Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = isospin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 395 KiB  
Article
Effect of the Coulomb Interaction on Nuclear Deformation and Drip Lines
by Kenta Hagihara, Takashi Nakatsukasa and Nobuo Hinohara
Particles 2025, 8(3), 72; https://doi.org/10.3390/particles8030072 - 24 Jul 2025
Viewed by 225
Abstract
Nuclei are self-bound systems in which the strong interaction (nuclear force) plays a dominant role, and the isospin is approximately a good quantum number. The isospin symmetry is primarily violated by electromagnetic interactions, namely Coulomb interactions among protons, the effects of which need [...] Read more.
Nuclei are self-bound systems in which the strong interaction (nuclear force) plays a dominant role, and the isospin is approximately a good quantum number. The isospin symmetry is primarily violated by electromagnetic interactions, namely Coulomb interactions among protons, the effects of which need be studied to understand the importance of the isospin symmetry. We investigate the effect of the Coulomb interaction on nuclear properties, especially quadrupole deformation and neutron drip line, utilizing the density functional method, which provides a universal description of nuclear systems in the entire nuclear chart. We carry out calculations of even–even nuclei with a proton number of 2Z60. The results show that the Coulomb interaction plays a significant role in enhancing quadrupole deformation across a wide range of nuclei. We also find that, after including the Coulomb interaction, some nuclei near the neutron drip line become stable against two-neutron emissions, resulting in a shift in the drip line towards larger neutron numbers. Full article
(This article belongs to the Section Nuclear and Hadronic Theory)
Show Figures

Figure 1

11 pages, 14103 KiB  
Article
Production Optimization of Exotic Hypernuclei via Heavy-Ion Beams at GSI-FAIR
by Samuel Escrig and Christophe Rappold
Particles 2025, 8(2), 54; https://doi.org/10.3390/particles8020054 - 1 May 2025
Viewed by 641
Abstract
Building on the successful demonstration of hypernuclear spectroscopy using heavy-ion beams, the HypHI Collaboration is shifting its focus to investigating proton- and neutron-rich hypernuclei. A crucial component of this research is the implementation of a fragment separator, which facilitates the production and separation [...] Read more.
Building on the successful demonstration of hypernuclear spectroscopy using heavy-ion beams, the HypHI Collaboration is shifting its focus to investigating proton- and neutron-rich hypernuclei. A crucial component of this research is the implementation of a fragment separator, which facilitates the production and separation of rare isotope beams and is vital for accessing hypernuclei far from the stability line. High-precision spectroscopy of these exotic hypernuclei is planned to be conducted at GSI first, which will be followed by experiments at the FAIR facility utilizing the FRS and Super-FRS fragment separators. A thorough systematic investigation paired with an optimization analysis was employed to establish the most favorable experimental setup for producing high-isospin hypernuclei. Theoretical models describing heavy-ion-induced reactions and hypernuclear synthesis guided this process, which was complemented by Monte Carlo simulations to obtain experimental efficiencies for the production and transmission of the exotic secondary beams. The outlined methodology offers insights into the anticipated yields of HeΛ6, CΛ9, and a range of both proton- and neutron-rich hypernuclei. Full article
Show Figures

Figure 1

14 pages, 628 KiB  
Article
Imprints of High-Density Nuclear Symmetry Energy on Crustal Fraction of Neutron Star Moment of Inertia
by Nai-Bo Zhang and Bao-An Li
Particles 2025, 8(1), 12; https://doi.org/10.3390/particles8010012 - 7 Feb 2025
Cited by 1 | Viewed by 851
Abstract
The density dependence of nuclear symmetry energy Esym(ρ) remains the most uncertain aspect of the equation of state (EOS) of supradense neutron-rich nucleonic matter. Utilizing an isospin-dependent parameterization of the nuclear EOS, we investigate the implications of the observational [...] Read more.
The density dependence of nuclear symmetry energy Esym(ρ) remains the most uncertain aspect of the equation of state (EOS) of supradense neutron-rich nucleonic matter. Utilizing an isospin-dependent parameterization of the nuclear EOS, we investigate the implications of the observational crustal fraction of the neutron star (NS) moment of inertia ΔI/I for the Esym(ρ). We find that symmetry energy parameters significantly influence the ΔI/I, while the EOS of symmetric nuclear matter has a negligible effect. In particular, an increase in the slope L and skewness Jsym of symmetry energy results in a larger ΔI/I, whereas an increase in the curvature Ksym leads to a reduction in ΔI/I. Moreover, the ΔI/I is shown to have the potential for setting a lower limit of symmetry energy at densities exceeding 3ρ0, particularly when L is constrained to values less than 60 MeV, thereby enhancing our understanding of supradense NS matter. Full article
Show Figures

