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Abstract: Walnut (Juglans regia) is an important woody oil-bearing plant with high nutritional value.
For better understanding of the underlying molecular mechanisms of its oil accumulation in the
Qinghai Plateau, in this study we monitored walnut fruit development, and 15 cDNA libraries were
constructed from walnut seed kernels collected at 72, 79, 93, 118 and 135 days after flowering (DAF).
The candidate genes were identified using sequencing and expression analysis. The results showed
that the oil content in the kernels increased dramatically in late July and reached the maximum value
of 69% in mature seed. More than 90% of the oils were unsaturated fatty acids (UFAs) and linoleic
acid (18:2) was the predominant UFA accumulated in mature seed. Differentially expressed genes
(DEGs) in 15 KEGG pathways of lipid metabolism were detected. We identified 119 DEGs related to
FA de novo biosynthesis (38 DEGs), FA elongation and desaturation (39 DEGs), triacylglycerol (TAG)
assembly (24 DEGs), oil bodies (12 DEGs), and transcription factors (TFs, 6 DEGs). The abundantly
expressed oleosins, caleosins and steroleosins may be important for timely energy reserve in oil
bodies. Weighted gene coexpression network analysis (WGCNA) showed that AP2/ERF and bHLH
were the key TFs, and were co-expressed with ACC1, α-CT, BCCP, MAT, KASII, LACS, FATA, and
PDCT. Our transcriptome data will enrich public databases and provide new insights into functional
genes related to the seed kernel lipid metabolism and oil accumulation in J. regia.

Keywords: walnut; transcriptome sequencing; lipid biosynthesis; fatty acid; gene expression; seed
kernel oil

1. Introduction

Walnut (Juglans regia L.), as an important woody oil plant, is widely cultivated in many
regions around the world. Walnut is rich in several beneficial compounds, e.g., unsaturated
fatty acids (UFAs), proteins, minerals, and tocopherols [1], and therefore it has gained
tremendous interest due to its nutritional and medicinal benefits [2]. Beneficial effects of
walnut consumption have been reported, including anti-atherogenic, anti-inflammatory, an-
timutagenic, and anticancer effects [3], and protection from diabetes [4,5] or cardiovascular
diseases [6]. A mature walnut kernel contains a high oil content, which can vary from 52%
to 72% [7–9]. The application of vegetable oils is determined by FA composition, which is
one of the most important characteristics of vegetable oil quality and which determines the
suitability of a vegetable oil for nutrition [2].

Walnut kernels are rich in polyunsaturated fatty acids (PUFAs), which are essential
dietary FAs [8]. The FA composition and content of walnut oils in different countries and
regions have been reported [2,7–10]. It has been found that even though walnuts from
different areas have the same FA composition, the relative content of each component varies
in different production areas [10]. Linoleic acid (LA, 18:2, range 42.5–76%) is the major FA
of walnut oil, followed by oleic acid (OA, 18:1, 9–39.2%), linolenic acid (ALA, 18:3, 2–19.2%),
palmitic acid (PA, 16:0, 2.9–11.4%) and stearic acid (SA, 18:0, 0.6–2.5%) [8,9,11–16]. Walnut
species and varieties may affect the FA composition [17]. Environmental factors affect
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plant growth, development and quality [18]. The growth period of plants is affected by the
environment, e.g., with increases in altitude, the plant growth period becomes shorter. It is
generally believed that the increase of altitude is conducive to the accumulation of fruit oil
content [19,20]. Previous studies report that FA composition and content are affected by
growth environments. The responses of different plants to their environment regarding
FA content are different [16,19,21,22]. Greve et al. [23] reported that environment, nut
maturity, and interactions contribute significantly to variations in PUFA content in walnuts.
Gao et al. [15] found that the planting environment was the main factor that affected the
composition and content of FAs in walnut oil. The geographical environment also exerts an
important influence on the triacylglycerol (TAG) composition and content.

Plant oils, mainly in the form of TAGs, primarily accumulate in seeds and fruits [24].
In plants, the seed oil synthesis process includes de novo FA synthesis and TAG assembly in
multiple subcellular organelles [25]. The oil quantity and quality (i.e., FA composition) are
controlled and regulated by a series of enzymes that take part in the biosynthesis of all lipids.
Recently, new multi-omics technologies, including transcriptomics and metabolomics, have
been used to analyze the complex biosynthesis pathway of oils in walnut kernels. Yan
et al. [26] found that TGs (18:2/18:2/18:3) and diacylglycerols (DG) (18:2/18:3) were the
main glycerolipids, and mapped the main lipid metabolism pathways in walnut. It has
been reported that ACCase, LACS, and acyl-lipid omega-3 desaturase (omega-3 fatty acid
desaturase, FAD7) are the key genes related to oil synthesis [27]. A total of 104 key genes
associated with walnut oil accumulation were obtained from “Xiangling” walnut kernels at
three stages. The phospholipid diacylglycerol acyltransferase (PDAT) metabolic pathway
may be more conducive to the accumulation of walnut oil. Zhao et al. [28] constructed 16
miRNA–mRNA regulatory modules involved in walnut oil accumulation and FA synthesis.
Furthermore, eight known miRNAs and nine novel miRNAs regulate 28 genes related to
FA metabolism and lipid synthesis. Huang et al. [29] identified 108 unigenes associated
with lipid biosynthesis from RNA sequencing (RNA-Seq) data, and stearoyl-ACP desaturase
(SAD), delta-12 desaturase (omega-6 desaturase, FAD2), and omega-3 desaturase (delta-15 de-
saturase, FAD3) were abundantly expressed in the walnut embryo stage. High expression
of FAD2 and FAD3 is the possible reason for rich PUFAs. A subcellular localization anal-
ysis suggested that 18:3 was mainly synthesized in the endoplasmic reticulum (ER) [29].
However, the high contents of oil and PUFAs in walnuts have still not been addressed.

Due to the higher altitude and lower temperatures, the phenological stage of walnuts
in the Qinghai Plateau begins later than the lower altitude regions. The synthesis and
accumulation of oil is completed in a relatively short time, and the characteristics of
gene expression in oil synthesis pathways during seed development are not clear. In
this study, the morphological development and changes in fruits, oil content and the
transcriptome of walnut seed kernels from the Qinghai Plateau were analyzed to discover
the key genes involved in lipid biosynthesis and to dissect the molecular mechanisms of oil
accumulation during walnut fruit development. The annotated transcriptome sequences
and gene expression profiles provide useful information for the identification of key genes
involved in the biosynthesis pathways of lipids and for research on the mechanisms of oil
accumulation in walnut kernels.

