Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (268)

Search Parameters:
Keywords = joint reaction force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3151 KB  
Article
An Inverse Analysis of Interfacial Parameter Values for Mode I Debonding Between Steel and Hot-Melt Adhesive
by Jun Shi, Jian Zhang, Mingzhen Hu, Yingjie Li, Guide Deng and Wenjun Liu
Materials 2025, 18(20), 4648; https://doi.org/10.3390/ma18204648 - 10 Oct 2025
Viewed by 3
Abstract
A polyethylene pipe reinforced with winding steel wires (PSP) is a new composite pipe in which steel wires are effectively bonded with high-density polyethylene (HDPE) through hot-melt adhesive, ensuring the mechanical properties and structural integrity of the pipe. One of the main failure [...] Read more.
A polyethylene pipe reinforced with winding steel wires (PSP) is a new composite pipe in which steel wires are effectively bonded with high-density polyethylene (HDPE) through hot-melt adhesive, ensuring the mechanical properties and structural integrity of the pipe. One of the main failure modes at the PSP joint is the interfacial debonding between the steel wire and the hot-melt adhesive. To find a good method to overcome this debonding failure mode, the first priority is to be able to quantitatively characterize the interface performance. Thus, in this study, double cantilever beam (DCB) tests are used to investigate the interfacial properties between steel and hot-melt adhesive, and a finite element model with cohesive element representing the adhesive interface is established to analyze the interfacial properties and the interfacial failure process. However, the interfacial parameters, including interface strength and fracture energy, cannot be obtained directly; thus, based on the inverse optimization calculation concept, an ABAQUS–Python–MATLAB interactive program is developed to continuously optimize and adjust the key parameters of the interface during iterative calculations so that the load–displacement simulation curve is close to the experimental curve, thereby determining the solution set of interface strength and fracture energy. With the inversion parameters substituted into the DCB model, the simulated reaction force–displacement curve is obtained, and it is consistent with the experimental one. Furthermore, this paper compares the pattern of simulated crack tip propagation during the loading process with the experimental results, and it is found that the simulated curve agrees well with the trends of the experimental ones. This proves the effectiveness of the DCB finite element model and the inversion calculation method from a new perspective, indicating that the simulation results of the DCB model were consistent with the experiment. This method can provide guidance and reference for the mechanical behavior analysis of the bonding interface of other materials or structures. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

12 pages, 2218 KB  
Article
The Effects of Muscle Fatigue on Lower Extremity Biomechanics During the Three-Step Layup Jump and Drop Landing in Male Recreational Basketball Players
by Li Jin and Brandon Yang
Biomechanics 2025, 5(4), 81; https://doi.org/10.3390/biomechanics5040081 - 10 Oct 2025
Viewed by 58
Abstract
Background/Objectives: Understanding how muscle fatigue contributes to musculoskeletal injuries is critical in sports science. Although joint biomechanics during landing under fatigue has been studied before, limited research has focused on the layup phase under fatigue. This study examined the effects of fatigue [...] Read more.
Background/Objectives: Understanding how muscle fatigue contributes to musculoskeletal injuries is critical in sports science. Although joint biomechanics during landing under fatigue has been studied before, limited research has focused on the layup phase under fatigue. This study examined the effects of fatigue on ankle, knee, and hip-joint biomechanics during layup and landing. We hypothesized that fatigue would increase peak vertical ground reaction force (GRF), peak knee extension angle, and peak joint moments. Methods: Fourteen healthy male participants performed 3-step layups and drop landings using their dominant leg on force plates. The fatigue protocol consisted of squat jumps, step-ups, and repeated countermovement jumps (CMJs), with fatigue defined as three consecutive CMJs below 80% of the participant’s pre-established maximum jump height. After a fatigue protocol, they repeated the tasks. Kinematic data were collected using an eight-camera Vicon system (100 Hz), and GRF data were recorded with two AMTI force plates (1000 Hz). Thirty-six reflective markers were placed on lower-limb anatomical landmarks, and data were processed using Visual 3D. Paired t-tests (α = 0.05) were conducted using SPSS (V26.0) to compare pre- and post-fatigue outcomes. Results: Significant increases were found in peak GRF during landing (pre: 3.41 ± 0.81 BW [Body Weight], post: 3.95 ± 1.05 BW, p = 0.036), and peak negative hip joint work during landing (pre: 0.34 ± 0.18 J/kg, post: 0.66 ± 0.43 J/kg, p = 0.025). Conclusions: These findings indicate that fatigue may alter landing mechanics, reflected in increased ground reaction forces and negative hip joint work. These preliminary findings should be interpreted cautiously, and future studies with larger samples and additional neuromuscular measures under sport-specific conditions are needed to improve ecological validity. Full article
Show Figures