Figure 1

20 pages, 840 KiB  
Review
Continuum Effect on Mirror Symmetry Breaking Within the Gamow Frameworks
by Shuang Zhang, Zhicheng Xu and Simin Wang
Symmetry 2025, 17(2), 169; https://doi.org/10.3390/sym17020169 - 23 Jan 2025
Viewed by 802
Abstract
Nuclear physics provides a natural laboratory for studying two kinds of fermions: protons and neutrons. These particles share similarities in mass and strong nuclear interactions, which are often described by isospin symmetry. However, isospin is not a good quantum number due to the [...] Read more.
Nuclear physics provides a natural laboratory for studying two kinds of fermions: protons and neutrons. These particles share similarities in mass and strong nuclear interactions, which are often described by isospin symmetry. However, isospin is not a good quantum number due to the differences between protons and neutrons in charge and quark mass. These differences become more pronounced as we approach or move beyond the dripline, affecting the structures and decay properties of mirror nuclei. To explore these intriguing phenomena, researchers have developed novel theoretical frameworks. In this article, we review the results from the Gamow shell model and Gamow coupled-channel, which account for the mirror symmetry breaking influenced by nuclear forces and continuum effects. Specifically, we discuss the recently observed mirror asymmetries in nuclei at the boundaries of the nuclide landscape and their theoretical explanations. We examine the breaking of mirror symmetry in the spectra of N=8 isotones versus Z=8 isotopes, as well as the decay properties of the 22Al-22F mirror pair. Such studies enhance our understanding of strong interactions and the behavior of open quantum systems. Full article
(This article belongs to the Special Issue Isospin Symmetry/Asymmetry in Experimental Nuclear Physics)
Show Figures

Figure 1

18 pages, 763 KiB  
Article
Critical Impact of Isospin Asymmetry in Elucidating Magicity Across Isotonic Chains of Different Mass Regions Using Relativistic Energy Density Functional
by Praveen K. Yadav, N. Biswal, R. N. Panda, S. Mishra, Raj Kumar and M. Bhuyan
Atoms 2024, 12(12), 62; https://doi.org/10.3390/atoms12120062 - 28 Nov 2024
Viewed by 603
Abstract
This study provides a comprehensive examination of the surface properties—particularly the symmetry energy and its contributing components—of isotonic chains across various mass ranges, including light, medium, heavy, and superheavy nuclei. We establish a correlation between nuclear symmetry energy and isospin asymmetry in different [...] Read more.
This study provides a comprehensive examination of the surface properties—particularly the symmetry energy and its contributing components—of isotonic chains across various mass ranges, including light, medium, heavy, and superheavy nuclei. We establish a correlation between nuclear symmetry energy and isospin asymmetry in different mass regions along isotonic chains with magic and semi-magic neutron numbers of N = 20, 40, 82, 126, and 172. Our approach integrates the coherent density fluctuation model within the relativistic mean-field (RMF) framework, utilizing both the non-linear NL3 and density-dependent DD-ME2 parameter sets. The methodology employs the Brueckner energy density functional in conjunction with our recently developed relativistic energy density functional (relativistic-EDF). The relativistic parameterization of the EDF at local density facilitates a consistent exploration of isospin-dependent surface properties across the nuclear landscape. In the present work, we successfully reproduce established shell closures and demonstrate that the relativistic approach yields significantly improved predictions for recognized magic numbers, particularly Z = 28 and 50. Additionally, we present compelling evidence for the presence of novel shell and sub-shell closures, specifically at Z = 34, 58, 92, and 118. These findings contribute to a nuanced understanding of nuclear surface properties while serving as a benchmark for future investigations and validations of nuclear models. Full article
(This article belongs to the Section Nuclear Theory and Experiments)
Show Figures

