Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = jCoAP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5011 KiB  
Article
One-Step Synthesis AlCo2O4 and Derived “Al” to Double Optimise the Thermal Decomposition Kinetics and Enthalpy of Ammonium Perchlorate
by Kaihua He, Yanzhi Yang, Zhengyi Zhao, Zhiyong Yan and Xuechun Xiao
Colloids Interfaces 2025, 9(3), 28; https://doi.org/10.3390/colloids9030028 - 10 May 2025
Viewed by 455
Abstract
The solution combustion method is widely used because of its simple operation and ability to produce porous structures. The chemical composition and morphological structure of the material can be regulated by different oxidiser-to-fuel ratios (φ). In this work, AlCo2O4 derived [...] Read more.
The solution combustion method is widely used because of its simple operation and ability to produce porous structures. The chemical composition and morphological structure of the material can be regulated by different oxidiser-to-fuel ratios (φ). In this work, AlCo2O4 derived “Al” catalytic materials were successfully synthesised by adjusting the fuel-to-oxidiser ratio using a one-step solution combustion method. On the one hand, the aluminium nanoparticles act as a part of the metal fuel in the composite solid propellant and, at the same time, serve as a catalytic material. In contrast, the thermal decomposition performance of AP was significantly improved by the synergistic catalysis of AlCo2O4. Among the samples prepared under different fuel ratios, considering all aspects (high-temperature decomposition temperature, activation energy, and decomposition heat) comprehensively, the AlCo2O4 prepared with φ = 0.5 had a more excellent catalytic effect on AP thermal decomposition, and the THTD of AP was reduced to 285.4 °C, which is 188.08 °C lower. The activation energy of the thermal decomposition of AP was also significantly reduced (from 296.14 kJ/mol to 211.67 kJ/mol). In addition, the ignition delay time of AlCo2O4-AP/HTPB was drastically shortened to 9 ms from 28 ms after the addition of 7% AlCo2O4 derived “Al” catalytic materials. Composite solid propellants have shown great potential for application. Full article
Show Figures

Graphical abstract

17 pages, 8294 KiB  
Article
Aqueous Gel-Casting Synthesis and the Characterization of Cobalt Oxide as a Catalyst Precursor for Sodium Borohydride Hydrolysis
by Lan Zhang, Zhihua Deng, Bin Miao, Hongquan He, Chee Kok Poh, Lili Zhang and Siew Hwa Chan
Catalysts 2025, 15(4), 380; https://doi.org/10.3390/catal15040380 - 14 Apr 2025
Cited by 1 | Viewed by 594
Abstract
Aqueous gel-casting provides a cost-effective and scalable approach for synthesizing nano-spherical Co3O4 powders, enabling precise control over particle morphology. In this study, Co3O4 powders were prepared using this method and evaluated as a catalyst precursor for the [...] Read more.
Aqueous gel-casting provides a cost-effective and scalable approach for synthesizing nano-spherical Co3O4 powders, enabling precise control over particle morphology. In this study, Co3O4 powders were prepared using this method and evaluated as a catalyst precursor for the hydrolysis of sodium borohydride (NaBH4). The effects of the monomer (acrylamide, AM)-to-metal molar ratio and initiator content (ammonium persulphate, APS) on particle size and catalytic performance were systematically explored. X-ray diffraction (XRD) analysis confirmed the formation of the Co3O4 phase at 400 °C, while transmission electron microscopy (TEM) images revealed particle sizes ranging from 16 to 85 nm, with higher AM and APS concentrations promoting finer particles. The optimized catalyst achieved a high hydrogen generation rate (HGR) of 28.13 L min−1·cat.−1, demonstrating excellent catalytic activity. Moreover, in situ-formed cobalt boride, derived from Co3O4 calcined at 600 °C for 2 h, exhibited an activation energy of 51.81 kJ mol−1, comparable to Ru-based catalysts. This study underscores the aqueous gel-casting technique as a promising strategy for synthesizing efficient and low-cost hydrogen generation catalysts, offering an alternative to noble metal-based materials. Full article
(This article belongs to the Special Issue Catalytic Processes for Green Hydrogen Production)
Show Figures