Figure 1

17 pages, 1194 KB  
Article
Impact of Induced Forward Leg Movements on Kinematics and Kinetics During Quiet Standing in Healthy Young Right-Leg-Dominant Women: A Quasi-Experimental Study
by Michalina Gulatowska, Michalina Błażkiewicz, Anatolii Tsos and Jacek Wąsik
Appl. Sci. 2025, 15(19), 10764; https://doi.org/10.3390/app151910764 - 6 Oct 2025
Viewed by 171
Abstract
Background: Postural control in healthy young adults involves complex neuromuscular processes; however, the kinematic and kinetic consequences of small, forward leg perturbations in a defined population are not fully described. This study aimed to characterize the kinematic and kinetic consequences of forward leg [...] Read more.
Background: Postural control in healthy young adults involves complex neuromuscular processes; however, the kinematic and kinetic consequences of small, forward leg perturbations in a defined population are not fully described. This study aimed to characterize the kinematic and kinetic consequences of forward leg perturbations during quiet standing. Methods: This investigation used a quasi-experimental repeated-measures design. Sixteen healthy young women (20.1 ± 0.7 years), all right-leg dominant, were tested using the Gait Real-Time Analysis Interactive Laboratory (GRAIL) system. Forward treadmill perturbations were applied to each limb during quiet standing, and joint angles, ground reaction forces, and torques were measured across baseline, perturbation, and response phases. As the data were non-normally distributed, paired comparisons were conducted using the Wilcoxon test, with significance set at p < 0.05 (Bonferroni corrected) and effect sizes (r) reported. Results: Joint angles remained symmetrical between limbs (no significant differences after correction). In contrast, kinetic measures showed clear asymmetries: at baseline, the dominant limb produced greater knee torque (p = 0.0003, r = 0.73), ankle torque (p = 0.0003, r = 0.76), and medio-lateral GRF (p = 0.0003, r = 0.87). During perturbation, it again generated higher knee (p = 0.0036, r = 0.43) and ankle torques (p = 0.0003, r = 0.53), with larger medio-lateral GRF (p = 0.0003, r = 0.87). In the response phase, the dominant limb showed greater hip torque (p = 0.0033, r = 0.43) and a small dorsiflexion shift at the ankle (p = 0.0066, r = 0.41). Anterior–posterior GRF changes were minor and non-significant after correction. Conclusions: Induced forward leg movements caused limb-specific kinetic adjustments while maintaining overall kinematic symmetry. The dominant leg contributed more actively to balance recovery, highlighting its role in stabilizing posture under small perturbations. These findings are specific to the studied demographic and should not be generalized to males, older adults, left-dominant individuals, or clinical populations without further research. Full article
(This article belongs to the Special Issue Applied Biomechanics: Sports Performance and Rehabilitation)
Show Figures