Figure 1

26 pages, 1049 KiB  
Article
Comprehensive Insight into Regular Damped Oscillatory Structures from Effective Electromagnetic Form Factor Data of Some Mesons and Nucleons
by Erik Bartoš, Stanislav Dubnička, Anna Zuzana Dubničková, Lukáš Holka and Andrej Liptaj
Dynamics 2024, 4(4), 804-829; https://doi.org/10.3390/dynamics4040041 - 29 Oct 2024
Viewed by 858
Abstract
Regular damped oscillatory structures from the “effective” electromagnetic form factors of the hadrons h=π±,K±,K0,p,n were investigated. The “effective” electromagnetic form factor behaviors were calculated from the experimental data on the [...] Read more.
Regular damped oscillatory structures from the “effective” electromagnetic form factors of the hadrons h=π±,K±,K0,p,n were investigated. The “effective” electromagnetic form factor behaviors were calculated from the experimental data on the total cross-sections σtot(e+ehh¯) with errors. The apparent oscillations were observed for the first time for the proton, and we show, also taking other hadrons into consideration, that they are an arbitrary artifact resulting from a very simplistic theoretical description based on an elementary three-parameter model. If the data are described by a more appropriate and physically well-founded Unitary and Analytic model, then the oscillations disappear. In spite of this, if the three-parameter model is used to describe the “effective” electromagnetic form factor data, an interesting phenomenon is observed. The oscillations are opposite for particles which form an isospin doublet. By using the physically well-founded Unitary and Analytic model, it is demonstrated that this feature originates from the special transformation properties of the electromagnetic current of the corresponding particles in the isotopic space. Full article
Show Figures

Figure 1

8 pages, 345 KiB  
Article
CP Violation: Differing Binding Energy Levels of Quarks and Antiquarks, and Their Transitions in Λ-Baryons and B-Mesons
by Dimitris M. Christodoulou and Demosthenes Kazanas
Foundations 2024, 4(4), 552-559; https://doi.org/10.3390/foundations4040036 - 15 Oct 2024
Viewed by 1088
Abstract
We consider spontaneous quark transitions between the Λ0 baryon and its resonant states, and (anti)quark transitions between the neutral kaon K0 and the two heavy ηq-mesons (q = c, b). The measured differences in mass deficits are used to [...] Read more.
We consider spontaneous quark transitions between the Λ0 baryon and its resonant states, and (anti)quark transitions between the neutral kaon K0 and the two heavy ηq-mesons (q = c, b). The measured differences in mass deficits are used to calculate the binding energy levels of valence c and b (anti)quarks in these transitions. The method takes into account the isospin energy release in K0 transitions and the work conducted by the strong force in suppressing internal Coulomb repulsions that develop in the charged Λc+-baryon. We find that the flips sc and s¯c¯ both release energy back to the strong field and that the overall range of quark energy levels above their u-ground is 100-MeV wider than that of antiquark energy levels above their d¯-ground. The wider quark range stems from the flip sb, which costs 283 MeV more (or 3× more) than the corresponding antiquark flip s¯b¯. At the same time, transitions from the respective ground states to the s and s¯ states (or the c and c¯ states) point to a clear origin of the elusive charge-parity (CP) violation. The determined binding energy levels of (anti)quarks allow us to analyze in depth the (anti)quark transitions in Λ-baryons and B-mesons. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

30 pages, 2160 KiB  
Article
Isospin QCD as a Laboratory for Dense QCD
by Toru Kojo, Daiki Suenaga and Ryuji Chiba
Universe 2024, 10(7), 293; https://doi.org/10.3390/universe10070293 - 12 Jul 2024
Cited by 5 | Viewed by 1380
Abstract
QCD with the isospin chemical potential μI is a useful laboratory to delineate the microphysics in dense QCD. To study the quark–hadron continuity, we use a quark–meson model that interpolates hadronic and quark matter physics at microscopic level. The equation of state [...] Read more.
QCD with the isospin chemical potential μI is a useful laboratory to delineate the microphysics in dense QCD. To study the quark–hadron continuity, we use a quark–meson model that interpolates hadronic and quark matter physics at microscopic level. The equation of state is dominated by mesons at low density but taken over by quarks at high density. We extend our previous studies with two flavors to the three-flavor case to study the impact of the strangeness, which may be brought by kaons (K+,K0)=(us¯,sd¯) and the UA(1) anomaly. In the normal phase, the excitation energies of kaons are reduced by μI in the same way as hyperons in nuclear matter at the finite baryon chemical potential. Once pions condense, kaon excitation energies increase as μI does. Moreover, strange quarks become more massive through the UA(1) coupling to the condensed pions. Hence, at zero and low temperature, the strange hadrons and quarks are highly suppressed. The previous findings in two-flavor models, sound speed peak, negative trace anomaly, gaps insensitive to μI, persist in our three-flavor model and remain consistent with the lattice results to μI 1 GeV. We discuss the non-perturbative power corrections and quark saturation effects as important ingredients to understand the crossover equations of state measured on the lattice. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

