CP Violation: Differing Binding Energy Levels of Quarks and Antiquarks, and Their Transitions in Λ-Baryons and B-Mesons
Abstract
:1. Introduction
2. Binding Energy Levels of Charm and Bottom (Anti)Quarks
2.1. Quark Flips in -Baryons
2.2. Quark Flips between K0 and Heavy Quarkonia
3. Conclusions and Comparisons between Particles
3.1. Summary of Conclusions
- (1a)
- The u quark is the ground state in the doublet (u, d), whereas is the ground state in the doublet (, ).
- (1b)
- In both doublets, the energy levels are separated by the same amount of energy, a gap of 1.64 MeV.
- (2a)
- It is cheaper to bind a c quark rather than a antiquark; the c-binding costs 154 fewer MeV.
- (2b)
- It is also cheaper to bind an s quark rather than an antiquark; the s-binding costs 182 fewer MeV.
- (2c)
- The cheaper energetics of the second-generation quarks versus the more expensive bindings of antiquarks are strong grounds for CP violation [8,9,10,11,12,13,14,15]. In fact, it seems quite possible that antibaryons, beyond ground-state antinucleons, were not at all created in the hadron epoch of the universe [24,25,26,27,28,29,30,31], leading to severe baryon asymmetry from the outset.
- (3a)
- Surprisingly, binding a flipped valence b quark is very expensive, about more expensive than binding a flipped valence antiquark: it costs an additional ∼283 MeV, when an s quark makes the transition to the higher state b, relative to the corresponding antiquark transition .
- (3b)
3.2. Comparisons in B Mesons and Baryons
- (i)
- (ii)
- On the other hand, the values of the B-mesons are lower by another 45 MeV, which is also the rest-mass difference (e.g., MeV), as well as the energy of the photons being emitted in the seen electromagnetic decays
- (iii)
- It appears then that B* (where q = u, d, s) are metastable states (Equation (16)) in which the strong field provides marginal support to the antiquarks (Equation (14)). The mean lifetimes of these decays have not been measured yet, but they should turn out to be brief (∼10−17–10−20 s) due to the spontaneity of the electromagnetic decays (16).
3.3. Error Estimates
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, A.D.; Groom, E.D.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of particle physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
- Particle Data Group; Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; et al. Review of particle physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar]
- Rochester, G.D.; Butler, C.C. Evidence for the existence of new unstable elementary particles. Nature 1947, 160, 855. [Google Scholar] [CrossRef]
- Gell-Mann, M. A schematic model of baryons and mesons. Phys. Lett. 1964, 8, 214. [Google Scholar] [CrossRef]
- Zweig, G. An SU3 Model for Strong Interaction Symmetry and Its Breaking; CERN: Geneva, Switzerland, 1964. [Google Scholar]
- Bloom, E.D. High-energy inelastic e-p scattering at 6° and 10°. Phys. Rev. Lett. 1969, 23, 930. [Google Scholar] [CrossRef]
- Breidenbach, M.; Friedman, J.I.; Kendall, H.W.; Bloom, E.D.; Coward, D.H.; DeStaebler, H.; Drees, J.; Mo, L.W.; Taylor, R.E. Observed behavior of highly inelastic electron-proton scattering. Phys. Rev. Lett. 1969, 23, 935. [Google Scholar] [CrossRef]
- Christodoulou, D.M.; Kazanas, D. On the energy budget of quarks and hadrons, their inconspicuous “strong charge”, and the impact of Coulomb repulsion on their charged ground states. Particles 2024, 7, 653–682. [Google Scholar] [CrossRef]