Figure 1

12 pages, 1300 KB  
Article
Morphology and Knee Joint Kinetics in National Football League Draft Prep Players: Implications for Osteoarthritis Development
by Monique Mokha, Jack Stensland, Andrew Schafer and Sean McBride
Biomechanics 2025, 5(4), 77; https://doi.org/10.3390/biomechanics5040077 - 4 Oct 2025
Viewed by 143
Abstract
Background/Objectives: National Football League (NFL) American football players are exposed to osteoarthritis risk factors of obesity and high joint loads. We sought to examine the association between total body mass (TBM), lean body mass (LBM), body fat percentage (BF%), and normalized compressive knee [...] Read more.
Background/Objectives: National Football League (NFL) American football players are exposed to osteoarthritis risk factors of obesity and high joint loads. We sought to examine the association between total body mass (TBM), lean body mass (LBM), body fat percentage (BF%), and normalized compressive knee joint reaction forces (JRFcomp), peak knee adductor moments (KAM), and vertical ground reaction forces (vGRF) in NFL draft-eligible players during a high-speed run. Methods: A total of 125 participants ran a single trial at 5.5–6.5 m/s for 5 s on an instrumented treadmill. Bilateral vGRF and knee joint kinetics were calculated using inverse dynamics. Body composition was assessed using bioelectrical impedance. Results: LBM demonstrated significant moderate associations with vGRF (left, r(123) = −0.56, p < 0.001; right, r(123) = −0.60, p < 0.001) and low-to-negligible associations with KAM (left, r(123) = −0.20, p = 0.026; right, r(123) = −0.30, p < 0.001) and JRFcomp (left, r(123) = −0.39, p = 0.020; right, r(123) = −0.38, p = 0.015), respectively. TBM showed significant moderate negative associations with vGRF (left, r(123) = −0.56, p < 0.001; right, r(123) = −0.61, p < 0.001) and low-to-negligible associations with KAM (left, r(123) = −0.21, p = 0.021; right, r(123) = −0.28, p = 0.002) and JRFcomp (left, r(123) = −0.39, p < 0.001; right, r(123) = −0.37, p < 0.001), respectively. BF% showed significant low-to-negligible negative associations with JRFcomp (left, r(123) = −0.21, p < 0.001; right, r(123) = −0.22, p < 0.001) and vGRF (left, r(123) = −0.39, p < 0.001; right, r(123) = −0.41, p < 0.001), respectively, and no significant associations with KAM, p > 0.05. The heavier group exhibited significantly lower normalized JRFcomp, and vGRF, p < 0.05. Conclusions: Heavier, but not fatter, players attenuate knee loads. Dampening may be a short-term protective strategy for joints of heavier players. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

32 pages, 1031 KB  
Article
Static Stability Analysis of Planar Grasps by Multiple Fingers with Redundant Joints
by Takayoshi Yamada
Actuators 2025, 14(10), 472; https://doi.org/10.3390/act14100472 - 26 Sep 2025
Viewed by 150
Abstract
This paper deals with static stability in planar grasps of an object by multiple fingers. Differently from previous research, we focus on the case that each finger has redundant links and joints. Based on contact constraints between the object and fingers, the relationships [...] Read more.
This paper deals with static stability in planar grasps of an object by multiple fingers. Differently from previous research, we focus on the case that each finger has redundant links and joints. Based on contact constraints between the object and fingers, the relationships among displacements of object’s pose, contact positions, and joint positions are formulated. Using the constraints, the redundant joints are reduced to independent parameters. The relationship between the displacement and reaction torque of each joint is modeled as a linear spring, and potential energy of the grasp is formulated. Not only for frictionless sliding contact but also for pure rolling contact, we derive stable conditions on the contact positions and joint positions. Based on the conditions, partially differentiating the potential energy, a wrench (force and moment) vector and a stiffness matrix applied to the object by each finger are derived. Summing up the wrenches and matrices of all the fingers, we obtain a wrench vector and a stiffness matrix of the grasp, and we evaluate the grasp stability. Because of our analytical formulation, grasp parameters such as local curvatures at contact points, joint stiffnesses, etc., are explicitly included in the derived matrices. Partially differentiating the wrenches and matrices by the grasp parameters, we clarify effects of the parameters on the stability. Moreover, the difference between the frictionless sliding contact and pure rolling contact is derived in the wrench vector and the stiffness matrix. Using numerical examples, we validate our analysis. Full article
(This article belongs to the Special Issue Motion Planning, Trajectory Prediction, and Control for Robotics)
Show Figures