43 pages, 858 KiB  
Review
Isospin Symmetry Breaking in Atomic Nuclei
by Javid A. Sheikh, Syed P. Rouoof, Raja N. Ali, Niyaz Rather, Chandan Sarma and Praveen C. Srivastava
Symmetry 2024, 16(6), 745; https://doi.org/10.3390/sym16060745 - 14 Jun 2024
Cited by 2 | Viewed by 2098
Abstract
In this paper, the importance of isospin symmetry and its breaking in elucidating the properties of atomic nuclei is reviewed. The quark mass splitting and the electromagnetic origin of the isospin symmetry breaking (ISB) for the nuclear many-body problem is discussed. The experimental [...] Read more.
In this paper, the importance of isospin symmetry and its breaking in elucidating the properties of atomic nuclei is reviewed. The quark mass splitting and the electromagnetic origin of the isospin symmetry breaking (ISB) for the nuclear many-body problem is discussed. The experimental data on isobaric analogue states cannot be described only with the Coulomb interaction, and ISB terms in the nucleon–nucleon interaction are needed to discern the observed properties. In the present work, the ISB terms are explicitly considered in nuclear energy density functional and spherical shell model approaches, and a detailed investigation of the analogue states and other properties of nuclei is performed. It is observed that isospin mixing is largest for the N = Z system in the density functional approach Full article
(This article belongs to the Special Issue Restoration of Broken Symmetries in the Nuclear Many-Body Problem)
Show Figures

Figure 1

20 pages, 591 KiB  
Article
Nuclear Matter Equation of State in the Brueckner–Hartree–Fock Approach and Standard Skyrme Energy Density Functionals
by Isaac Vidaña, Jérôme Margueron and Hans-Josef Schulze
Universe 2024, 10(5), 226; https://doi.org/10.3390/universe10050226 - 17 May 2024
Cited by 2 | Viewed by 1417
Abstract
The equation of state of asymmetric nuclear matter as well as the neutron and proton effective masses and their partial-wave and spin–isospin decomposition are analyzed within the Brueckner–Hartree–Fock approach. Theoretical uncertainties for all these quantities are estimated by using several phase-shift-equivalent nucleon–nucleon forces [...] Read more.
The equation of state of asymmetric nuclear matter as well as the neutron and proton effective masses and their partial-wave and spin–isospin decomposition are analyzed within the Brueckner–Hartree–Fock approach. Theoretical uncertainties for all these quantities are estimated by using several phase-shift-equivalent nucleon–nucleon forces together with two types of three-nucleon forces, phenomenological and microscopic. It is shown that the choice of the three-nucleon force plays an important role above saturation density, leading to different density dependencies of the energy per particle. These results are compared to the standard form of the Skyrme energy density functional, and we find that it is not possible to reproduce the BHF predictions in the (S,T) channels in symmetric and neutron matter above saturation density, already at the level of the two-body interaction, and even more including the three-body interaction. Full article
(This article belongs to the Special Issue Studies in Neutron Stars)
Show Figures