Figure 1

19 pages, 3982 KiB  
Article
Comparative Interactome Profiling of Nonstructural Protein 3 Across SARS-CoV-2 Variants Emerged During the COVID-19 Pandemic
by Valeria Garcia Lopez and Lars Plate
Viruses 2025, 17(3), 447; https://doi.org/10.3390/v17030447 - 20 Mar 2025
Viewed by 749
Abstract
SARS-CoV-2 virus and its variants remain a global health threat, due to their capacity for rapid evolution. Variants throughout the COVID-19 pandemic exhibited variations in virulence, impacting vaccine protection and disease severity. Investigating nonstructural protein variants is critical to understanding viral evolution and [...] Read more.
SARS-CoV-2 virus and its variants remain a global health threat, due to their capacity for rapid evolution. Variants throughout the COVID-19 pandemic exhibited variations in virulence, impacting vaccine protection and disease severity. Investigating nonstructural protein variants is critical to understanding viral evolution and manipulation of host protein interactions. We focus on nonstructural protein 3 (nsp3), with multiple domains with different activities, including viral polyprotein cleavage, host deubiquitylation, de-ISGylation, and double-membrane vesicle formation. Using affinity purification–mass spectrometry (AP-MS), we identify differential protein interactions in nsp3 caused by mutations found in variants identified between 2019 and 2024: Alpha 20I, Beta 20H, Delta 21I, Delta 21J, Gamma 20J, Kappa 21B, Lambda 21G, Omicron 21K, and Omicron 21L. A small set of amino acid substitutions in the N-terminal region of nsp3 (nsp3.1) could be traced to increased interactions with RNA-binding proteins, which are vital in viral replication. Meanwhile, variants of the central region of nsp3 (nsp3.2) were found to share interactions with protein quality control machinery, including ER-associated degradation. In this construct, shared trends in interactor enrichment are observed between Omicron 21K and Delta 21I. These results underscore how minor mutations reshape host interactions, emphasizing the evolutionary arms race between the host and virus. We provide a roadmap to track the interaction changes driven by SARS-CoV-2 variant evolution. Full article
(This article belongs to the Special Issue SARS-CoV-2 Variants, Vaccines, and Immune Responses)
Show Figures

Figure 1

13 pages, 2153 KiB  
Article
The Mechanism of the Anti-Obesity Effects of a Standardized Brassica juncea Extract in 3T3-L1 Preadipocytes and High-Fat Diet-Induced Obese C57BL/6J Mice
by June-Seok Lim, Ji-Hyun Im, Xionggao Han, Xiao Men, Geon Oh, Xiaolu Fu, Woonsang Hwang, Sun-Il Choi and Ok-Hwan Lee
Nutrients 2024, 16(6), 846; https://doi.org/10.3390/nu16060846 - 15 Mar 2024
Cited by 10 | Viewed by 2773
Abstract
Obesity is a global health concern. Recent research has suggested that the development of anti-obesity ingredients and functional foods should focus on natural products without side effects. We examined the effectiveness and underlying mechanisms of Brassica juncea extract (BJE) in combating obesity via [...] Read more.
Obesity is a global health concern. Recent research has suggested that the development of anti-obesity ingredients and functional foods should focus on natural products without side effects. We examined the effectiveness and underlying mechanisms of Brassica juncea extract (BJE) in combating obesity via experiments conducted in both in vitro and in vivo obesity models. In in vitro experiments conducted in a controlled environment, the application of BJE demonstrated the ability to suppress the accumulation of lipids induced by MDI in 3T3-L1 adipocytes. Additionally, it downregulated adipogenic-related proteins peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), adipocyte protein 2 (aP2), and lipid synthesis-related protein acetyl-CoA carboxylase (ACC). It also upregulated the heat generation protein peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and fatty acid oxidation protein carnitine palmitoyltransferase-1 (CPT-1). The oral administration of BJE decreased body weight, alleviated liver damage, and inhibited the accumulation of lipids in mice with diet-induced obesity resulting from a high-fat diet. The inhibition of lipid accumulation by BJE in vivo was associated with a decreased expression of adipogenic and lipid synthesis proteins and an increased expression of heat generation and fatty acid oxidation proteins. BJE administration improved obesity by decreasing adipogenesis and activating heat generation and fatty acid oxidation in 3T3-L1 cells and in HFD-induced obese C57BL/6J mice. These results suggest that BJE shows potential as a natural method for preventing metabolic diseases associated with obesity. Full article
Show Figures