Figure 1

13 pages, 968 KB  
Article
Effects of Arch Support Pad Stiffness on Lower-Limb Biomechanics During Single-Leg Landing
by Chu-Hao Li, Qiu-Qiong Shi, Kit-Lun Yick, Ming-Yu Hu and Shi-Wei Mo
Sports 2025, 13(9), 323; https://doi.org/10.3390/sports13090323 - 11 Sep 2025
Viewed by 703
Abstract
Arch structure is a crucial interface between the human body and the ground during landing tasks, but the biomechanical effects of arch support stiffness remain insufficiently explored. This study examines the effects of arch supports with different stiffnesses on lower-limb biomechanics during landing. [...] Read more.
Arch structure is a crucial interface between the human body and the ground during landing tasks, but the biomechanical effects of arch support stiffness remain insufficiently explored. This study examines the effects of arch supports with different stiffnesses on lower-limb biomechanics during landing. Twelve male participants (six normal arches, six flat feet) performed a single-leg drop landing from a 45 cm height under four arch support conditions: no arch support pad (NAP), soft-stiffness arch support pad (SAP), medium-stiffness arch support pad (MAP), and high-stiffness arch support pad (HAP). Dominant lower-limb joint angles and moments in the sagittal plane and vertical ground reaction force (vGRF)-related parameters—time to peak vGRF, peak vGRF, and max loading rate—were recorded using a motion capture system and force plate. Data were analyzed using one-way repeated measures analysis of variance (ANOVA). Arch pad stiffness significantly affected ankle and knee kinematics. The NAP condition exhibited significantly higher ankle plantarflexion at initial contact (p ≤ 0.01), as well as larger range of motion (ROM) of the knee (p = 0.03) and hip (p < 0.01), compared to the use of a SAP or MAP. The use of a HAP resulted in a significantly lower peak ankle dorsiflexion moment and larger peak knee flexion angle than the other conditions (p ≤ 0.04). The peak knee extension moment was the highest when using a NAP, and was significantly higher than that shown with the use of a MAP or HAP (p ≤ 0.02). No significant differences were observed in hip joint moments or vGRF-related parameters across conditions (p ≥ 0.52). These results indicate that hard-stiffness arch support pads modulate lower-limb mechanics during landing, potentially enhancing shock absorption and reducing knee loading. Full article
Show Figures

Figure 1

26 pages, 1440 KB  
Article
Computational Analysis of Neuromuscular Adaptations to Strength and Plyometric Training: An Integrated Modeling Study
by Dan Cristian Mănescu
Sports 2025, 13(9), 298; https://doi.org/10.3390/sports13090298 - 1 Sep 2025
Cited by 1 | Viewed by 1184
Abstract
Understanding neuromuscular adaptations resulting from specific training modalities is crucial for optimizing athletic performance and injury prevention. This in silico proof-of-concept study aimed to computationally model and predict neuromuscular adaptations induced by strength and plyometric training, integrating musculoskeletal simulations and machine learning techniques. [...] Read more.
Understanding neuromuscular adaptations resulting from specific training modalities is crucial for optimizing athletic performance and injury prevention. This in silico proof-of-concept study aimed to computationally model and predict neuromuscular adaptations induced by strength and plyometric training, integrating musculoskeletal simulations and machine learning techniques. A validated musculoskeletal model (OpenSim 4.4; 23 DOF, 92 musculotendon actuators) was scaled to a representative athlete (180 cm, 75 kg). Plyometric (vertical jumps, horizontal broad jumps, drop jumps) and strength exercises (back squat, deadlift, leg press) were simulated to evaluate biomechanical responses, including ground reaction forces, muscle activations, joint kinetics, and rate of force development (RFD). Predictive analyses employed artificial neural networks and random forest regression models trained on extracted biomechanical data. The results show plyometric tasks with GRF 22.1–30.2 N·kg−1 and RFD 3200–3600 N·s−1, 10–12% higher activation synchrony, and 7–12% lower moment variability. Strength tasks produced moments of 3.2–3.8 N·m·kg−1; combined strength + plyometric training reached 3.7–4.2 N·m·kg−1, 10–16% above strength only. Machine learning predictions revealed superior neuromuscular gains through combined training, especially pairing back squats with high-intensity drop jumps (50 cm). This integrated computational approach demonstrates significant practical potential, enabling precise optimization of training interventions and injury risk reduction in athletic populations. Full article
(This article belongs to the Special Issue Neuromuscular Performance: Insights for Athletes and Beyond)
Show Figures

