Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = isoelectric focusing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1787 KiB  
Article
Buffer pH-Driven Electrokinetic Concentration of Proteins in a Straight Microfluidic Channel
by Diganta Dutta, Xavier Palmer, Debajit Chakraborty and Lanju Mei
Surfaces 2025, 8(3), 52; https://doi.org/10.3390/surfaces8030052 - 18 Jul 2025
Viewed by 279
Abstract
We present a buffer-pH-modulated electrokinetic concentration strategy in MEMS microchannels that harnesses simple pH shifts to neutralize and charge proteins, reversibly “pausing” them at a planar electric-gate electrode by tuning to their isoelectric point (pI) and mobilizing them with slight pH offsets under [...] Read more.
We present a buffer-pH-modulated electrokinetic concentration strategy in MEMS microchannels that harnesses simple pH shifts to neutralize and charge proteins, reversibly “pausing” them at a planar electric-gate electrode by tuning to their isoelectric point (pI) and mobilizing them with slight pH offsets under an applied field. This synergistic coupling of dynamic pH control and electrode-gated focusing, which requires only buffer composition changes, enables rapid and tunable protein capture and release across diverse channel geometries for lab-on-chip, preparative, and point-of-care diagnostics. Moreover, it dovetails with established MEMS biomedical platforms ranging from diagnostics to drug delivery and microsurgery to gene and cell-manipulation devices. Future work on tailored electrode coatings and optimized channel profiles will further boost selectivity, speed, and integration in sub-100 µm MEMS devices. Full article
Show Figures

Figure 1

18 pages, 3144 KiB  
Article
Comparative Forced Degradation Study of Anticomplement C5 Biosimilar and Originator Monoclonal Antibodies
by Merve Celik Yamaci, Ceren Pamukcu, Yigit Erdemgil, Ahmet Emin Atik, Zeynep Zulfiye Yildirim Keles and Ozge Can
Pharmaceuticals 2025, 18(4), 579; https://doi.org/10.3390/ph18040579 - 16 Apr 2025
Cited by 1 | Viewed by 894
Abstract
Background/Objectives: The stress testing of biotherapeutic products is a critical component of drug development, enabling the assessment of stability, biosimilarity, and degradation pathways. Subjecting biosimilar monoclonal antibodies to controlled stress conditions yields essential insights into their structural and functional integrity, informing formulation [...] Read more.
Background/Objectives: The stress testing of biotherapeutic products is a critical component of drug development, enabling the assessment of stability, biosimilarity, and degradation pathways. Subjecting biosimilar monoclonal antibodies to controlled stress conditions yields essential insights into their structural and functional integrity, informing formulation optimization and mitigating risks before clinical trials. In this study, biosimilar products were comprehensively characterized and compared with originator products under forced degradation. The aim was to expose the products to different stress conditions such as oxidative, pH, thermal, freeze/thaw, and agitation. The products were then tested at defined time points using validated analytical methods. Methods: This study employed size-exclusion chromatography to detect aggregated forms. Isoelectric focusing characterized protein charge variants (e.g., acidic/basic isoforms) from post-translational modifications, while capillary electrophoresis quantified product-related impurities (aggregates and fragments). In addition, a complement assay was used to determine the efficacy and potency under specific stress conditions. Results: Our findings showed that biosimilar and originator products exhibited similar degradation profiles. The biosimilar monoclonal antibody was found to be analytically similar to the originator product in terms of critical parameters related to efficacy and safety under various stress conditions such as aggregation profile, biological activity, and charge variant distribution. Conclusions: Forced degradation studies facilitated the comprehensive and well-validated characterization of the structure and biological activity of biosimilar monoclonal antibody products. Full article
(This article belongs to the Special Issue Biosimilars Development Strategies)
Show Figures

Figure 1

3 pages, 622 KiB  
Comment
Comment on Wang et al. Simufilam Reverses Aberrant Receptor Interactions of Filamin A in Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 13927
by Keith Fluegge and Kyle Fluegge
Int. J. Mol. Sci. 2025, 26(6), 2480; https://doi.org/10.3390/ijms26062480 - 11 Mar 2025
Viewed by 1297
Abstract
The authors have published their findings that simufilam, a small novel molecule suggested for clinical use in Alzheimer’s disease (AD), restores a deleterious conformation of filamin A (FLNA), which is a large intracellular scaffolding protein, as indicated by changes in isoelectric focusing points [...] Read more.
The authors have published their findings that simufilam, a small novel molecule suggested for clinical use in Alzheimer’s disease (AD), restores a deleterious conformation of filamin A (FLNA), which is a large intracellular scaffolding protein, as indicated by changes in isoelectric focusing points [...] Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