Figure 1

15 pages, 4069 KiB  
Article
Full-Length Transcriptome and Transcriptome Sequencing Unveil Potential Mechanisms of Brassinosteroid-Induced Flowering Delay in Tree Peony
by Lin Zhang, Chengwei Song, Lili Guo, Dalong Guo, Xian Xue, Huafang Wang and Xiaogai Hou
Horticulturae 2022, 8(12), 1136; https://doi.org/10.3390/horticulturae8121136 - 2 Dec 2022
Cited by 4 | Viewed by 2189
Abstract
Tree peony (Paoenia ostii) is a famous Chinese traditional flower well-known in many countries of the world. However, the short and concentrated flowering period of tree peony greatly affects the ornamental and economic value of the flowers. Exogenous brassinosteroid (BR) treatment [...] Read more.
Tree peony (Paoenia ostii) is a famous Chinese traditional flower well-known in many countries of the world. However, the short and concentrated flowering period of tree peony greatly affects the ornamental and economic value of the flowers. Exogenous brassinosteroid (BR) treatment can delay the flowering period of ostii T. Hong et J. X. Zhang var. lishizhenenii B. A. Shen for 3 days, but the underlying regulatory mechanism remains elusive. Here, full-length transcriptome and transcriptome sequencing were used to mine key genes related to BR-induced delayed flowering in tree peony. The transcriptome sequencing of the petals yielded 21.27 G clean data and 62,229 isoforms. Among them, 58,218 isoforms were annotated in NR, NT, SwissProt, KEGG, KOG, InterPro and GO databases. GO and KEGG analyses showed that 2460 DEGs were related to delayed flowering in response to BR. Additionally, a total of seven genes affecting flowering were annotated from 11 isoforms, which responded to BR through three pathways to delay the flowering of P. ostii var. lishizhenii. BR treatment increased the expression of BRASSINOSTEROID-SIGNALING KINASE3 (BSK3), potentially by promoting BRI1 ASSOCIATED KINASE RECEPTOR 1 (BAK1). Moreover, BR treatment suppressed the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE 1 (SPL1), possibly to inhibit the expressions of downstream WRKY genes and APETALA 2 (AP2). Meanwhile, BR treatment promoted the expression of DELLA, which might inhibit the expressions of CONSTANS (CO) and SPL. These results suggest a theoretical basis for further analyses of the molecular mechanism of flowering regulation in tree peony. Full article
Show Figures

Figure 1

22 pages, 5627 KiB  
Article
Transcriptome Analysis of Genes Involved in Fatty Acid and Lipid Biosynthesis in Developing Walnut (Juglans regia L.) Seed Kernels from Qinghai Plateau
by Wenjun Shi, Defang Zhang and Zhong Ma
Plants 2022, 11(23), 3207; https://doi.org/10.3390/plants11233207 - 23 Nov 2022
Cited by 11 | Viewed by 2948
Abstract
Walnut (Juglans regia) is an important woody oil-bearing plant with high nutritional value. For better understanding of the underlying molecular mechanisms of its oil accumulation in the Qinghai Plateau, in this study we monitored walnut fruit development, and 15 cDNA libraries [...] Read more.
Walnut (Juglans regia) is an important woody oil-bearing plant with high nutritional value. For better understanding of the underlying molecular mechanisms of its oil accumulation in the Qinghai Plateau, in this study we monitored walnut fruit development, and 15 cDNA libraries were constructed from walnut seed kernels collected at 72, 79, 93, 118 and 135 days after flowering (DAF). The candidate genes were identified using sequencing and expression analysis. The results showed that the oil content in the kernels increased dramatically in late July and reached the maximum value of 69% in mature seed. More than 90% of the oils were unsaturated fatty acids (UFAs) and linoleic acid (18:2) was the predominant UFA accumulated in mature seed. Differentially expressed genes (DEGs) in 15 KEGG pathways of lipid metabolism were detected. We identified 119 DEGs related to FA de novo biosynthesis (38 DEGs), FA elongation and desaturation (39 DEGs), triacylglycerol (TAG) assembly (24 DEGs), oil bodies (12 DEGs), and transcription factors (TFs, 6 DEGs). The abundantly expressed oleosins, caleosins and steroleosins may be important for timely energy reserve in oil bodies. Weighted gene coexpression network analysis (WGCNA) showed that AP2/ERF and bHLH were the key TFs, and were co-expressed with ACC1, α-CT, BCCP, MAT, KASII, LACS, FATA, and PDCT. Our transcriptome data will enrich public databases and provide new insights into functional genes related to the seed kernel lipid metabolism and oil accumulation in J. regia. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