2. Results
2.1. Morphological Characteristics and Oil Accumulation during J. regia Embryo Development

White cotyledons formed and had clear boundaries with the pericarp (Figure 1A, G1).
The walnut shell hardened gradually from the top (G1–G2), and various nutrients such as
fat were synthesized and accumulated until the ripening of the fruit. The endocarp was
completely lignified at the G4 stage, and the pericarp of the fully mature fruit was readily
separated from the seed kernel (G5) (Figure 1A). We began harvesting the walnut fruits on
11 September.
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Figure 1. Characterization of walnut fruit and seed kernel development. (A) Morphological changes
of fruit and walnut kernel growth and development. Walnut fruits were collected on 19 July, 26
July, 9 August, 11 September, 20 September, designated as G1, G2, G3, G4 and G5, respectively.
The longitudinal and transverse cuts of walnut fruits are shown in the above and below panels.
(B) Dynamic changes in single fruit fresh weight, nut and kernel weight of walnuts at different
developmental stages. Vertical bars represent standard errors (SE) in all graphs. (C) Dynamic changes
in the vertical diameter and transverse diameter of the walnut fruits at different developmental stages.
(D) Dynamic changes in oil content of the walnut seed kernels during seed development.

Single fresh fruit weight rapidly increased from 51.983 g to 59.375 g (from 12 July to 9
August), then slowly increased to 61.479 g (3 September), and then slightly decreased from
61.479 g to 59.121 g (from 11 September to 20 September). Single nut weight and single
walnut kernel weight showed slow upward trends from 3.63 g to 12.11 g, and 0.72 g to
5.43 g, respectively (Figure 1B, Table S1).

The vertical diameter of walnut fruit slowly increased to 50.73 mm and then decreased
to 50.33 mm in the last period; the fruit transverse diameter slowly increased to 45.69 mm
and then decreased to 45.52 mm in the last period (Figure 1C, Table S1).

The total oil content of the walnut kernel samples from 10 time points was calculated
(Figure 1D, Table S1). The total oil content continuously increased from 20.20% to 69.17%
from 12 July to 11 September, and then slightly decreased to 68.43% on 20 September. The
total oil content sharply increased from 19 July (24.10%) to 5 August (51.25%), and then
showed a slowly rising trend. The maximum oil increase in the walnut kernels appeared
between 79 days after flowering (DAF, G2) and 89 DAF (Figure 1D). The mature walnut
seed oil content was more than 69% of the total composition of the walnut seed. According
to the embryo morphology development and the oil content, seed kernels at the G1–G5
stages were chosen for RNA-seq analysis.

The FA composition and content of walnut oil in the mature walnut seed kernels were
analyzed (Table 1), and a total of 16 FAs were detected and measured. There were five kinds
of main FAs in the mature walnut seeds: 16:0, 18:0, 18:1, 18:2 and 18:3. The total content
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of these FAs accounted for more than 99% of the total FAs, while the content of other FAs
was lower. The two predominant compositions of saturated fatty acids (SFAs) in mature
seeds were 16:0 (6.41 %) and 18:0 (2.04 %), which were maintained at low levels, while
the main UFAs were 18:2, 18:1 and 18:3. The total content of the three UFAs accounted for
more than 90% of the total FAs. PUFAs were the major FAs, accounting for more than 70%.
A proportion of 57.67% of the total FAs was 18:2, and this was the primary fatty acid in
walnut oil.

Table 1. The fatty acid composition and content in mature seed kernels (%, w/w).

Fatty Acid Type Content

Saturated (SFA)

Myristic acid (14:0) 0.0220 ± 0.0007
Palmitic acid (16:0) 6.4067 ± 0.1109

Heptadecanoic acid (17:0) 0.0539 ± 0.0007
Stearic acid (18:0) 2.0400 ± 0.0829

Arachidic acid (20:0) 0.0863 ± 0.0075
Docosanoic acid (22:0) 0.0429 ± 0.0069

Tetracosanoic acid (24:0) 0.0195 ± 0.0138

Unsaturated
(UFA)

Monounsaturated
(MUFA)

Palmitoleic acid (16:1) 0.1217 ± 0.0074
Heptadecenoic acid (17:1) 0.0320 ± 0.0023

Oleic acid (18:1) 19.9333 ± 0.4190
11-Eicosenoic acid (20:1) 0.1753 ± 0.0146

Erucic acid (22:1) 0.0270 ± 0.0259
Nervonic acid (24:1) 0.0150 ± 0.0111

Polyunsaturated
(PUFA)

Linoleic acid (18:2) 57.6667 ± 0.7717
Linolenic acid (18:3) 13.3333 ± 0.2867

Eicosadienoic acid (20:2) 0.0261 ± 0.0015

SFA 8.6713 ± 0.1688
UFA 91.3304 ± 0.1675

MUFA 20.3043 ± 0.4147
PUFA 71.0261 ± 0.5715

MUFA/SFA 2.3417 ± 0.0296
PUFA/SFA 8.1952 ± 0.2219

MUFA/PUFA 0.2859 ± 0.0081

2.2. Identification of DEGs and Enrichment Analysis during Seed Development

A total of 709,394,820 raw reads were obtained from 15 sequencing libraries and
103.82 G clean bases were obtained after quality control. All of the clean reads were
mapped to the walnut genome sequence; the average total map rate was 97.55% and the
proportion of the total map rate ranged from 97.09% to 98.06%. The mapping results of
each sample are shown in Table S2. The average reads number mapped to the exon region
of the genome was 6,441,750,032 and the average proportion mapped to the exon region
of the genome was 95.606%. The mapping results of each sample are shown in Table S3.
Over 92% of sequences aligned to the reference genome located in the exon regions. The
percentage of the sequences located in intergenic regions ranged from 1.35% to 4.27%; a
small proportion of sequences were located in intron regions (Figure S1).

Raw data of all raw reads are available in the NCBI SRA database with the accession
number PRJNA781571.

The gene expression levels of all samples from five fruit development stages were
qualified and compared, and the DEGs were detected. The clustering heatmaps of all DEGs
were analyzed (Figure 2A). The numbers of DEGs identified in samples from different
developmental stages can be seen in Figure 2B. It is interesting that the numbers of DEGs
increased with the walnut seed development. A total of 4035 DEGs were found in G1
vs. G2, including 1789 upregulated genes and 2246 downregulated genes. A total of
7537 DEGs were found in G3 vs. G1, including 3411 upregulated genes and 4126 down-
regulated genes; 9279 DEGs were found in G4 vs. G1, including 4219 upregulated genes
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and 5060 downregulated genes. The most DEGs were found in G5 vs. G1, including 6333
upregulated genes and 7164 downregulated genes. A Venn diagram of DEGs was drawn,
and a total of 2168 genes were expressed in all five stages (Figure 2C). To analyze the gene
expression pattern, clustering analysis was performed, and all the genes were clustered
into four major patterns (Figure 2D).
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GO (Gene Ontology) annotation classed all the DEGs. The intracellular organelle parts
and organelle parts were the top two terms in G2 and G1, followed by cytoskeletal protein
binding, tubulin binding, microtubule binding, microtubule-based process, motor activity,
microtubule motor activity, microtubule-based movement, and movement of cell or subcel-
lular component (Figure S2A). Molecular function regulator and cytoskeletal protein bind-
ing were the top two terms in G3 and G1, followed by enzyme regulator activity, tubulin
binding, motor activity and microtubule binding (Figure S2B). Ribonucleoprotein complex,
ribosome, carboxylic acid metabolic process, oxoacid metabolic process and organic acid
metabolic processes were the top five terms in G4 and G1 (Figure S2C). Cytoskeletal protein
binding, carboxylic acid biosynthetic process, and organic acid biosynthetic process were
the top three terms in G5 and G1, followed by tubulin binding, microtubule binding, and
pyridoxal phosphate binding (Figure S2D).
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KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation classed all the DEGs
to the pathways, and the top 20 DEGs of the pathways were analyzed (Figure 3). Carbon
metabolism (ath01200) was the top pathway that DEGs enriched, followed by plant hor-
mone signal transduction pathway (Ko04075) in G2 and G1 (Figure 3A). Plant hormone
signal transduction pathway (Ko04075) was the most enriched pathway in G3 and G1,
followed by glycolysis/gluconeogenesis (ath00010) (Figure 3B). Ribosome (ath03010) was
the top pathway that DEGs enriched, followed by biosynthesis of amino acid pathway
(ath01230) and carbon metabolism in G4 and G1 (Figure 3C). For G5 and G1, the carbon
metabolism pathway and biosynthesis of amino acid pathway were the top two pathways,
followed by the plant hormone signal transduction pathway (Ko04075) (Figure 3D). There
are a few pathways involved in FA biosynthesis and lipid metabolism shown in the figure.
A total of 15 pathways of these involved DEGs were annotated to lipid metabolism in our
work (Figure S3, Table 2).
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Table 2. The numbers of the DEGs in 15 lipid metabolism KEGG pathways.