Figure 1

24 pages, 515 KiB  
Article
Hidden-Charm Pentaquarks with Strangeness in a Chiral Quark Model
by Gang Yang, Jialun Ping and Jorge Segovia
Symmetry 2024, 16(3), 354; https://doi.org/10.3390/sym16030354 - 14 Mar 2024
Cited by 7 | Viewed by 1524
Abstract
The LHCb collaboration has recently announced the discovery of two hidden-charm pentaquark states with strange quark content, Pcs(4338) and Pcs(4459); its analysis points towards having both hadrons’ isospins equal to zero and [...] Read more.
The LHCb collaboration has recently announced the discovery of two hidden-charm pentaquark states with strange quark content, Pcs(4338) and Pcs(4459); its analysis points towards having both hadrons’ isospins equal to zero and spin-parity quantum numbers 12 and 32, respectively. Herein, we perform a systematical investigation of the qqscc¯(q=u,d) system by means of a chiral quark model, along with a highly accurate computational method, the Gaussian expansion approach combined with the complex scaling technique. baryon-meson configurations in both singlet- and hidden-color channels are considered. The Pcs(4338) and Pcs(4459) signals can be well identified as molecular bound states with dominant components ΛJ/ψ(60%) and ΞcD(23%) for the lowest-energy case and ΞcD(72%) for the highest-energy one. In addition, it seems that some narrow resonances can also be found in each allowed I(JP) channel in the energy region of 4.65.5 GeV, except for the 1(12) channel where a shallow bound state with dominant ΞcD structure is obtained at 4673 MeV with binding energy EB=3 MeV. These exotic states are expected to be confirmed in future high-energy experiments. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

27 pages, 727 KiB  
Article
Induced Isotensor Interactions in Heavy-Ion Double-Charge-Exchange Reactions and the Role of Initial and Final State Interactions
by Horst Lenske, Jessica Bellone, Maria Colonna, Danilo Gambacurta and José-Antonio Lay
Universe 2024, 10(2), 93; https://doi.org/10.3390/universe10020093 - 16 Feb 2024
Cited by 2 | Viewed by 1726
Abstract
The role of initial state (ISI) and final state (FSI) ion–ion interactions in heavy-ion double-charge-exchange (DCE) reactions A(Z,N)A(Z±2,N2) are studied for double single-charge-exchange (DSCE) reactions given by [...] Read more.
The role of initial state (ISI) and final state (FSI) ion–ion interactions in heavy-ion double-charge-exchange (DCE) reactions A(Z,N)A(Z±2,N2) are studied for double single-charge-exchange (DSCE) reactions given by sequential actions of the isovector nucleon–nucleon (NN) T-matrix. In momentum representation, the second-order DSCE reaction amplitude is shown to be given in factorized form by projectile and target nuclear matrix elements and a reaction kernel containing ISI and FSI. Expanding the intermediate propagator in a Taylor series with respect to auxiliary energy allows us to perform the summation in the leading-order term over intermediate nuclear states in closure approximation. The nuclear matrix element attains a form given by the products of two-body interactions directly exciting the n2p2 and p2n2 DCE transitions in the projectile and the target nucleus, respectively. A surprising result is that the intermediate propagation induces correlations between the transition vertices, showing that DSCE reactions are a two-nucleon process that resembles a system of interacting spin–isospin dipoles. Transformation of the DSCE NN T-matrix interactions from the reaction theoretical t-channel form to the s-channel operator structure required for spectroscopic purposes is elaborated in detail, showing that, in general, a rich spectrum of spin scalar, spin vector and higher-rank spin tensor multipole transitions will contribute to a DSCE reaction. Similarities (and differences) to two-neutrino double-beta decay (DBD) are discussed. ISI/FSI distortion and absorption effects are illustrated in black sphere approximation and in an illustrative application to data. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

17 pages, 535 KiB  
Review
Kerner Equation for Motion in a Non-Abelian Gauge Field
by Peter A. Horvathy and Pengming Zhang
Universe 2023, 9(12), 519; https://doi.org/10.3390/universe9120519 - 15 Dec 2023
Cited by 3 | Viewed by 1545
Abstract
The equations of motion of an isospin-carrying particle in a Yang–Mills and gravitational field were first proposed in 1968 by Kerner, who considered geodesics in a Kaluza–Klein-type framework. Two years later, the flat space Kerner equations were completed by also considering the motion [...] Read more.
The equations of motion of an isospin-carrying particle in a Yang–Mills and gravitational field were first proposed in 1968 by Kerner, who considered geodesics in a Kaluza–Klein-type framework. Two years later, the flat space Kerner equations were completed by also considering the motion of the isospin by Wong, who used a field-theoretical approach. Their groundbreaking work was then followed by a long series of rediscoveries whose history is reviewed. The concept of isospin charge and the physical meaning of its motion are discussed. Conserved quantities are studied for Wu–Yang monopoles and diatomic molecules by using van Holten’s algorithm. Full article
Show Figures