23 pages, 5640 KiB  
Article
Targeting the SARS-CoV-2 HR1 with Small Molecules as Inhibitors of the Fusion Process
by Davide Gentile, Alessandro Coco, Vincenzo Patamia, Chiara Zagni, Giuseppe Floresta and Antonio Rescifina
Int. J. Mol. Sci. 2022, 23(17), 10067; https://doi.org/10.3390/ijms231710067 - 3 Sep 2022
Cited by 16 | Viewed by 2767
Abstract
The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 [...] Read more.
The rapid and global propagation of the novel human coronavirus that causes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of this virus. In this paper, we studied the spike protein S2 domain of SARS-CoV-2 as it is the most conserved component and controls the crucial fusion process of SARS-CoV-2 as a target for different databases of small organic compounds. Our in silico methodology, based on pharmacophore modeling, docking simulation and molecular dynamics simulations, was first validated with ADS-J1, a potent small-molecule HIV fusion inhibitor that has already proved effective in binding the HR1 domain and inhibiting the fusion core of SARS-CoV-1. It then focused on finding novel small molecules and new peptides as fusion inhibitors. Our methodology identified several small molecules and peptides as potential inhibitors of the fusion process. Among these, NF 023 hydrate (MolPort-006-822-583) is one of the best-scored compounds. Other compounds of interest are ZINC00097961973, Salvianolic acid, Thalassiolin A and marine_160925_88_2. Two interesting active peptides were also identified: AP00094 (Temporin A) and AVP1227 (GBVA5). The inhibition of the spike protein of SARS-CoV-2 is a valid target to inhibit the virus entry in human cells. The discussed compounds reported in this paper led to encouraging results for future in vitro tests against SARS-CoV-2. Full article
(This article belongs to the Special Issue Computer-Aided Drug Discovery and Treatment)
Show Figures

Figure 1

17 pages, 1518 KiB  
Article
Collision-Aware Routing Using Multi-Objective Seagull Optimization Algorithm for WSN-Based IoT
by Preetha Jagannathan, Sasikumar Gurumoorthy, Andrzej Stateczny, Parameshachari Bidare Divakarachar and Jewel Sengupta
Sensors 2021, 21(24), 8496; https://doi.org/10.3390/s21248496 - 20 Dec 2021
Cited by 74 | Viewed by 3749
Abstract
In recent trends, wireless sensor networks (WSNs) have become popular because of their cost, simple structure, reliability, and developments in the communication field. The Internet of Things (IoT) refers to the interconnection of everyday objects and sharing of information through the Internet. Congestion [...] Read more.
In recent trends, wireless sensor networks (WSNs) have become popular because of their cost, simple structure, reliability, and developments in the communication field. The Internet of Things (IoT) refers to the interconnection of everyday objects and sharing of information through the Internet. Congestion in networks leads to transmission delays and packet loss and causes wastage of time and energy on recovery. The routing protocols are adaptive to the congestion status of the network, which can greatly improve the network performance. In this research, collision-aware routing using the multi-objective seagull optimization algorithm (CAR-MOSOA) is designed to meet the efficiency of a scalable WSN. The proposed protocol exploits the clustering process to choose cluster heads to transfer the data from source to endpoint, thus forming a scalable network, and improves the performance of the CAR-MOSOA protocol. The proposed CAR-MOSOA is simulated and examined using the NS-2.34 simulator due to its modularity and inexpensiveness. The results of the CAR-MOSOA are comprehensively investigated with existing algorithms such as fully distributed energy-aware multi-level (FDEAM) routing, energy-efficient optimal multi-path routing protocol (EOMR), tunicate swarm grey wolf optimization (TSGWO), and CoAP simple congestion control/advanced (CoCoA). The simulation results of the proposed CAR-MOSOA for 400 nodes are as follows: energy consumption, 33 J; end-to-end delay, 29 s; packet delivery ratio, 95%; and network lifetime, 973 s, which are improved compared to the FDEAM, EOMR, TSGWO, and CoCoA. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