KEGGID Description Stage GeneRatio Count Up Down

ath00061 Fatty acid biosynthesis

G2 vs. G1 10/853 10 3 7
G3 vs. G1 27/1735 27 11 16
G4 vs. G1 37/2191 37 8 29
G5 vs. G1 50/3080 50 6 44

ath00062 Fatty acid elongation

G2 vs. G1 7/853 7 2 5
G3 vs. G1 15/1735 15 4 11
G4 vs. G1 17/2191 17 5 12
G5 vs. G1 23/3080 23 9 14

ath00100 Steroid biosynthesis

G2 vs. G1 14/853 14 4 10
G3 vs. G1 21/1735 21 6 15
G4 vs. G1 26/2191 26 6 20
G5 vs. G1 35/3080 35 8 27

ath00561 Glycerolipid metabolism

G2 vs. G1 21/853 21 10 11
G3 vs. G1 29/1735 29 14 15
G4 vs. G1 35/2191 35 14 21
G5 vs. G1 44/3080 44 20 24

ath00564 Glycerophospholipid
metabolism

G2 vs. G1 19/853 19 9 10
G3 vs. G1 37/1735 37 15 22
G4 vs. G1 46/2191 46 18 28
G5 vs. G1 60/3080 60 25 35

ath00590 Arachidonic acid
metabolism

G2 vs. G1 6/853 6 4 2
G3 vs. G1 9/1735 9 5 4
G4 vs. G1 10/2191 10 7 3
G5 vs. G1 16/3080 16 11 5

ath00592 alpha-Linolenic acid
metabolism

G2 vs. G1 11/853 11 7 4
G3 vs. G1 21/1735 21 11 10
G4 vs. G1 21/2191 21 13 8
G5 vs. G1 33/3080 33 19 14

ath01040
Biosynthesis of

unsaturated fatty acids

G2 vs. G1 7/853 7 3 4
G3 vs. G1 15/1735 15 7 8
G4 vs. G1 13/2191 13 6 7
G5 vs. G1 18/3080 18 5 13

ko00071 Fatty acid degradation

G2 vs. G1 16/853 16 6 10
G3 vs. G1 26/1735 26 10 16
G4 vs. G1 29/2191 29 11 18
G5 vs. G1 43/3080 43 22 21

ko00591 Linoleic acid metabolism

G2 vs. G1 2/853 2 2 0
G3 vs. G1 2/1735 2 2 0
G4 vs. G1 4/2191 4 3 1
G5 vs. G1 7/3080 7 5 2

ko00600 Sphingolipid metabolism

G2 vs. G1 2/853 2 0 2
G3 vs. G1 7/1735 7 1 6
G4 vs. G1 10/2191 10 4 6
G5 vs. G1 14/3080 14 7 7

ko00073
Cutin, suberine and wax

biosynthesis

G2 vs. G1 2/853 2 1 1
G3 vs. G1 5/1735 5 3 2
G4 vs. G1 5/2191 5 2 3
G5 vs. G1 7/3080 7 4 3

ko00565 Ether lipid metabolism

G2 vs. G1 6/853 6 2 4
G3 vs. G1 9/1735 9 1 8
G4 vs. G1 14/2191 14 5 9
G5 vs. G1 21/3080 21 8 13
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Table 2. Cont.

KEGGID Description Stage GeneRatio Count Up Down

ko00072 Synthesis and degradation
of ketone bodies

G2 vs. G1 2/853 2 2 0
G3 vs. G1 4/1735 4 2 2
G4 vs. G1 4/2191 4 2 2
G5 vs. G1 6/3080 6 3 3

ko01212 Fatty acid metabolism

G2 vs. G1 18/853 18 6 12
G3 vs. G1 43/1735 43 17 26
G4 vs. G1 50/2191 50 13 37
G5 vs. G1 69/3080 69 17 52

Note: Up: upregulated; DOWN: downregulated; GeneRatio: the ratio of the number of differential genes on the
GO number to the total number of differential genes.

2.3. Analysis of DEGs for Lipid Metabolism

In addition, the 15 lipid metabolism pathways, including ‘Fatty acid biosynthesis’
(ko00061), ‘Fatty acid elongation’ (ko00062), ‘Steroid biosynthesis’ (Ko00100), ‘Glycerolipid
metabolism’ (ko00561), ‘Glycerophospholipid metabolism’ (Ko00564), ‘Arachidonic acid
metabolism’ (ko00590), ‘alpha-Linolenic acid metabolism’ (ko00592), ‘Biosynthesis of unsat-
urated fatty acids’ (ko01040), ‘Fatty acid degradation’ (ko00071), ‘Linoleic acid metabolism’
(ko00591), ‘Sphingolipid metabolism’ (ko00600), ‘Cutin, suberine and wax biosynthesis’
(ko00073), ‘Ether lipid metabolism’ (ko00565), ‘Synthesis and degradation of ketone bodies’
(ko00072) and ‘Fatty acid metabolism’ (ko01212) were selected, to identify and analyze the
DEGs. The number of these DEGs in the 15 pathways mentioned above increased with
the seed development. In these pathways, there were more downregulated genes than
upregulated genes in all comparisons, and the number of DEGs in G5 vs. G1 was the largest.
There were 69, 60, 50 and 44 genes involved in fatty acid metabolism, glycerophospholipid
metabolism, fatty acid biosynthesis, and glycerolipid metabolism, respectively (Table 2).

2.4. Identification and Expression Profiling of DEGs for Fatty Acid Biosynthesis, Elongation,
and Desaturation

In this study, we focused on the key genes associated with lipid synthesis and oil
accumulation. Based on the gene annotation for the transcriptome of the five developmental
walnut seeds, DEGs related to FA biosynthesis, FA elongation, biosynthesis of UFAs, TAG
biosynthesis, oil body and transcription factors (TFs) were screened to further investigate
their expression patterns during walnut seed development (Figure 4).

