Critical Impact of Isospin Asymmetry in Elucidating Magicity Across Isotonic Chains of Different Mass Regions Using Relativistic Energy Density Functional
Abstract
1. Introduction
2. Theoretical Formalism
2.1. Brueckner Approach and Relativistic Energy Density Parameterization at Local Density
2.2. Coherent Density Fluctuation Model
3. Calculations and Results
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Otsuka, T. Recent developments in shell model studies of atomic nuclei. In Nuclear Physics with Stable and Radioactive Ion Beams; IOS Press: Amsterdam, The Netherlands, 2019; pp. 1–30. [Google Scholar]
- Mutschler, A.; Lemasson, A.; Sorlin, O.; Bazin, D.; Borcea, C.; Borcea, R.; Dombrádi, Z.; Ebran, J.P.; Gade, A.; Iwasaki, H.; et al. A proton density bubble in the doubly magic 34Si nucleus. Nat. Phys. 2017, 13, 152–156. [Google Scholar] [CrossRef]
- Ohnishi, T.; Kubo, T.; Kusaka, K.; Yoshida, A.; Yoshida, K.; Fukuda, N.; Ohtake, M.; Yanagisawa, Y.; Takeda, H.; Kameda, D.; et al. Identification of new isotopes 125Pd and 126Pd produced by in-flight fission of 345 MeV/nucleon 238U: First results from the RIKEN RI beam factory. J. Phys. Soc. Jpn. 2008, 77, 083201. [Google Scholar] [CrossRef]
- Gaffney, L.P.; Butler, P.A.; Scheck, M.; Hayes, A.B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; Bönig, S.; et al. Studies of pear-shaped nuclei using accelerated radioactive beams. Nature 2013, 497, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, M. Structural evolution in transitional nuclei of mass 82 A 132. Phys. Rev. C 2015, 92, 034323. [Google Scholar] [CrossRef]
- Ring, P. Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 1996, 37, 193–263. [Google Scholar] [CrossRef]
- Lalazissis, G.; König, J.; Ring, P. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 1997, 55, 540. [Google Scholar] [CrossRef]
- Skyrme, T. CVII. The nuclear surface. Philos. Mag. 1956, 1, 1043–1054. [Google Scholar] [CrossRef]
- Boguta, J.; Bodmer, A. Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. A 1977, 292, 413–428. [Google Scholar] [CrossRef]
- Gaidarov, M.; Antonov, A.; Sarriguren, P.; de Guerra, E.M. Symmetry energy of deformed neutron-rich nuclei. Phys. Rev. C—Nucl. Phys. 2012, 85, 064319. [Google Scholar] [CrossRef]
- Lalazissis, G.; Nikšić, T.; Vretenar, D.; Ring, P. New relativistic mean-field interaction with density-dependent meson-nucleon couplings. Phys. Rev. C—Nucl. Phys. 2005, 71, 024312. [Google Scholar] [CrossRef]
- Lalazissis, G.; Vretenar, D.; Ring, P.; Stoitsov, M.; Robledo, L. Relativistic Hartree+ Bogoliubov description of the deformed N= 28 region. Phys. Rev. C 1999, 60, 014310. [Google Scholar] [CrossRef]
- Gaidarov, M.; Antonov, A.; Sarriguren, P.; Moya de Guerra, E. Surface properties of neutron-rich exotic nuclei: A source for studying the nuclear symmetry energy. Phys. Rev. C—Nucl. Phys. 2011, 84, 034316. [Google Scholar] [CrossRef]
- Bhuyan, M.; Carlson, B.; Patra, S.; Zhou, S.G. Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms. Phys. Rev. C 2018, 97, 024322. [Google Scholar] [CrossRef]
- Yadav, P.K.; Kumar, R.; Bhuyan, M. Isospin dependent properties of the isotopic chains of Scandium and Titanium nuclei within the relativistic mean-field formalism. Chin. Phys. C 2022, 46, 084101. [Google Scholar] [CrossRef]
- Yadav, P.K.; Kumar, R.; Bhuyan, M. Persistence of the N = 50 shell closure over the isotopic chains of Sc, Ti, V and Cr nuclei using relativistic energy density functional. Mod. Phys. Lett. A 2023, 38, 2350114. [Google Scholar] [CrossRef]
