir2 7 N |
Product | Composition | Web Formation | Consolidation | Properties | Application | Manufacturer |
---|---|---|---|---|---|---|
HempWool | 90% Hemp, 10% Polymer fibre | - | - | Density of insulation: 45 g/cm3; Thermal conductivity: 0.040 W/(m K) | Thermal insulation | Hempitecture [58] |
Thermo Hemp Combi Jute | 66% Hemp, 22% Jute, 8% PET, 4% Soda | Air-laid | Thermal-bonding | 40 mm; α 0.2 (125 Hz)–0.95 (4000 Hz) 160 mm; α 0.85 (125 Hz)–1.0 (4000 Hz) 0.040 W/(m K) | Thermal/acoustic insulation | Hemp Flax [59] |
Kobe Eco Hemp Flex | 85–87% Hemp, 10–12% Two-component synthetic fibres, 3–5% Soda | - | - | Thickness: 30–240 mm Bulk Density: 35 ± 5 kg/m3 Thermal conductivity: 0.04 W/m K | Thermal/acoustic insulation | Kobe [60] |
Kobevlies V | 85–87% Hemp, 10–12% Two-component synthetic fibres, 3–5% Soda | Thickness: 30–240 mm Bulk Density: 35 ± 5 kg/m3 | Thermal/acoustic insulation | Kobe [61] | ||
Piñatex® | 72% PALF 18% PLA, 5% BIO PU, 5% PU | Carding | Needle-punching/Thermal bonding | 0.27 g/cm3, 1.6 ± 0.2 mm, 445 g/m2 TeS 145 N Dir 1, 89 N Dir 2 TS 480 N Dir 1, 500 N Dir 2 SR 511 N Dir 1, 355 N Dir 2 | Footwear, bags, furnishing and beyond | Ananas Anam [62] |
PAFiR | 100% PALF | - | - | 450 g/m2, Tensile modulus: 16–22 GPa Flexion; modulus: 150–180 MPa | Composites reinforcement | PAFiR-Fibras Técnicas [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, R.; Oliveira, C.; Araújo, J.C.; Chaves, D.M.; Ferreira, D.P.; Fangueiro, R.; Silva, C.J.; Rodrigues, L. Planting Sustainability: A Comprehensive Review of Plant Fibres in Needle-Punching Nonwovens. Textiles 2024, 4, 530-548. https://doi.org/10.3390/textiles4040031
Marques R, Oliveira C, Araújo JC, Chaves DM, Ferreira DP, Fangueiro R, Silva CJ, Rodrigues L. Planting Sustainability: A Comprehensive Review of Plant Fibres in Needle-Punching Nonwovens. Textiles. 2024; 4(4):530-548. https://doi.org/10.3390/textiles4040031
Chicago/Turabian StyleMarques, Rita, Cristina Oliveira, Joana C. Araújo, Diego M. Chaves, Diana P. Ferreira, Raul Fangueiro, Carla J. Silva, and Lúcia Rodrigues. 2024. "Planting Sustainability: A Comprehensive Review of Plant Fibres in Needle-Punching Nonwovens" Textiles 4, no. 4: 530-548. https://doi.org/10.3390/textiles4040031
APA StyleMarques, R., Oliveira, C., Araújo, J. C., Chaves, D. M., Ferreira, D. P., Fangueiro, R., Silva, C. J., & Rodrigues, L. (2024). Planting Sustainability: A Comprehensive Review of Plant Fibres in Needle-Punching Nonwovens. Textiles, 4(4), 530-548. https://doi.org/10.3390/textiles4040031