- Christenson, J.H.; Cronin, J.W.; Fitch, V.L.; Turlay, R. Evidence for the 2π decay of the K20 meson. Phys. Rev. Lett. 1964, 13, 138. [Google Scholar] [CrossRef]
- KTeV Collaboration; Alavi-Harati, A. Observation of direct CP violation in KS,L→ππ decays. Phys. Rev. Lett. 1999, 83, 22. [Google Scholar] [CrossRef]
- NA48 Collaboration; Fanti, V.; Lai, A.; Marras, D.; Musa, L.; Bevan, A.J.; Gershon, T.J.; Hay, B.; Moore, R.W.; Moore, K.N.; et al. A new measurement of direct CP violation in two pion decays of the neutral kaon. Phys. Lett. B 1999, 465, 335. [Google Scholar] [CrossRef]
- BABAR Collaboration; Aubert, B.; Boutigny, D.; De Bonis, I.; Gaillard, J.M.; Jeremie, A.; Karyotakis, Y.; Lees, J.P.; Robbe, P.; Tisserand, V.; et al. Measurement of CP-violating asymmetries in B0 decays to CP eigen-states. Phys. Rev. Lett. 2001, 86, 2515. [Google Scholar] [CrossRef] [PubMed]
- Belle Collaboration; Abe, K.; Abe, R.; Adachi, I.; Ahn, B.S.; Aihara, H.; Akatsu, M.; Alimonti, G.; Asai, K.; Asai, M.; et al. Observation of large CP violation in the neutral B meson system. Phys. Rev. Lett. 2019, 87, 091802. [Google Scholar] [CrossRef]
- Aaij LHCb Collaboration; Aaij, R.; Abellan Beteta, C.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; et al. First observation of CP violation in the decays of mesons. Phys. Rev. Lett. 2013, 110, 221601. [Google Scholar] [CrossRef]
- LHCb Collaboration; Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Aidala, C.A.; Ajaltouni, Z.; Akar, S.; Albicocco, P.; Albrecht, J.; et al. Observation of CP violation in charm decays. Phys. Rev. Lett. 2019, 122, 221803. [Google Scholar] [CrossRef]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Durr, S.; Fodor, Z.; Frison, J.; Hoelbling, C.; Hoffmann, R.; Katz, S.D.; Krieg, S.; Kurth, T.l.; Lellouch, L.; Lippert, T.; et al. Ab initio determination of light hadron masses. Science 2008, 322, 1224. [Google Scholar] [CrossRef]
- Yang, Y.B.; Liang, J.; Bi, Y.J.; Chen, Y.; Draper, T.; Liu, K.F.; Liu, Z. Proton mass decomposition from the QCD energy momentum tensor. Phys. Rev. Lett. 2018, 121, 212001. [Google Scholar] [CrossRef]
- Metz, A.; Pasquini, B.; Rodini, S. Understanding the proton mass in QCD. SciPost Phys. Proc. 2022, 8, 105. [Google Scholar] [CrossRef]
- Rohlf, J.W. Modern Physics; John Wiley: New York, NY, USA, 1994. [Google Scholar]
- Povh, B.; Rith, K.; Scholz, C.; Zetsche, F.; Rodejohann, W. Particles and Nuclei, 4th ed.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Christman, J.R. Isospin: Conserved in Strong Interactions. 2001. Available online: www.physnet.org/modules/pdf_modules/m278.pdf (accessed on 10 October 2024).
- Griffiths, D. Introduction to Elementary Particles, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Fromerth, M.J.; Kuznetsova, I.; Labun, L.; Letessier, J.; Rafelski, J. From quark-gluon universe to neutrino decoupling: 200 < T < 2 MeV. Acta Phys. Pol. B 2012, 43, 2261. [Google Scholar]
- Rafelski, J. Connecting QGP-heavy ion physics to the early universe. Nucl. Phys. B Proc. Suppl. 2013, 243–244, 155. [Google Scholar] [CrossRef]
- Dimopoulos, S.; Susskind, L. Baryon number of the universe. Phys. Rev. D 1978, 18, 4500. [Google Scholar] [CrossRef]
- Barrow, J.; Turner, M. Baryosynthesis and the origin of galaxies. Nature 1981, 291, 469. [Google Scholar] [CrossRef]
- Turner, M. Big bang baryosynthesis and grand unification. AIP Conf. Proc. 1981, 72, 224. [Google Scholar]
- Shaposhnikov, M.E.; Farrar, G.R. Baryon asymmetry of the universe in the Minimal Standard Model. Phys. Rev. Lett. 1993, 70, 2833. [Google Scholar]