Acetyl-CoA carboxylase (ACCase) catalyzes the first step of the FA biosynthesis
pathway in the plastids. Acetyl-CoA conversion to malonyl-CoA is catalyzed by ACCase
that consists of four subunits, including biotin carboxylase (BC), carboxyl transferase
subunit alpha (α-CT), carboxyl transferase subunit beta (β-CT) and biotin carboxyl carrier
protein (BCCP). A total of 13 DEGs encoding ACCase and its subunits, including three
ACC1, six BCCP, and four α-CT, were found in this research. Our analysis revealed that
ACC1 (109007141), BCCP (108991825, 108988222) and α-CT (109000808) were the dominant
ones because their transcriptional levels were maintained at high levels (KPFM > 80) from
G3 to G4, and then reduced afterwards at the G5 stage. This may promote rapid increases
in oil content during this stage. The transcriptional levels of six BCCP repeats were similar,
and were high at the G1–G4 stage and lower at the G5 stage.
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involved in fatty acid elongation. (C) Heat map of DEGs involved in fatty acid desatura-
tion. (D) Heat map of DEGs involved in TAG assembly. (E) Heat map of DEGs related to oil
body. (F) Heat map of differentially expressed HSP genes. (G) Heat map of differentially ex-
pressed HSF genes. Abbreviations: ACCase, acetyl−CoA carboxylase; BCCP, biotin carboxyl
carrier protein; α−CT, α−carboxyltransferase; ACP, acyl carrier protein; MAT, malonyl−CoA
ACP S−malonytransferase; KAS, 3−oxoacyl−ACP synthase; KAR, 3−oxoacyl−ACP reductase;
HAD, 3−hydroxyacyl−ACP dehydratase; EAR, enoyl−ACP reductase; FAT, fatty acyl−ACP
thioesterase; LACS, long chain acyl−CoA; KCS, 3−ketoacyl−CoA synthase; KCR, very−long−chain
3−oxoacyl−CoA reductase; HCD/PAS, very−long−chain (3R)−3−hydroxyacyl−CoA dehydratase;
ECR, very−long−chain enoyl−CoA reductase; SAD, stearoyl−ACP desaturase; FAD, fatty acid desat-
urase; GPAT, glycerol−3−phosphate acyltransferase; LPLAT, lysophospholipid acyltransferase; PAP,
phosphatidate phosphatase; PLA2, phospholipase A2; DGAT, diacylglycerol O−acyltransferase;
PDAT, phospholipid: diacylglycerol acyltransferase; PDCT, phosphatidylcholine:diacylglycerol
cholinephosphotransferase; TAG, triacylglycerol.

Among the four α-CT, three α-CTs (108981788, 109000808 and 109004195) showed a
similar pattern which was upregulated continuously from the G1 to G4 stage, but down-
regulated at the G5 stage. The transcription of the other α-CT (109018146) was maintained
at a low level during G1-G4, but was high at the G5 stage. Then, MAT further transfers
malonly-CoA to malonly-ACP. Two DEGs was identified as MAT, were highly expressed
from G1 to G4, and showed the lowest level at the G5 stage. Subsequently, six continu-
ous condensation reactions are catalyzed by KAS, KAR, HAD and EAR. The 14:0-ACP is
transformed to 16:0-ACP, after seven cycles of those reactions, 4:0-ACP is transformed to
18:0-ACP. Then, 16:0-ACP and 18:0-ACP are transformed to 16:0 and 18:0 by FATB and
FATA, respectively. We identified 23 DEGs, including two KASIII, four KASII, three KASI,
four KAR, two HAD, three EAR, three FATB, and two FATA (Figure 4A, Table S4). Among
these DEGs, one KAR (108987089) and one FATB (109004120) showed similar transcriptional
patterns, and their transcriptional levels were the lowest at G1 and higher from G2 to G5.
The transcription of the other DEGs mentioned maintained high levels from G1 to G4, but
had the lowest level at G5. These expression patterns provided an explanation for the
continuous and rapid oil accumulation during early seed developmental stages (G1 to G4).

FAs (C ≥ 16) are transformed to long-chain acyl-CoA (C ≥ 16) by LACS and trans-
ported to the ER. Subsequently, long-chain acyl-CoA (C ≥ 16) is transformed to long-chain
acyl-CoA (C + 2) by KCS, KCR, HCD/PAS2 and ECR. A total of 9, 11, 4, 3, and 1 DEGs
were identified as LACS (2 LACS1, 1 LACS4, 2 LACS6, 1 LACS7, 1 LACS8, 2 LACS9), KCS
(KCS1, KCS2, KCS4, 2 KCS6, KCS10, 4 KCS11, KCS12), KCR, HCD (HCD, 2 PAS2A) and ECR,
respectively (Figure 4B, Table S4). Among these genes, the transcriptional levels of LACS6
(109005861, 109010453), LACS8 (109011864), HCD/PAS2 (109005346), LACS9 (108984899),
KCS10 (108994285), and KCR (108990665) were high, and the first four genes reached their
peak at G5. LACS9 and KCS10 had the highest expression at G3 and G4, respectively.

UFAs were the major FAs in walnut oil. The biosynthesis of UFAs through the plastid
pathway or endoplasmic pathway starts with 18:0-ACP. The first pathway, the 18:0-ACP,
can be desaturated to oleoyl-ACP (18:1-ACP) by SAD in the plastid, and then 18:1-ACP is
dehydrogenized to linoleoyl-ACP (18:2-ACP) by delta-12 desaturase (FAD6, chloroplas-
tic type) in the plastid. Subsequently, under the effect of delta-15 desaturase (FAD7/8,
chloroplastic type), 18:2-ACP is transformed to 18:3-ACP in the plastid. In the second
pathway, 18:1-ACP is hydrolyzed to free 18:1 by the FATA. Free fatty acids (16:0, 18:0, 18:1)
are esterified to FA-CoA by LACS and then transported into ER [25]. Next, 18:1-CoA and
lysophosphatidylcholine (LPC) are transformed to 18:1-PC by lysophosphatidylcholine
acyltransferase (LPCAT), and in turn are dehydrogenated to 18:2-PC and 18:3-PC by FAD2
and FAD3 [30,31]. In this study, four, two, three, one and two DEGs were identified as
SAD, FAD2, FAD3, FAD6 and FAD7/8, respectively. There were no DEGs identified as
FAD5. The transcriptional levels of SAD, FAD2 and FAD3 were high, while FAD6 and
FAD7/8 were less expressed in developing walnut seeds. The expression heat map showed
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that SAD (108984606, 109005061 and 109012153), FAD2 (109001694) and FAD3 (109002248)
were grouped into one category, with high expression levels at G1−G4 and the lowest
expression levels at G5 (Figure 4C, Table S4). Moreover, SAD (108984606, 109005061), FAD2
(109001694) and FAD3 (109002248) had the highest expression at G4, and FPKM had values
of 1121.26, 778.72, 1675.20 and 4629.80, respectively (Table S4). The transcriptional levels
of SAD (109012153) reached their peak at G1. Among the four repeats of SAD in walnut,
SADs (108984606, 109005061) were remarkably transcribed (FPKM > 140), followed by SAD
(109012153). The expression pattern of these genes suggested that the highly expressed
SADs rapidly catalyzed the synthesis of UFAs upstream of lipid biosynthesis in the plastids,
while the highly expressed FADs catalyzed the synthesis of UFAs downstream in the ER.