- Yadav, P.K.; Kumar, R.; Bhuyan, M. Relativistic energy density functional from momentum space to coordinate space within a coherent density fluctuation model. Europhys. Lett. 2024, 146, 14001. [Google Scholar] [CrossRef]
- Biswal, N.; Yadav, P.K.; Panda, R.; Mishra, S.; Bhuyan, M. Elucidating shell/subshell closure and the critical impact of isospin-asymmetry on barium isotopes using relativistic mean-field approach. Nucl. Phys. A 2024, 122975. [Google Scholar] [CrossRef]
- Danielewicz, P. Symmetry Energy. In Opportunities with Exotic Beams; World Scientific: Singapore, 2007; pp. 142–151. [Google Scholar]
- Danielewicz, P. Surface symmetry energy. Nucl. Phys. A 2003, 727, 233–268. [Google Scholar] [CrossRef]
- Gaidarov, M.K.; Ivanov, M.V.; Katsarov, Y.I.; Antonov, A.N. Isoscalar Giant Monopole Resonance in Spherical Nuclei as a Nuclear Matter Incompressibility Indicator. Astronomy 2023, 2, 1–13. [Google Scholar] [CrossRef]
- Quddus, A.; Bhuyan, M.; Patra, S. Effective surface properties of light, heavy, and superheavy nuclei. J. Phys. G Nucl. Part. Phys. 2020, 47, 045105. [Google Scholar] [CrossRef]
- Pattnaik, J.A.; Majekodunmi, J.T.; Kumar, A.; Bhuyan, M.; Patra, S. Appearance of a peak in the symmetry energy at N= 126 for the Pb isotopic chain within the relativistic energy density functional approach. Phys. Rev. C 2022, 105, 014318. [Google Scholar] [CrossRef]
- Coester, F.; Cohen, S.; Day, B.; Vincent, C. Variation in nuclear-matter binding energies with phase-shift-equivalent two-body potentials. Phys. Rev. C 1970, 1, 769. [Google Scholar] [CrossRef]
- Antonov, A.; Gaidarov, M.; Kadrev, D.; Ivanov, M.; Moya de Guerra, E.; Udias, J. Superscaling in nuclei: A search for a scaling function beyond the relativistic Fermi gas model. Phys. Rev. C—Nucl. Phys. 2004, 69, 044321. [Google Scholar] [CrossRef]
- Antonov, A.; Gaidarov, M.; Ivanov, M.; Kadrev, D.; Moya de Guerra, E.; Sarriguren, P.; Udias, J. Superscaling, scaling functions, and nucleon momentum distributions in nuclei. Phys. Rev. C—Nucl. Phys. 2005, 71, 014317. [Google Scholar] [CrossRef]
- Antonov, A.; Ivanov, M.; Barbaro, M.B.; Caballero, J.; Guerra, E.M.d.; Gaidarov, M. Superscaling and neutral current quasielastic neutrino-nucleus scattering beyond the relativistic Fermi gas model. Phys. Rev. C—Nucl. Phys. 2007, 75, 064617. [Google Scholar] [CrossRef]
- Ivanov, M.; Barbaro, M.B.; Caballero, J.; Antonov, A.; Guerra, E.M.d.; Gaidarov, M. Superscaling and charge-changing neutrino scattering from nuclei in the Δ region beyond the relativistic Fermi gas model. Phys. Rev. C—Nucl. Phys. 2008, 77, 034612. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Prakash, M. Neutron star observations: Prognosis for equation of state constraints. Phys. Rep. 2007, 442, 109–165. [Google Scholar] [CrossRef]
- Carlson, B.; Hirata, D. Dirac-Hartree-Bogoliubov approximation for finite nuclei. Phys. Rev. C 2000, 62, 054310. [Google Scholar] [CrossRef]
- Lalazissis, G.; Karatzikos, S.; Fossion, R.; Arteaga, D.P.; Afanasjev, A.; Ring, P. The effective force NL3 revisited. Phys. Lett. B 2009, 671, 36–41. [Google Scholar] [CrossRef]
- Nikšić, T.; Vretenar, D.; Finelli, P.; Ring, P. Relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings. Phys. Rev. C 2002, 66, 024306. [Google Scholar] [CrossRef]