Figure 1

19 pages, 4016 KB  
Article
Multibody Dynamics Simulation of Upper Extremity Rehabilitation Exoskeleton During Task-Oriented Exercises
by Piotr Falkowski and Krzysztof Zawalski
Actuators 2025, 14(9), 426; https://doi.org/10.3390/act14090426 - 30 Aug 2025
Viewed by 656
Abstract
Population aging intensifies the demand for rehabilitation services, which are already suffering from staff shortages. In response to this challenge, the implementation of new technologies in physiotherapy is needed. For such a task, rehabilitation exoskeletons can be used. While designing such tools, their [...] Read more.
Population aging intensifies the demand for rehabilitation services, which are already suffering from staff shortages. In response to this challenge, the implementation of new technologies in physiotherapy is needed. For such a task, rehabilitation exoskeletons can be used. While designing such tools, their functionality and safety must be ensured. Therefore, simulations of their strength and kinematics must meet set criteria. This paper aims to present a methodology for simulating the dynamics of rehabilitation exoskeletons during activities of daily living and determining the reactions in the construction’s joints, as well as the required driving torques. The methodology is applied to the SmartEx-Home exoskeleton. Two versions of a multibody model were developed in the Matlab/Simulink environment—a rigid-only version and one with deformable components. The kinematic chain of construction was reflected with the driven rotational joints and modeled passive sliding open bearings. The simulation outputs include the driving torques and joint reaction forces and the torques for various input trajectories registered using IMU sensors on human participants. The results obtained in the investigation show that in general, to mobilize shoulder flexion/extension or abduction/adduction, around 30 Nm of torque is required in such a lightweight exoskeleton. For elbow flexion/extension, around 10 Nm of torque is needed. All of the reactions are presented in tables for all of the characteristic points on the passive and active joints, as well as the attachments of the extremities. This methodology provides realistic load estimations and can be universally used for similar structures. The presented numerical results can be used as the basis for a strength analysis and motor or force sensor selection. They will be directly implemented for the process of mass minimization of the SmartEx-Home exoskeleton based on computational optimization. Full article
(This article belongs to the Special Issue Advances in Intelligent Control of Actuator Systems)
Show Figures

Figure 1

14 pages, 794 KB  
Article
Comparative Biomechanical Strategies of Running Gait Among Healthy and Recently Injured Pediatric and Adult Runners
by Cole Verble, Ryan M. Nixon, Lydia Pezzullo, Matthew Martenson, Kevin R. Vincent and Heather K. Vincent
Bioengineering 2025, 12(9), 937; https://doi.org/10.3390/bioengineering12090937 - 30 Aug 2025
Viewed by 880
Abstract
Biomechanical strategies of running gait were compared among healthy and recently injured pediatric and adult runners (N = 207). Spatiotemporal, kinematic, and kinetic parameters (ground reaction force [GRF], vertical average loading rate [VALR]) and leg stiffness (Kvert) were obtained during running [...] Read more.
Biomechanical strategies of running gait were compared among healthy and recently injured pediatric and adult runners (N = 207). Spatiotemporal, kinematic, and kinetic parameters (ground reaction force [GRF], vertical average loading rate [VALR]) and leg stiffness (Kvert) were obtained during running on an instrumented treadmill with simultaneous 3D-motion capture. Significant age X injury interactions existed for cadence, peak GRF, and peak joint angles in stance. Cadence was fastest in healthy adults and 2–3% lower in other groups (p = 0.049). Injured adults exhibited higher variance in stance and swing time, whereas injured pediatric runners had lower variance in these measures (p < 0.05). Peak GRF was highest in non-injured adults (2.6–2.7 BW) and lowest in injured adults (2.4 BW; p < 0.05). VALRs (BW/s) were higher among pediatric groups, irrespective of injury (p < 0.05). The interaction for ankle dorsiflexion/plantarflexion moment was significant (p = 0.05). Healthy pediatric runners produced more plantarflexion than all other groups (p = 0.026). Pelvis rotation was highest in healthy pediatric runners and lowest in healthy adults (17.3° versus 12.0°; p = 0.036). Pediatric runners did not leverage force-dampening strategies, but reduced gait cycle time variance and controlled pelvic rotation. Injured adults had lower GRF and longer stance time, indicating a shift toward force mitigation during stance. Age-specific rehabilitation and gait retraining approaches may be warranted. Full article
(This article belongs to the Special Issue Biomechanics of Physical Exercise)
Show Figures