2.5. Identification and Expression Profiling of DEGs for TAG Assembly and Oil Accumulation

TAG assembly takes place in the ER and is synthesized by the acyl-CoA-dependent
pathway (Kennedy pathway) and the acyl-CoA-independent pathway. Glycerol-3-phosphate
(G3P) and acyl-CoAs are taken as primary substrates [32]. Glycerol-3-phosphate acyltrans-
ferase (GPAT), lysophospholipid acyltransferases (LPLATs), phosphatidic acid phosphatase
(PAP), phospholipase A2 (PLA2), DGAT, LPCAT, PDAT and phosphatidylcholine: diacyl-
glycerol cholinephosphotransferase (PDCT) are involved in TAG assembly. Seven, six, one,
one, three, four and two DEGs were identified as GPAT, LPLAT, PAP, PLA2, DGAT, PDAT
and PDCT, respectively. Among the seven GPATs, GPAT3 (109006642) exhibited higher ex-
pression levels than the other GPATs during seed development, with FPKM values ranging
from 19.15 to 39.04, reaching a peak at G3 and then significantly decreasing. The expression
levels of GPATs (108982438, 109020163 and 108981658) decreased significantly after attain-
ing a peak at G4. One PAP and one PLA2 were highly expressed at G3, with FPKM values of
12.11 and 132.92, respectively, and which then decreased. LPLAT superfamily members are
acyltransferases of de novo and remodeling pathways of glycerophospholipid biosynthesis.
The incorporation of an acyl group from either acyl-CoAs or acylACPs into acceptors such
as glycerol 3-phosphate, dihydroxyacetone phosphate was catalyzed by the proteins men-
tioned above. LPLATs such as LPCAT-1, lysophosphatidylethanolamine acyltransferase
(LPEAT, also known as MBOAT2) are included in this superfamily [33–35]. The FPKM
(fragments per kilobase of transcript sequence per millions base pairs sequenced) values
of six LPLATs ranged from 0.73 to 124.65, of which the FPKM of LPLAT (108984432) was
higher (24.82 to 124.65), while the remaining DEGs expression levels were relatively low.
LPLATs (108984432, 108997125, 109011026 and 108988977) were highly expressed at G1,
and the others (108995554, 108991699) were highly expressed at G5 (Figure 4D, Table S4).

The expression levels of PLA2s were high during all the developmental stages, with
FPKM values from 65.72 to 132.92. The expression levels of PDCT (108998331) were main-
tained at a stable, high level (78.49~89.29) at G1–G4, and then significantly declined to a low
level (FPKM < 9). Another PDCT was less expressed during the seed development, with
FPKM values from 0.16 to 2.09. DGAT and PDAT are essential enzymes for TAG biosynthe-
sis. In walnuts, among the three DGAT1s, the expression level of DGAT1 (109011752) was
significantly higher than that of other members during seed development (FPKM > 27),
while the transcription of one DGAT1 (109009971) was maintained at a low level all along
(FPKM < 1). The expression levels of the three DGAT1s were most abundant at G5. The two
PDATs (109000668, 109008819) exhibited higher expression levels than others during the
seed development (FPKM > 12), and one PDAT (109000668) was upregulated continuously
at G1–G4, then downregulated at G5. These results suggested that TAG assembly occurred
during the entire seed development (G1–G5) under the synergistic effect of these genes
(Figure 4D, Table S4).

Seed oils are mainly stored in the form of TAG, which is stored in oil bodies (OBs).
Oleosins (OLEs), caleosins (CLOs) and steroleosins (STEs) are associated with seed OBs.
Twelve DEGs (four CLO, five OLE and three STE) were identified in this work. Throughout
development, the five gene homologs encoding OLE were highly expressed in the seed
kernel (595 < FKPM < 7678) (Figure 4E, Table S4), and had the highest expression levels
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at G3 or G4. In addition, the OLE-encoding genes were more strongly upregulated than
the CLO- or STE-encoding genes from G1 to G4. Among the four CLOs, CLO (10893007)
exhibited higher expression levels than other CLOs (FPKM > 573), reached a peak at G4, and
then declined at G5. The expression level of STE (108984079) was significantly higher than
the other STEs and was expressed to the highest level at G4. TFs are important activators
which modulate gene expression at the transcriptional level. Besides the lipid-related genes,
six crucial TFs were differentially transcribed during the seed development, including
two B3 domain-containing transcription factor ABI3 (ABI3), one B3 domain-containing
transcription factor FUS3 (FUS3), and three ethylene-responsive transcription factor WRI1
(WRI1). The two ABI3s were highly expressed at G1–G5. The differentially transcribed
WRI1 (109021237) maintained a relatively low level at G1–G5 (FKPM < 1). FUS3 and
WRI1 (108983551, 109010003) were highly expressed at G1–G4, but declined sharply at the
following stage.

2.6. Identification and Expression Profiling of DEGs of HSPs and HSFs

Because of its unique geographical location, in the Qinghai Plateau there are large
temperature differences between day and night (Figure S4). Temperatures are typically
lowest in the morning and reach a maximum in the afternoon. There may be a protective
mechanism during seed kernel development to eliminate the impacts of large temperature
differences and protect seed development and the accumulation of oil. Interestingly,
differentially expressed HSPs were found in developing seeds, and they were identified
as HSP70 and small HSPs (SHSPs). Many HSPs were highly expressed at G1, G2, and
G5 (Figure 4F, Table S4), which may be caused by the large fluctuation of day and night
temperature. In addition, 17 DEGs were identified as heat stress TFs or heat shock factors
(HSFs). The transcriptional level of most of the HSFs had a relatively low level at G3
(Figure 4G, Table S4).

2.7. Validation of RNA-Seq Results by Quantitative Real-Time PCR (qRT-PCR)

The expression level and temporal transcription patterns of 30 DEGs (Table S5) in-
volved in lipid biosynthesis and metabolism were analyzed to verify the accuracy of
our RNA-seq data. Figure 5A shows the expression profiles of the 30 genes related to
lipid biosynthesis and metabolism. The expression patterns of the DEGs (CER10, ACC1,
LPLAT1, KCS1, PDAT, FATB, HAD, KAR, GPD1, KAS II, LOX6, LPP3 and PAS2) detected
by qRT-PCR were consistent with those estimated by RNA-seq (Figure 5A). Correlation
analysis between the RNA-seq and qRT-PCR expression levels of DEGs was conducted
(Figure 5B). The expression levels of the DEGs were positively correlated (p < 0.01) between
the RNA-seq and qRT-PCR results, and the Pearson correlation coefficient was 0.6301
(Figure 5B).