- Typel, S.; Wolter, H. Relativistic mean field calculations with density-dependent meson-nucleon coupling. Nucl. Phys. A 1999, 656, 331–364. [Google Scholar] [CrossRef]
- Fuchs, C.; Lenske, H.; Wolter, H. Density dependent hadron field theory. Phys. Rev. C 1995, 52, 3043. [Google Scholar] [CrossRef]
- Nikšić, T.; Vretenar, D.; Ring, P. Relativistic nuclear energy density functionals: Adjusting parameters to binding energies. Phys. Rev. C—Nucl. Phys. 2008, 78, 034318. [Google Scholar] [CrossRef]
- Brueckner, K.; Buchler, J.; Jorna, S.; Lombard, R. Statistical theory of nuclei. Phys. Rev. 1968, 171, 1188. [Google Scholar] [CrossRef]
- Brueckner, K.; Buchler, J.; Clark, R.; Lombard, R. Statistical theory of nuclei. II. Medium and heavy nuclei. Phys. Rev. 1969, 181, 1543. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Density functional theory (DFT). Phys. Rev 1964, 136, B864. [Google Scholar] [CrossRef]
- Antonov, A.; Nikolaev, V.; Petkov, I. New Diffractional Approach to Proton-Nucleus Scattering; Technical Report; Joint Institute for Nuclear Research: Dubna, Russia, 1978. [Google Scholar]
- Antonov, A.; Nikolaev, V.; Petkov, I.Z. Nucleon momentum and density distributions of nuclei. Z. Phys. Atoms Nucl. 1980, 297, 257–260. [Google Scholar] [CrossRef]
- Antonov, A.; Nikolaev, V.; Petkov, I.Z. Model of coherent fluctuations of nuclear density. Bulg. J. Phys. 1979, 6, 2. [Google Scholar]
- Antonov, A.; Nikolaev, V.; Petkov, I.Z. Spectral functions and hole nuclear states. Z. Phys. Atoms Nucl. 1982, 304, 239–243. [Google Scholar] [CrossRef]
- Griffin, J.J.; Wheeler, J.A. Collective motions in nuclei by the method of generator coordinates. Phys. Rev. 1957, 108, 311. [Google Scholar] [CrossRef]
- Antonov, A.; Kadrev, D.; Hodgson, P. Effect of nucleon correlations on natural orbitals. Phys. Rev. C 1994, 50, 164. [Google Scholar] [CrossRef] [PubMed]
- Sarriguren, P.; Gaidarov, M.; Guerra, E.M.d.; Antonov, A. Nuclear skin emergence in Skyrme deformed Hartree-Fock calculations. Phys. Rev. C—Nucl. Phys. 2007, 76, 044322. [Google Scholar] [CrossRef]
- Danielewicz, P.; Lee, J. Symmetry energy I: Semi-infinite matter. Nucl. Phys. A 2009, 818, 36–96. [Google Scholar] [CrossRef]
- Antonov, A.; Gaidarov, M.; Sarriguren, P.; Moya de Guerra, E. Volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model. Phys. Rev. C 2016, 94, 014319. [Google Scholar] [CrossRef]
- Danchev, I.; Antonov, A.; Kadrev, D.; Gaidarov, M.; Sarriguren, P.; Moya de Guerra, E. Symmetry energy properties of neutron-rich nuclei from the coherent density fluctuation model applied to nuclear matter calculations with Bonn potentials. Phys. Rev. C 2020, 101, 064315. [Google Scholar] [CrossRef]
- Dieperink, A.; Van Isacker, P. The symmetry energy in nuclei and in nuclear matter. Eur. Phys. J. A 2007, 32, 11–18. [Google Scholar] [CrossRef]
- Gaidarov, M.; de Guerra, E.M.; Antonov, A.; Danchev, I.; Sarriguren, P.; Kadrev, D. Nuclear symmetry energy components and their ratio: A new approach within the coherent density fluctuation model. Phys. Rev. C 2021, 104, 044312. [Google Scholar] [CrossRef]
- Myers, W.D.; Swiatecki, W. Average nuclear properties. Ann. Phys. 1969, 55, 395–505. [Google Scholar] [CrossRef]
- Myers, W.D.; Swiatecki, W. The nuclear droplet model for arbitrary shapes. Ann. Phys. 1974, 84, 186–210. [Google Scholar] [CrossRef]