- Riotto, A.; Trodden, M. Recent progress in baryogenesis. Ann. Rev. Nucl. Part Sci. 1999, 49, 46. [Google Scholar] [CrossRef]
- Canetti, L.; Drewes, M.; Shaposhnikov, M. Matter and antimatter in the universe. New J. Phys. 2012, 14, 095012. [Google Scholar] [CrossRef]
- Bernardo, J.M.; Smith, A.F.M. Bayesian Theory; John Wiley: New York, NY, USA, 2000. [Google Scholar]
- Gelman, A. Bayesian Data Analysis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- van de Schoot, R.; Depaoli, S.; King, R.; Kramer, B.; Märtens, K.; Tadesse, M.G.; Vannucci, M.; Gelman, A.; Veen, D.; Willemsen, J.; et al. Bayesian statistics and modeling. Nat. Rev. Methods Primers 2021, 1, 1. [Google Scholar] [CrossRef]
- Navas, S.; Amsler, C.; Gutsche, T.; Hanhart, C.; Hernández-Rey, J.J.; Lourenço, C.; Masoni, A.; Mikhasenko, M.; Mitchell, R.E.; Patrignani, C.; et al. Review of particle physics. Phys. Rev. D 2024, 110, 030001. [Google Scholar] [CrossRef]
- Taylor, J.R. An Introduction to Error Analysis, 2nd ed.; University Science Books: Sausalito, CA, USA, 1997. [Google Scholar]
- Tiesinga, E.; Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA recommended values of the fundamental physical constants: 2018. Rev. Mod. Phys. 2021, 93, 025010. [Google Scholar] [CrossRef]
q= | u | d | s | c | b | t |
---|---|---|---|---|---|---|
MeV | MeV | MeV | GeV | GeV | GeV |
Particle Symbol | Quark Content | Rest-Mass (MeV) | Q (e) | I | S | C | Y | (MeV) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
uds | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9.92 | 1015.45 | |||
udc | +1 | 0 | 0 | 1 | 0 | 0 | 2 | +1 | 0.396 | 1009.60 | ||
udb | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.342 | 1432.80 |
Particle Symbol | Quark Content | Rest-Mass (MeV) | Q (e) | I | S | C | Y | (MeV) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
d | 0 | 1 | 0 | 0 | 1 | +1 | 4.07 | 399.54 | ||||
c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0874 | 443.90 | ||
b | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.124 | 1038.70 |
q | Level (MeV) | Gap (MeV) | Level (MeV) | Gap (MeV) | |||
---|---|---|---|---|---|---|---|
b | 544.68 | 444.47 | |||||
↑ | +417.35 | ↑ | +134.77 | ||||
s | 127.33 | 309.70 | |||||
↑ | +7.07 | ↑ | +35.61 | ||||
c | 120.26 | 274.09 | |||||
↑ | +118.62 | ↑ | +272.45 | ||||
d | 1.64 | 1.64 | |||||
↑ | +1.64 | ↑ | +1.64 | ||||
u | Ground | Ground |
(udb) | (s) | |
(uds) | (udc) | |
= |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christodoulou, D.M.; Kazanas, D. CP Violation: Differing Binding Energy Levels of Quarks and Antiquarks, and Their Transitions in Λ-Baryons and B-Mesons. Foundations 2024, 4, 552-559. https://doi.org/10.3390/foundations4040036
Christodoulou DM, Kazanas D. CP Violation: Differing Binding Energy Levels of Quarks and Antiquarks, and Their Transitions in Λ-Baryons and B-Mesons. Foundations. 2024; 4(4):552-559. https://doi.org/10.3390/foundations4040036
Chicago/Turabian StyleChristodoulou, Dimitris M., and Demosthenes Kazanas. 2024. "CP Violation: Differing Binding Energy Levels of Quarks and Antiquarks, and Their Transitions in Λ-Baryons and B-Mesons" Foundations 4, no. 4: 552-559. https://doi.org/10.3390/foundations4040036
APA StyleChristodoulou, D. M., & Kazanas, D. (2024). CP Violation: Differing Binding Energy Levels of Quarks and Antiquarks, and Their Transitions in Λ-Baryons and B-Mesons. Foundations, 4(4), 552-559. https://doi.org/10.3390/foundations4040036