31 pages, 7002 KiB  
Article
Self-Assembly of Antiferromagnetically-Coupled Copper(II) Supramolecular Architectures with Diverse Structural Complexities
by Santokh S. Tandon, Scott D. Bunge, Neil Patel, Esther C. Wang and Laurence K. Thompson
Molecules 2020, 25(23), 5549; https://doi.org/10.3390/molecules25235549 - 26 Nov 2020
Cited by 11 | Viewed by 3190
Abstract
The self-assembly of 2,6-diformyl-4-methylphenol (DFMP) and 1-amino-2-propanol (AP)/2-amino-1,3-propanediol (APD) in the presence of copper(II) ions results in the formation of six new supramolecular architectures containing two versatile double Schiff base ligands (H3L and H5 [...] Read more.
The self-assembly of 2,6-diformyl-4-methylphenol (DFMP) and 1-amino-2-propanol (AP)/2-amino-1,3-propanediol (APD) in the presence of copper(II) ions results in the formation of six new supramolecular architectures containing two versatile double Schiff base ligands (H3L and H5L1) with one-, two-, or three-dimensional structures involving diverse nuclearities: tetranuclear [Cu4(HL2−)2(N3)4]·4CH3OH·56H2O (1) and [Cu4(L3−)2(OH)2(H2O)2] (2), dinuclear [Cu2(H3L12−)(N3)(H2O)(NO3)] (3), polynuclear {[Cu2(H3L12−)(H2O)(BF4)(N3)]·H2O}n (4), heptanuclear [Cu7(H3L12−)2(O)2(C6H5CO2)6]·6CH3OH·44H2O (5), and decanuclear [Cu10(H3L12−)4(O)2(OH)2(C6H5CO2)4] (C6H5CO2)2·20H2O (6). X-ray studies have revealed that the basic building block in 1, 3, and 4 is comprised of two copper centers bridged through one μ-phenolate oxygen atom from HL2− or H3L12−, and one μ-1,1-azido (N3) ion and in 2, 5, and 6 by μ-phenoxide oxygen of L3− or H3L12− and μ-O2− or μ3-O2− ions. H-bonding involving coordinated/uncoordinated hydroxy groups of the ligands generates fascinating supramolecular architectures with 1D-single chains (1 and 6), 2D-sheets (3), and 3D-structures (4). In 5, benzoate ions display four different coordination modes, which, in our opinion, is unprecedented and constitutes a new discovery. In 1, 3, and 5, Cu(II) ions in [Cu2] units are antiferromagnetically coupled, with J ranging from −177 to −278 cm−1. Full article
(This article belongs to the Special Issue Bonding in Inorganic and Coordination Compounds)
Show Figures

Figure 1

26 pages, 3044 KiB  
Article
Fine-Mapping of Sorghum Stay-Green QTL on Chromosome10 Revealed Genes Associated with Delayed Senescence
by K. N. S. Usha Kiranmayee, C. Tom Hash, S. Sivasubramani, P. Ramu, Bhanu Prakash Amindala, Abhishek Rathore, P. B. Kavi Kishor, Rajeev Gupta and Santosh P. Deshpande
Genes 2020, 11(9), 1026; https://doi.org/10.3390/genes11091026 - 1 Sep 2020
Cited by 24 | Viewed by 5430
Abstract
This study was conducted to dissect the genetic basis and to explore the candidate genes underlying one of the important genomic regions on an SBI-10 long arm (L), governing the complex stay-green trait contributing to post-flowering drought-tolerance in sorghum. A fine-mapping population was [...] Read more.
This study was conducted to dissect the genetic basis and to explore the candidate genes underlying one of the important genomic regions on an SBI-10 long arm (L), governing the complex stay-green trait contributing to post-flowering drought-tolerance in sorghum. A fine-mapping population was developed from an introgression line cross—RSG04008-6 (stay-green) × J2614-11 (moderately senescent). The fine-mapping population with 1894 F2 was genotyped with eight SSRs and a set of 152 recombinants was identified, advanced to the F4 generation, field evaluated with three replications over 2 seasons, and genotyped with the GBS approach. A high-resolution linkage map was developed for SBI-10L using 260 genotyping by sequencing—Single Nucleotide Polymorphism (GBS–SNPs). Using the best linear unpredicted means (BLUPs) of the percent green leaf area (%GL) traits and the GBS-based SNPs, we identified seven quantitative trait loci (QTL) clusters and single gene, mostly involved in drought-tolerance, for each QTL cluster, viz., AP2/ERF transcription factor family (Sobic.010G202700), NBS-LRR protein (Sobic.010G205600), ankyrin-repeat protein (Sobic.010G205800), senescence-associated protein (Sobic.010G270300), WD40 (Sobic.010G205900), CPK1 adapter protein (Sobic.010G264400), LEA2 protein (Sobic.010G259200) and an expressed protein (Sobic.010G201100). The target genomic region was thus delimited from 15 Mb to 8 genes co-localized with QTL clusters, and validated using quantitative real-time (qRT)–PCR. Full article
(This article belongs to the Special Issue Genetic Improvement of Cereals and Grain Legumes)
Show Figures