Figure 1

21 pages, 3373 KB  
Article
RBF Neural Network-Based Anti-Disturbance Trajectory Tracking Control for Wafer Transfer Robot Under Variable Payload Conditions
by Bo Xu, Luyao Yuan and Hao Yu
Appl. Sci. 2025, 15(16), 9193; https://doi.org/10.3390/app15169193 - 21 Aug 2025
Viewed by 574
Abstract
Variations in the drive motor’s load inertia during wafer transfer robot arm motion critically degrade end-effector trajectory accuracy. To address this challenge, this study proposes an anti-disturbance control strategy integrating Radial Basis Function Neural Network (RBFNN) and event-triggered mechanisms. Firstly, dynamic simulations reveal [...] Read more.
Variations in the drive motor’s load inertia during wafer transfer robot arm motion critically degrade end-effector trajectory accuracy. To address this challenge, this study proposes an anti-disturbance control strategy integrating Radial Basis Function Neural Network (RBFNN) and event-triggered mechanisms. Firstly, dynamic simulations reveal that nonlinear load inertia growth increases joint reaction forces and diminishes trajectory precision. The RBFNN dynamically approximates system nonlinearities, while an adaptive law updates its weights online to compensate for load variations and external disturbances. Secondly, an event-triggered mechanism is introduced, updating the controller only when specific conditions are met, thereby reducing communication burden and actuator wear. Subsequently, Lyapunov stability analysis proves the closed-loop system is Uniformly Ultimately Bounded (UUB) and prevents Zeno behavior. Finally, simulations on a planar 2-DOF manipulator demonstrate significantly enhanced trajectory tracking accuracy under variable loads. Critically, the adaptive neural network control method reduces trajectory tracking error by 50% and decreases controller update frequency by 84.7%. This work thus provides both theoretical foundations and engineering references for high-precision wafer transfer robot control. Full article
Show Figures

Figure 1

19 pages, 1975 KB  
Article
Decoding the Contribution of Shoulder and Elbow Mechanics to Barbell Kinematics and the Sticking Region in Bench and Overhead Press Exercises: A Link-Chain Model with Single- and Two-Joint Muscles
by Paolo Evangelista, Lorenzo Rum, Pietro Picerno and Andrea Biscarini
J. Funct. Morphol. Kinesiol. 2025, 10(3), 322; https://doi.org/10.3390/jfmk10030322 - 20 Aug 2025
Viewed by 1216
Abstract
Objectives: This study investigates the biomechanics of the bench press and overhead press exercises by modeling the trunk and upper limbs as a kinematic chain of rigid links connected by revolute joints and actuated by single- and two-joint muscles, with motion constrained by [...] Read more.
Objectives: This study investigates the biomechanics of the bench press and overhead press exercises by modeling the trunk and upper limbs as a kinematic chain of rigid links connected by revolute joints and actuated by single- and two-joint muscles, with motion constrained by the barbell. The aims were to (i) assess the different contributions of shoulder and elbow torques during lifting, (ii) identify the parameters influencing joint loads, (iii) explain the origin of the sticking region, and (iv) validate the model against experimental barbell kinematics. Methods: Equations of motion and joint reaction forces were derived analytically in closed form. Dynamic simulations produced vertical barbell velocity profiles under various conditions. A waveform similarity analysis was used to compare simulated profiles with experimental data from maximal bench press trials. Results: The sticking region occurred when shoulder torque dropped below a critical threshold, resulting in a local velocity minimum. Adding elbow torque reduced this dip and shifted the velocity minimum from 38 cm to 23 cm above the chest, although it prolonged the time needed to overcome it. Static analysis revealed that grip width and barbell constraint had a greater effect on shaping the sticking region than muscle architecture parameters. Elbow extensors contributed minimally during early lift phases but became dominant near full extension. Model predictions showed high similarity to experimental data in the pre-sticking (SI = 0.962, p = 0.028) and sticking (SI = 0.949, p = 0.014) phases, with reduced, non-significant similarity post-sticking (SI = 0.881, p > 0.05) due to the assumption of constant torques. Conclusions: The model offers biomechanical insight into how joint torques and barbell constraints shape movement. The findings support training strategies that target shoulder strength early in the lift and elbow strength near lockout to minimize sticking and improve performance. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