2.8. Weighted Gene Co-Expression Network Analysis

Weighted gene co-expression network analysis (WGCNA) was carried out in order to
study the relationship between the DEGs and the oil content in walnut seed kernels. The re-
sults indicated that 35 modules were identified and marked with different colors (Figure 6A,
Figure S5A). The module–trait correlation relationships were analyzed, which showed that
the blue module had the highest correlation with oil content of J. regia (Figure S5B,C). The
most abundant TF families in the blue module were AP2/ERF (36), WD40 (32), MYB (30),
bHLH (16), bZIP (16), NAM (14), BTB (13), and WRKY (12) (Table S6).
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Figure 5. qRT−PCR validation of DEGs related to lipid biosynthesis and metabolism in walnut.
(A) Comparison of the expression levels determined by RNA−seq and qRT−PCR. Symbols represent
mean values and short vertical lines indicate SE (n = 3). (B) Correlation analysis of the RNA−seq
(FKPM) and qRT−PCR (2−∆∆ct) results. The results were calculated using a log2 fold−change
measurement. Pearson’s r indicates the Pearson correlation coefficient. ** indicates 0.01 significance.
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Figure 6. WGCNA of genes in developing walnut seed kernels. (A) Gene co-expression modules
detected by WGCNA. The clustering dendrogram of the genes across all the samples exhibits dissim-
ilarities based on topological overlap, together with the original module colors (dynamic tree cut)
and assigned merged module colors (merged dynamic). (B) Primary co-expression network for hub
genes for AP2/ERF (109006724) and bHLH (108987327). Blue ellipses represent gene, yellow ellipses
represent TF. (C) Co-expression network between TFs and oil biosynthesis communication-related
genes in blue module. Red ellipses represent hub genes. The edge width represents the weight value
between the two nodes.

Gene co-expression analysis indicated that the TFs AP2/ERF (109006724) and bHLH
(108987327) were the hub genes of the blue module (Figure 6B). Gene expression analysis
showed that the expression trends of the two TFs were similar with those of the genes
related to oil biosynthesis, that is, were highly expressed at G4–G5 (Figure S5D). Moreover,
AP2/ERF (109006724) and bHLH (108987327) were co-expressed with genes related to oil
biosynthesis, such as ACC1 (109007141), α-CT (109004195), BCCP (108988222, 108986433),
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MAT (108989851), KASII (109011759, 108990643), LACS (109005861, 108984899), FATA
(108998294), and PDCT (108998331) (Figure 6C).

3. Discussion

Walnut (J. regia) is an important oil-bearing plant with high nutritional value. Recently,
RNA-seq has been shown to be one of the effective methods of revealing the biological
mechanism of lipid metabolism and oil accumulation in the oilseed crops. In our study,
the oil contents of walnut seed kernels at different developmental stages growing at high
altitude were analyzed. DEGs and TFs related to lipid biosynthesis and metabolism were
screened and obtained through transcriptomics analysis.

In this study, the walnuts flowered in early May in the Qinghai Plateau, and the fruit
was harvested in mid-September. The time from full blossom to fruit maturity was about
126 days. The walnut fruit growth period in the Qinghai Plateau in this research is shorter
than that in Xinjiang, which was about 150 days in a site 1394 m above sea level [36]. The
plant growth period is shorter with the increase in altitude. The sampling site of this study
is at an elevation of 2102 m, and there is also a large temperature difference between day
and night (Figure S4). Therefore, we believe that the plateau environment led to the shorter
growth period in this study. The fruit development, single fruit weight, nut weight, kernel
weight, and fruit vertical and transverse diameters showed increasing trends in general
(Figure 1B,C). The single fruit weight and the fruit vertical and transverse diameters slightly
decreased after reaching maximum values in the late developmental phase (G5), due to the
moisture content decreasing during fruit development, accompanied by the decrease in
single fruit weight and the fruit vertical and transverse diameters caused by dehydration
and shrinkage of seed and pericarp.

In the process of walnut fruit development, the oil content showed a trend of slow–
fast–slow. The oil accumulated slowly in the early stages of fruit development, then
accumulated rapidly at 70 to 110 DAF. Thereafter, the oil accumulated slowly until fruit
ripening [37]. The oil bodies were first observed at 60 DAF in the embryo, and then the
number of oil bodies gradually increased until the fruit ripening [36]. In the present study,
the oil content increased gradually during fruit development and maturation, which was
consistent with previous studies [37] on the dynamic accumulation of walnut oil. The
mature walnut nut was made up of more than 69% oil. The FA composition of the mature
walnut oil was further investigated, and we found more than 90% were UFAs and more
than 70% were PUFAs (Table 1). The contents of the two predominant compositions of
SFAs were maintained at low levels. These results showed that the walnut kernel contained
more PUFAs and fewer MUFAs, which was similar to previous descriptions of walnuts
cultivated in other regions in China and in other countries (Italy [16], Turkey [38], New
Zealand [11]). Therefore, walnuts from the Qinghai Plateau are good edible oil sources
with high amounts of PUFAs. However, Geng et al. [39] reported that MUFA content was
the highest in walnuts from Yunnan. Previous studies showed that FA composition and
content are affected by growth environments [40,41]. It has been found that the content of
18:3 in soybean was the most vulnerable to environmental changes [41]. Temperature is one
of the essential environmental factors affecting plant metabolism. Therefore, we speculate
that the temperature of the sampling site affected the UFA content. In this study, HSPs were
highly expressed at G1, G2, and G5, and this may be caused by the large fluctuation of day
and night temperature in Qinghai. How walnut plants adapt to large diurnal temperature
fluctuations to protect seed development and oil accumulation needs more research in the
future.

In this study, 15 cDNA libraries for transcriptome sequencing of walnut seed kernels
at five developmental stages were constructed, more than 97% of clean reads in each library
mapped to the walnut reference genome. We obtained four sets of DEGs between the dif-
ferent seed development stages. There were more downregulated genes than upregulated
genes in lipid synthesis pathways. We focused on FA biosynthesis and oil accumulation in
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the developing walnut seed kernels, which involves FA biosynthesis, TAG assembly and
lipid storage.

The 18C UFAs are important constituents of vegetable oils (e.g., camellia, hickory,
walnut), and the regulatory mechanisms are different among plants. With dehydrogena-
tion by SAD, 18:0-ACP is transformed to 18:1-ACP in the plastid, and then 18:1-ACP is
transformed to 18:2-ACP and 18:3-ACP in the plastid by FAD6 and FAD7/8, respectively.
In another pathway, 18:1-ACP is transformed to 18:1-PC by a series of enzymes, which
is desaturated by FAD2 and FAD3 to form 18:2-PC and 18:3-PC in the ER. The results of
studies on mutation, overexpression, or heterotopic expression of these genes showed that
they have an important influence on oil accumulation or FA compositions. The 18:1 FA is
dominant in Camellia oleifera and Carya cathayensis Sarg. [42,43], and the perfect coordination
of high SAD levels with low FAD2 levels enhanced the accumulation of 18:1. High 18:2
accumulation in the seeds of Artemisia sphaerocephala and Gossypium hirsutum L. is due to the
high expression of FAD2 and the low expression of FAD3 [44,45]. Previous studies indicated
that the expression of FAD3 and FAD7/8 are variable in plants with high 18:3 content. The
upregulation of FAD3 was associated with 18:3 accumulation in seeds of Paeonia ostii and
Linum usitatissimum [46,47]. In addition, the accumulation of 18:3 was associated with the
expression of FAD2 and FAD3 in Perilla frutescens seeds [48].