Figure 1

15 pages, 361 KiB  
Article
Hadronic Isospin Helicity and the Consequent SU(4) Gauge Theory
by Eckart Marsch and Yasuhito Narita
Symmetry 2023, 15(10), 1953; https://doi.org/10.3390/sym15101953 - 23 Oct 2023
Cited by 2 | Viewed by 1036
Abstract
A new approach to the Dirac equation and the associated hadronic symmetries is proposed. In this approach, we linearize the second Casimir operator of the Lorentz Group, which is defined by the energy–momentum four-vector and the fermion spin, thereby using the spinor-helicity representation [...] Read more.
A new approach to the Dirac equation and the associated hadronic symmetries is proposed. In this approach, we linearize the second Casimir operator of the Lorentz Group, which is defined by the energy–momentum four-vector and the fermion spin, thereby using the spinor-helicity representation instead of the three-vector representation of the particle momentum and spin vector. We then expand the so-obtained standard Dirac equation by employing an inner abstract “hadronic” isospin, initially describing a SU(2) fermion doublet. Application of the spin-helicity representation of that isospin leads to the occurrence of a quadruplet of inner states, revealing the SU(4) symmetry via the isospin helicity operator. This further leads to two independent fermion state spaces, specifically, singlet and triplet states, which we interpret as U(1) symmetry of the leptons and SU(3) symmetry of the three quarks, respectively. These results indicate the genuinely very different physical nature of the strong SU(4) symmetry in comparison to the chiral SU(2) symmetry. While our approach does not require the a priori concept of grand unification, such a notion arises naturally from the formulation with the isospin helicity. We then apply the powerful procedures developed for the electroweak interactions in the SM, in order to break the SU(4) symmetry by means of the Higgs mechanism involving a scalar Higgs field as an SU(4) quadruplet. Its finite vacuum creates the masses of the three vector bosons involved, which can change the three quarks into a lepton and vice versa. Finally, we consider a toy model for calculation of the strong coupling constant of a Yukawa potential. Full article
Show Figures

Figure A1

63 pages, 9408 KiB  
Review
The Nature of the Chemical Bonds of High-Valent Transition–Metal Oxo (M=O) and Peroxo (MOO) Compounds: A Historical Perspective of the Metal Oxyl–Radical Character by the Classical to Quantum Computations
by Kizashi Yamaguchi, Hiroshi Isobe, Mitsuo Shoji, Takashi Kawakami and Koichi Miyagawa
Molecules 2023, 28(20), 7119; https://doi.org/10.3390/molecules28207119 - 16 Oct 2023
Cited by 3 | Viewed by 4671
Abstract
This review article describes a historical perspective of elucidation of the nature of the chemical bonds of the high-valent transition metal oxo (M=O) and peroxo (M-O-O) compounds in chemistry and biology. The basic concepts and theoretical backgrounds of the broken-symmetry (BS) method are [...] Read more.
This review article describes a historical perspective of elucidation of the nature of the chemical bonds of the high-valent transition metal oxo (M=O) and peroxo (M-O-O) compounds in chemistry and biology. The basic concepts and theoretical backgrounds of the broken-symmetry (BS) method are revisited to explain orbital symmetry conservation and orbital symmetry breaking for the theoretical characterization of four different mechanisms of chemical reactions. Beyond BS methods using the natural orbitals (UNO) of the BS solutions, such as UNO CI (CC), are also revisited for the elucidation of the scope and applicability of the BS methods. Several chemical indices have been derived as the conceptual bridges between the BS and beyond BS methods. The BS molecular orbital models have been employed to explain the metal oxyl-radical character of the M=O and M-O-O bonds, which respond to their radical reactivity. The isolobal and isospin analogy between carbonyl oxide R2C-O-O and metal peroxide LFe-O-O has been applied to understand and explain the chameleonic chemical reactivity of these compounds. The isolobal and isospin analogy among Fe=O, O=O, and O have also provided the triplet atomic oxygen (3O) model for non-heme Fe(IV)=O species with strong radical reactivity. The chameleonic reactivity of the compounds I (Cpd I) and II (Cpd II) is also explained by this analogy. The early proposals obtained by these theoretical models have been examined based on recent computational results by hybrid DFT (UHDFT), DLPNO CCSD(T0), CASPT2, and UNO CI (CC) methods and quantum computing (QC). Full article
(This article belongs to the Special Issue Cytochrome P450)
Show Figures

Graphical abstract

Back to TopTop