28 pages, 2339 KB  
Article
Biomechanical Effects of Lower Limb Asymmetry During Running: An OpenSim Computational Study
by Andreea Maria Mănescu, Carmen Grigoroiu, Neluța Smîdu, Corina Claudia Dinciu, Iulius Radulian Mărgărit, Adrian Iacobini and Dan Cristian Mănescu
Symmetry 2025, 17(8), 1348; https://doi.org/10.3390/sym17081348 - 18 Aug 2025
Cited by 2 | Viewed by 1446
Abstract
Symmetry and asymmetry significantly influence running biomechanics, performance, and injury risk. Given the practical, ethical, and methodological constraints inherent in human-subject studies, computational modeling emerges as a valuable alternative for exploring biomechanical asymmetries in detail. This study systematically evaluated the mechanical effects of [...] Read more.
Symmetry and asymmetry significantly influence running biomechanics, performance, and injury risk. Given the practical, ethical, and methodological constraints inherent in human-subject studies, computational modeling emerges as a valuable alternative for exploring biomechanical asymmetries in detail. This study systematically evaluated the mechanical effects of lower limb imbalance during running using a simulation-based musculoskeletal framework in OpenSim. A total of 130 simulations were performed, incorporating controlled asymmetries in limb strength, stride length, and ground reaction forces (±5% and ±10%), to quantify alterations in joint moments, ground reaction forces (GRF), and muscular activation patterns. Results demonstrated clear biomechanical deviations under asymmetric conditions. Vertical ground reaction forces (GRF) decreased on the weaker limb and increased on the stronger limb, with peak knee joint moments rising by up to 20% under pronounced asymmetry. Muscle activation in major lower limb muscles, including the gastrocnemius and quadriceps, increased substantially on the stronger side, reflecting compensatory mechanical loading. These findings highlight the negative consequences of uneven limb loading and support the use of computational modeling to guide personalized training, rehabilitation, and injury prevention strategies. Full article
Show Figures

Figure 1

17 pages, 1243 KB  
Article
Biomechanical Effects of a Passive Lower-Limb Exoskeleton Designed for Half-Sitting Work Support on Walking
by Qian Li, Naoto Haraguchi, Bian Yoshimura, Sentong Wang, Makoto Yoshida and Kazunori Hase
Sensors 2025, 25(16), 4999; https://doi.org/10.3390/s25164999 - 12 Aug 2025
Viewed by 788
Abstract
The half-sitting posture is essential for many functional tasks performed by industrial workers. Thus, passive lower-limb exoskeletons, known as wearable chairs, are increasingly used to relieve lower-limb loading in such scenarios. However, although these devices lighten muscle effort during half-sitting tasks, they can [...] Read more.
The half-sitting posture is essential for many functional tasks performed by industrial workers. Thus, passive lower-limb exoskeletons, known as wearable chairs, are increasingly used to relieve lower-limb loading in such scenarios. However, although these devices lighten muscle effort during half-sitting tasks, they can disrupt walking mechanics and balance. Moreover, rigorous biomechanical data on joint moments and contact forces during walking with such a device remain scarce. Therefore, this study conducted a biomechanical evaluation of level walking with a wearable chair to quantify its effects on gait and joint loading. Participants performed walking experiments with and without the wearable chair. An optical motion capture system and force plates collected kinematic and ground reaction data. Six-axis force sensors measured contact forces and moments. These measurements were fed into a Newton–Euler inverse dynamics model to estimate lower-limb joint moments and assess joint loading. The contact measurements showed that nearly all rotational load was absorbed at the thigh attachment, while the ankle attachment served mainly as a positional guide with minimal moment transfer. The inverse dynamics analysis revealed that the wearable chair introduced unintended rotational stresses at lower-limb joints, potentially elevating musculoskeletal risk. This detailed biomechanical evidence underpins targeted design refinements to redistribute loads and better protect lower-limb joints. Full article
Show Figures