It has been reported that J. regia L is rich in PUFAs, which may be due to high
expression levels of FAD2 and FAD3 [29]. The results of subcellular localization confirmed
that JrFAD3 plays a part in the ER rather than the plastid [29]. However, what causes high
18:2 and low 18:3 is still unknown.

In this study, UFAs accounted for more than 90% of the total FAs, and more than 70%
were PUFAs (Table 1). Four, two, three, one and two DEGs were identified as SAD, FAD2,
FAD3, FAD6 and FAD7/8, respectively. The transcriptional levels of SAD, FAD2 and FAD3
were high, while FAD6 and FAD7/8 were less expressed in developing walnut seeds, which
was consistent with previous results [29]. In our work, the expression levels of SAD, FAD2,
and FAD3 were high from G1 to G4 (Figure 4C), and reached their peak at G4. This trend
is consistent with oil accumulation, where the oil continuously and rapidly increased at
G1–G4. However, the expression levels of FAD7/8 (108994930) were less than one during
walnut seed development (Figure 4C, Table S4). Based on this, we speculated that 18:2 and
18:3 in walnut seeds were mainly produced by the highly expressed FAD2 and FAD3 in the
ER rather than by FAD6 and FAD7/8 in plastids.

DGAT and PDAT are essential enzymes for TAG biosynthesis, and their contributions
to TAG assembly varies in different species. Studies show that PDAT exhibits higher
expression levels than DGAT in Carthamus tinctorius L., G. hirsutum L., J. regia L., and P. ostia.
This indicates that PDAT might play a more important role in the process of TAG biosyn-
thesis [29,44,46,49]. In Torreya grandis kernels, PDAT showed a higher correlation with oil
content than DGAT, indicating that PDAT contributed more to the accumulation of oil than
DGAT [50]. However, it was found that DGAT was more important for the biosynthesis
of TAG in many oilseeds, such as Brassica napus and Paeonia lactiflora [51,52]. Furthermore,
PDAT and DGAT simultaneously regulated TAG biosynthesis in A. sphaerocephala [45]. The
expression level of PDAT in walnut is much higher than that of DGAT1 and DGAT2, and
PDAT is highly expressed at 63−133 DAP [29]. From this study, two PDATs (109000668,
109008819) exhibited higher expression levels than the others during the seed development.
One PDAT (109000668) was upregulated continuously at G1–G4 then downregulated at G5.
This expression trend of PDAT was similar to that of PDAT reported by Huang et al. [29].
Further, in our work, the expression level of DGAT (109011752) was much higher than
that of the other two DGATs (109009388, 109009971) during seed kernel development,
and reached a peak at G5. These results indicated that it might be that PDAT and DGAT
simultaneously regulate TAG biosynthesis in walnut.

It has been reported that oleosins controlling oil body structure and lipid accumulation
are important proteins in seed [53]. In this study, the OLEs were highly expressed from G1
to G4, and were expressed at much higher levels than the CLOs and STEs. The expression
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trend of OLEs, CLO (10893007) and STE (108984079) were consistent with oil accumulation.
Thus, they might play an important role in lipid accumulation, and high expression levels
of OLEs may be closely related to high oil content of walnut kernels.

Previous studies have shown that TFs, such as LEC, WRI1, FUS3 and ABI3, play roles
in seed oil synthesis and deposition, but this varies from species to species. WRI1 and
NF-YB6 were considered to be elite TFs in the regulation of lipid metabolism in G. hirsutum
L. [44]. WRI1 and FUS3 may be crucial in the regulation of lipid biosynthesis in the kernel
of P. ostii and T. grandis [46,50]. In walnut cultivar “Linzaoxiang”, the expression pattern
of WRI1 aligned with the accumulation of oil, and WRI1 may play an important role in
the synthesis of walnut oil [29]. Wang et al. [54] identified five important TFs (WRI1, ABI3,
FUS3, PKL and VAL1) which might highly regulate ACCase, KASII, LACS, FAD3 and
LPAAT. In this study, the results of gene co-expression analysis showed that AP2/ERF and
bHLH were the key TFs for the walnut oil accumulation during seed kernel development.

The differential activity of one or more enzymes in each step might lead to the varia-
tion in the oil content in developing walnut seeds. Thus, it would be extremely important to
study the genes related to oil content and FA composition and content of walnut seed vari-
eties, in respect to copy numbers, allelic combination, transcriptional and post-translational
regulations [48]. The oil synthesis is a complicated process that involves a series of en-
zymes and molecules. Some important genes differentially expressed in the developing
walnut seed kernels were identified. Additionally, some TFs that might be related to the FA
biosynthesis and oil accumulation of J. regia were identified. Nevertheless, the regulating
mechanism of oil accumulation in developing seed kernels is still unclear. Further studies
on their functions in FA biosynthesis and oil accumulation are required.

4. Materials and Methods
4.1. Plant Materials

All of the fruits were collected from a local walnut variety (30-year-old walnut trees),
which is located in Jianzha county (101◦57′ E, 36◦01′ N, elevation 2102 m, Qinghai province,
China). The annual average temperature is 8.3 ◦C, the annual average precipitation is
350~400 mm, and the annual sunshine hours are around 2500 h.

4.2. Sampling and Fruit Growth Analysis

Samples were collected every 7~10 days during the seed development in 2019. The
fruits were collected from areas with the same sunlight conditions. Walnut fruits were
harvested on 12 July, 19 July, 26 July, 5 August, 9 August, 16 August, 23 August, 3 September,
11 September, and 20 September (65, 72, 79, 89, 93, 100, 107, 118, 126, and 135 DAF,
respectively). According to the results of the pilot study, due to the low oil extraction
rate at the early stages, the oil content was continuously analyzed from early July to mid-
September. According to the embryo morphology development and oil content, the seed
kernels collected at 72, 79, 93, 118 and 135 DAF (designated as G1, G2, G3, G4 and G5,
respectively) (Figure 1A) were chosen for RNA-seq analysis. The walnut husk and hull
were removed quickly, and the peeled walnut kernel samples for transcriptome sequencing
and qRT-PCR were immediately frozen in liquid nitrogen and then taken back to the
laboratory, and stored in a refrigerator at −80 ◦C until use. All of the samples were
collected with three biological replicates. At the same time, the vertical and transverse
diameter of walnut fruit were measured using vernier calipers. One percent electronic
balance was used to determine the weight of fruit, nut, and seed kernel. The mean values
of 20 fruits were calculated. Meanwhile, the fruit morphology was recorded using a camera
(Canon PowerShot SX50 HS, Oita Prefecture, Japan).

4.3. Kernel Oil Content and Fatty Acid Composition Detection

The walnut seed kernels dried to constant weight were ground to a homogenized
powder. Then, 1.50 g of the powder was put in a water-free and oil-free filter paper bag
used to extract crude fat using a Soxhlet apparatus at 75 ◦C for 8 h with anhydrous ether
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(boiling point 34.5 ◦C) as the extractant. Fatty acid methyl esters (FAMEs) were assayed by
gas chromatography with flame ionization detection (GC–FID) and DB-23 chromatographic
column (Agilent Technologies, Santa Clara, CA, USA) using the method described by
Poggetti et al. [16]. Relative percentage of FAs was calculated according to the peak areas.
All analyses were carried out in triplicate. The data were expressed as mean ± standard
error (SE).