- Mo, Q.; Liu, M.; Cheng, L.; Wang, N. Deformation dependence of symmetry energy coefficients of nuclei. Sci. China Phys. Mech. Astron. 2015, 58, 82001. [Google Scholar] [CrossRef]
- Otsuka, T.; Fujimoto, R.; Utsuno, Y.; Brown, B.A.; Honma, M.; Mizusaki, T. Magic numbers in exotic nuclei and spin-isospin properties of the NN interaction. Phys. Rev. Lett. 2001, 87, 082502. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, T.; Gade, A.; Sorlin, O.; Suzuki, T.; Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 2020, 92, 015002. [Google Scholar] [CrossRef]
- Typel, S. Relativistic model for nuclear matter and atomic nuclei with momentum-dependent self-energies. Phys. Rev. C—Nucl. Phys. 2005, 71, 064301. [Google Scholar] [CrossRef]
- Kumar, B.; Patra, S.; Agrawal, B. New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars. Phys. Rev. C 2018, 97, 045806. [Google Scholar] [CrossRef]
- Wang, M.; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 2021, 45, 030003. [Google Scholar] [CrossRef]
- Möller, P.; Sierk, A.J.; Ichikawa, T.; Sagawa, H. Nuclear ground-state masses and deformations: FRDM (2012). At. Data Nucl. Data Tables 2016, 109, 1–204. [Google Scholar] [CrossRef]
- Sorlin, O.; Porquet, M.G. Nuclear magic numbers: New features far from stability. Prog. Part. Nucl. Phys. 2008, 61, 602–673. [Google Scholar] [CrossRef]
- Gaidarov, M.; Moumene, I.; Antonov, A.; Kadrev, D.; Sarriguren, P.; De Guerra, E.M. Proton and neutron skins and symmetry energy of mirror nuclei. Nucl. Phys. A 2020, 1004, 122061. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Kohn, W. Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Rev. Mod. Phys. 1999, 71, 1253. [Google Scholar] [CrossRef]
- Nikšić, T.; Vretenar, D.; Ring, P. Relativistic nuclear energy density functionals: Mean-field and beyond. Prog. Part. Nucl. Phys. 2011, 66, 519–548. [Google Scholar] [CrossRef]
- Meng, J. Relativistic Density Functional for Nuclear Structure; World Scientific: Singapore, 2016; Volume 10. [Google Scholar]
DD-ME2 | NL3 | |
---|---|---|
−627.40397 | −631.22898 | |
2032.92832 | 2177.46092 | |
−9038.76463 | −11,541.44105 | |
19,143.35052 | 26,104.23289 | |
−12,352.13859 | −17,045.86031 | |
80.43433 | 49.40867 | |
−433.81712 | 2741.54540 | |
446.43825 | −3019.76641 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, P.K.; Biswal, N.; Panda, R.N.; Mishra, S.; Kumar, R.; Bhuyan, M. Critical Impact of Isospin Asymmetry in Elucidating Magicity Across Isotonic Chains of Different Mass Regions Using Relativistic Energy Density Functional. Atoms 2024, 12, 62. https://doi.org/10.3390/atoms12120062
Yadav PK, Biswal N, Panda RN, Mishra S, Kumar R, Bhuyan M. Critical Impact of Isospin Asymmetry in Elucidating Magicity Across Isotonic Chains of Different Mass Regions Using Relativistic Energy Density Functional. Atoms. 2024; 12(12):62. https://doi.org/10.3390/atoms12120062
Chicago/Turabian StyleYadav, Praveen K., N. Biswal, R. N. Panda, S. Mishra, Raj Kumar, and M. Bhuyan. 2024. "Critical Impact of Isospin Asymmetry in Elucidating Magicity Across Isotonic Chains of Different Mass Regions Using Relativistic Energy Density Functional" Atoms 12, no. 12: 62. https://doi.org/10.3390/atoms12120062
APA StyleYadav, P. K., Biswal, N., Panda, R. N., Mishra, S., Kumar, R., & Bhuyan, M. (2024). Critical Impact of Isospin Asymmetry in Elucidating Magicity Across Isotonic Chains of Different Mass Regions Using Relativistic Energy Density Functional. Atoms, 12(12), 62. https://doi.org/10.3390/atoms12120062