Figure 1

16 pages, 30013 KB  
Article
Real-Time Cascaded State Estimation Framework on Lie Groups for Legged Robots Using Proprioception
by Botao Liu, Fei Meng, Zhihao Zhang, Maosen Wang, Tianqi Wang, Xuechao Chen and Zhangguo Yu
Biomimetics 2025, 10(8), 527; https://doi.org/10.3390/biomimetics10080527 - 12 Aug 2025
Viewed by 679
Abstract
This paper proposes a cascaded state estimation framework based on proprioception for robots. A generalized-momentum-based Kalman filter (GMKF) estimates the ground reaction forces at the feet through joint torques, which are then input into an error-state Kalman filter (ESKF) to obtain the robot’s [...] Read more.
This paper proposes a cascaded state estimation framework based on proprioception for robots. A generalized-momentum-based Kalman filter (GMKF) estimates the ground reaction forces at the feet through joint torques, which are then input into an error-state Kalman filter (ESKF) to obtain the robot’s prior state estimate. The system’s dynamic equations on the Lie group are parameterized using canonical coordinates of the first kind, and variations in the tangent space are mapped to the Lie algebra via the inverse of the right trivialization. The resulting parameterized system state equations, combined with the prior estimates and a sliding window, are formulated as a moving horizon estimation (MHE) problem, which is ultimately solved using a parallel real-time iteration (Para-RTI) technique. The proposed framework operates on manifolds, providing a tightly coupled estimation with higher accuracy and real-time performance, and is better suited to handle the impact noise during foot–ground contact in legged robots. Experiments were conducted on the BQR3 robot, and comparisons with measurements from a Vicon motion capture system validate the superiority and effectiveness of the proposed method. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

12 pages, 2071 KB  
Article
Patellofemoral Joint Stress During Front and Back Squats at Two Depths
by Naghmeh Gheidi, Rachel Kiminski, Matthew Besch, Abbigail Ristow, Brian Wallace and Thomas Kernozek
Appl. Sci. 2025, 15(16), 8784; https://doi.org/10.3390/app15168784 - 8 Aug 2025
Viewed by 2633
Abstract
The purpose of this study was to identify differences between patellofemoral joint stress (PFJS), patellofemoral joint reaction force (PFJRF), quadriceps force, trunk and knee flexion angles, and horizontal position of applied load relative to the knee and heel between the front squat (FS) [...] Read more.
The purpose of this study was to identify differences between patellofemoral joint stress (PFJS), patellofemoral joint reaction force (PFJRF), quadriceps force, trunk and knee flexion angles, and horizontal position of applied load relative to the knee and heel between the front squat (FS) and back squat (BS) exercises at two depths (60 and 80% of leg length, where 60% represents a lower squat depth). Twenty-two healthy college-aged females (age: 22.23 ± 1.86 years, mass: 67.65 ± 9.60 kg, height: 171.34 ± 6.38 cm) participated in this study. Mechanical variables were measured or estimated using a 15-camera 3D motion analysis (180 Hz) system and force platforms (1800 Hz). Five repetitions of each squatting technique at each depth were performed. Multivariate testing showed a difference in patellofemoral loading variables, trunk and knee kinematics, and bar position relative to the heel and knee (p = 0.00) between squat depths. There was no difference between techniques, no interaction between depth and techniques (p > 0.05). Follow-up univariate analyses showed differences in PFJS, PFJRF, quadriceps force, horizontal bar position relative to the heel and knee, and knee and trunk flexion between squat depths. The similar joint stress observed between FS and BS may be explained by compensatory trunk mechanics or the use of a light external load. Full article
(This article belongs to the Special Issue Advances in the Biomechanics of Sports)
Show Figures

Figure 1

Back to TopTop