4.4. Total RNA Isolation, Transcriptome Sequencing Library Construction, and the Next
Generation Sequencing

The total RNA of the walnut kernel samples was extracted using a Plant RNA Kit
(OMEGA Bio-Tek, Norcross, GA, USA) according to the instructions. Three methods were
used to detect RNA quality and quantity: agarose gel electrophoresis was used to detect
the RNA degradation and contamination, the Nano Photometer® spectro photometer
(IMPLEN, Munich, Germany) was used to check RNA purity, and the Bioanalyzer 2100
system (Agilent Technologies, CA, USA) was used to check RNA integrity. A transcriptome
sequencing library was constructed using a NEBNext® UltraTM RNA Library Prep Kit
for Illumina® (Illumina, San Diego, CA, USA) following the producer’s recommended
technology process. The library quality was assessed on the Agilent Bioanalyzer 2100
system. Illumina sequencing was performed at Novogene Bioinformatics Technology Co.,
Ltd., Beijing, China. The library preparations were sequenced on the Illumina Novaseq
6000 platform and 150 bp paired-end reads were generated.

4.5. Analysis of Transcriptome, Quality Control and Clean Reads Mapping to the
Reference Genome

All sequencing results were assessed for quality control by removing reads containing
adapter, reads containing ploy-N, and low-quality reads from the raw data, and thus we
obtained clean data that were used for downstream analyses. All clean data were mapped
to the walnut genome reference sequence (GenBank assembly accession: GCF_001411555.1)
using Hisat2 v2.0.5 [55].

4.6. Quantification of Gene Expression Level and Differential Expression Analysis

The reads numbers mapped to each gene were counted using feature Counts v1.5.0-
p3 [56]. FPKM values for each gene were calculated based on the length of the gene and
reads count were mapped to this gene, and were used for estimating gene expression
levels [57]. Differential expression analysis of five groups (three biological replicates per
group) was performed using the DESeq2 R package (1.16.1) [58]. The Benjamini and
Hochberg’s approach was used to adjust the resulting p-values for controlling the false
discovery rate [59]. Genes with an adjusted p-value < 0.05 found by DESeq2 were said to
be differentially expressed.

4.7. GO and KEGG Enrichment of DEGs

The clusterProfiler R package was used to analyze the DEGs and correct the gene
length bias. GO terms with corrected p-values less than 0.05 were considered significantly
enriched by DEGs. The clusterProfiler R package was used to test the statistical enrichment
of DEGs in KEGG pathways [60].

4.8. WGCNA

The gene coexpression network was constructed by WGCNA of NovoMagic Cloud
platform accessed on 6 June 2022 (https://magic.novogene.com/). The network diagram
was created using Cytoscape 3.9.1 accessed on 26 June 2022 (https://cytoscape.org/).

4.9. Quantitative Real-Time PCR and Correlation Analyses

The total RNA was extracted using a TaKaRa MiniBEST Plant RNA Extraction Kit
according to the manufacturer’s instructions, and cDNA was synthesized from the total
RNA (500 ng) using TaKaRa PrimeScript TM RT Master Mix (Takara Biotechnology Co., Ltd.,

https://magic.novogene.com/
https://cytoscape.org/
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Dalian, China) to reach 10 µL total volume following the instructions (Takara). The qRT-
PCR was performed with TaKaRa TB Green® Premix Ex TaqTM II (Tli RNaseH Plus) (Takara
Biotechnology Co., Ltd., Dalian, China) according to the manufacturer’s instructions, and
was performed on a CFX Connect TM Real-Time System (Bio-Rad Laboratories, CA, USA).
As the housekeeping gene, walnut GAPDH was used as the reference gene [29]. The primers
for qRT-PCR were designed with Oligo software (Table S5). The relative expression level of
the target genes was calculated by 2−∆∆CT method [61]. Pearson correlation analysis of the
expression levels between qRT-PCR and RNA-seq was conducted by GraphPad Prism 6.0.,
and p ≤ 0.01 was the threshold for statistical significance (**).

5. Conclusions

In this study, the oil contents of J. regia seed kernels from the Qinghai Plateau in
different developmental stages were measured. The results indicated that walnut oils
increased dramatically in late July and reached the maximum value of 69% in mature
seeds. The 18:2 was the predominant UFA accumulated in mature seeds. The transcriptome
of J. regia at five developmental stages was sequenced and annotated using the Illumina
RNA-seq technology. Through transcriptomics profiling, four sets of DEGs in the different
seed development stages were obtained. Compared to G1, the number of DEGs increased
with the seed kernel development. The DEGs related to lipid biosynthesis and metabolism
were screened by the DESeq method. We counted the number of DEGs associated with the
lipid metabolic and oil accumulation. The key regulatory enzymes were identified, and
they may play crucial roles in FA biosynthesis and oil accumulation in walnut seed kernels.
FA de novo biosynthesis-related genes, including ACCase, MAT, KAS, KAR, HAD, EAR,
FATB and FATA, were highly expressed from G1 to G4 stage. LACS, KCS, KCR, HCD, ECR,
SAD, and FADs were related to FA elongation and desaturation. GPAT, LPLAT, PAP, PLA2,
DGAT, PDAT, and PDCT were involved in TAG assembly pathway. The synergy of these
genes promoted oil synthesis, and highly expressed oleosins, caleosins and steroleosins
may be important for timely energy reserve in oil bodies. This transcriptome data will
enrich public databases and provide new insights into functional genes related to the seed
kernel lipid metabolism and oil accumulation in J. regia. Heat shock protein and heat
stress TFs may protect walnuts from damage caused by large temperature differences and
provide a guarantee for high lipid content. WGCNA showed that AP2/ERF and bHLH
were the key TFs in lipid biosynthesis in walnut seed kernels, and were co-expressed with
ACC1, α-CT, BCCP, MAT, KASII, LACS, FATA, and PDCT. Our results will serve as a basis
to investigate regulation networks of J. regia to clarify the molecular mechanisms of oil
accumulation process and to accelerate the genetic engineering to increase seed oil content
and quality. Our results may also provide a useful reference for the molecular breeding of
woody oil plants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11233207/s1, Figure S1: Distribution of reads in different
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walnut transcriptome data, Figure S3: Bubble diagram of enrichment of KEGG pathway, Figure S4:
Temperature variation in the process of walnut seed development, Figure S5: Weighted gene coex-
pression network analysis of genes and the expression of TF at different walnut seed development
stages; Table S1: The morphological and physiological characteristics, oil accumulation in the process
of walnut embryo development, Table S2: The mapping result of each sample, Table S3. Distribution
of sequencing reads in genome regions, Table S4: Detailed information regarding gene annotation
and FPKM values of genes in developing walnut seeds, Table S5: The designed primers of the key
enzymes involved in lipid biosynthesis and metabolism for qRT-PCR, Table S6: Identification of
transcription factors in the transcriptome of J. regia. in blue module.
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