Figure 1

25 pages, 2938 KiB  
Article
A Multi-Protocol IoT Platform Based on Open-Source Frameworks
by Charilaos Akasiadis, Vassilis Pitsilis and Constantine D. Spyropoulos
Sensors 2019, 19(19), 4217; https://doi.org/10.3390/s19194217 - 28 Sep 2019
Cited by 38 | Viewed by 8624
Abstract
Internet of Things (IoT) technologies have evolved rapidly during the last decade, and many architecture types have been proposed for distributed and interconnected systems. However, most systems are implemented following fragmented approaches for specific application domains, introducing difficulties in providing unified solutions. However, [...] Read more.
Internet of Things (IoT) technologies have evolved rapidly during the last decade, and many architecture types have been proposed for distributed and interconnected systems. However, most systems are implemented following fragmented approaches for specific application domains, introducing difficulties in providing unified solutions. However, the unification of solutions is an important feature from an IoT perspective. In this paper, we present an IoT platform that supports multiple application layer communication protocols (Representational State Transfer (REST)/HyperText Transfer Protocol (HTTP), Message Queuing Telemetry Transport (MQTT), Advanced Message Queuing Protocol (AMQP), Constrained Application Protocol (CoAP), and Websockets) and that is composed of open-source frameworks (RabbitMQ, Ponte, OM2M, and RDF4J). We have explored a back-end system that interoperates with the various frameworks and offers a single approach for user-access control on IoT data streams and micro-services. The proposed platform is evaluated using its containerized version, being easily deployable on the vast majority of modern computing infrastructures. Its design promotes service reusability and follows a marketplace architecture, so that the creation of interoperable IoT ecosystems with active contributors is enabled. All the platform’s features are analyzed, and we discuss the results of experiments, with the multiple communication protocols being tested when used interchangeably for transferring data. Developing unified solutions using such a platform is of interest to users and developers as they can test and evaluate local instances or even complex applications composed of their own IoT resources before releasing a production version to the marketplace. Full article
Show Figures

Figure 1

18 pages, 3285 KiB  
Article
Data Aggregation Gateway Framework for CoAP Group Communications
by Minki Cha, Jung-Hyok Kwon, SungJin Kim, Taeshik Shon and Eui-Jik Kim
Symmetry 2016, 8(12), 138; https://doi.org/10.3390/sym8120138 - 24 Nov 2016
Cited by 5 | Viewed by 5143
Abstract
In this paper, a data aggregation gateway framework (DA-GW) for constrained application protocol (CoAP) group communications is proposed. The DA-GW framework is designed to improve the throughput performance and energy efficiency of group communication to monitor and control multiple sensor devices collectively with [...] Read more.
In this paper, a data aggregation gateway framework (DA-GW) for constrained application protocol (CoAP) group communications is proposed. The DA-GW framework is designed to improve the throughput performance and energy efficiency of group communication to monitor and control multiple sensor devices collectively with a single user terminal. The DA-GW consists of four function blocks—the message analyzer, group manager, message scheduler and data handler—and three informative databases—the client database, resource database and information database. The DA-GW performs group management and group communication through each functional block and stores resources in the informative databases. The DA-GW employs international standard-based data structures and provides the interoperability of heterogeneous devices used in various applications. The DA-GW is implemented using a Java-based open source framework called jCoAP to evaluate the functions and performance of the DA-GW. The experiment results showed that the DA-GW framework revealed better performance than existing group communication methods in terms of throughput and energy consumption. Full article
(This article belongs to the Special Issue Symmetry in Systems Design and Analysis)
Show Figures

Figure 1

Back to TopTop