17 pages, 3730 KiB  
Article
Genome-Wide Characterization of Wholly Disordered Proteins in Arabidopsis
by Wenfen Long, Liang Zhao, Huimin Yang, Xinyi Yang, Yulong Bai, Xiuhua Xue, Doudou Wang and Shengcheng Han
Int. J. Mol. Sci. 2025, 26(3), 1117; https://doi.org/10.3390/ijms26031117 - 28 Jan 2025
Viewed by 1182
Abstract
Intrinsically disordered proteins (IDPs) include two types of proteins: partial disordered regions (IDRs) and wholly disordered proteins (WDPs). Extensive studies focused on the proteins with IDRs, but less is known about WDPs because of their difficult-to-form folded tertiary structure. In this study, we [...] Read more.
Intrinsically disordered proteins (IDPs) include two types of proteins: partial disordered regions (IDRs) and wholly disordered proteins (WDPs). Extensive studies focused on the proteins with IDRs, but less is known about WDPs because of their difficult-to-form folded tertiary structure. In this study, we developed a bioinformatics method for screening more than 50 amino acids in the genome level and found a total of 27 categories, including 56 WDPs, in Arabidopsis. After comparing with 56 randomly selected structural proteins, we found that WDPs possessed a more wide range of theoretical isoelectric point (PI), a more negative of Grand Average of Hydropathicity (GRAVY), a higher value of Instability Index (II), and lower values of Aliphatic Index (AI). In addition, by calculating the FCR (fraction of charged residue) and NCPR (net charge per residue) values of each WDP, we found 20 WDPs in R1 (FCR < 0.25 and NCPR < 0.25) group, 15 in R2 (0.25 ≤ FCR ≤ 0.35 and NCPR ≤ 0.35), 19 in R3 (FCR > 0.35 and NCPR ≤ 0.35), and two in R4 (FCR > 0.35 and NCPR > 0.35). Moreover, the gene expression and protein-protein interaction (PPI) network analysis showed that WDPs perform different biological functions. We also showed that two WDPs, SIS (Salt Induced Serine rich) and RAB18 (a dehydrin family protein), undergo the in vitro liquid-liquid phase separation (LLPS). Therefore, our results provide insight into understanding the biochemical characters and biological functions of WDPs in plants. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 2nd Edition)
Show Figures

Figure 1

15 pages, 1868 KiB  
Article
New Insights into Red and White Quinoa Protein Isolates: Nutritional, Functional, Thermal Properties
by Khalid A. Alsaleem, Rofida F. Moftah and Mennatallah M. A. El-Geddawy
Processes 2024, 12(12), 2822; https://doi.org/10.3390/pr12122822 - 9 Dec 2024
Viewed by 2001
Abstract
Quinoa (Chenopodium quinoa Willd.) seeds, renowned for their nutritional richness and balanced amino acid profile, offer promising potential as food ingredients. This study focused on extracting and characterizing the protein isolates from red and white quinoa varieties to evaluate their physicochemical and [...] Read more.
Quinoa (Chenopodium quinoa Willd.) seeds, renowned for their nutritional richness and balanced amino acid profile, offer promising potential as food ingredients. This study focused on extracting and characterizing the protein isolates from red and white quinoa varieties to evaluate their physicochemical and functional properties. Protein isolation involved alkaline solubilization and isoelectric precipitation, followed by characterization through amino acid analysis, phenolic profiling, scanning electron microscopy (SEM), zeta potential measurement, particle size distribution analysis, Differential Scanning Calorimetry (DSC), and rheological studies. The results showed that both the red and white quinoa protein isolates exhibited high protein content and essential amino acids, with notable differences in their amino acid compositions. The phenolic and flavonoid content varied between the red and white quinoa seeds, highlighting their potential antioxidant properties. SEM revealed distinct microstructural differences between the red and white quinoa protein isolates. Zeta potential measurements indicated the negative surface charges, influencing the stability in the solution. A particle size distribution analysis showed the monomodal distributions with minor variations in the mean particle size. The DSC profiles demonstrated multiple denaturation peaks, reflecting the complex protein compositions. Rheological studies indicated diverse gelation behaviors and mechanical properties. Overall, this comprehensive characterization underscores the potential of quinoa protein isolates as functional food ingredients with diverse applications in the food industry. Full article
(This article belongs to the Special Issue Separation and Extraction Techniques in Food Processing and Analysis)
Show Figures

Figure 1

11 pages, 412 KiB  
Article
Newborn Screening for Six Primary Conditions in a Clinical Setting in Morocco
by Sara El Janahi, Mounir Filali, Zakia Boudar, Amina Akhattab, Rachid El Jaoudi, Najib Al Idrissi, Nouzha Dini, Chakib Nejjari, Raquel Yahyaoui, Michele A. Lloyd-Puryear and Hassan Ghazal
Int. J. Neonatal Screen. 2024, 10(4), 80; https://doi.org/10.3390/ijns10040080 - 4 Dec 2024
Cited by 2 | Viewed by 2840
Abstract
Newborn screening (NBS) represents an important public health measure for the early detection of specified disorders; such screening can prevent disability and death, not only from metabolic disorders but also from endocrine, hematologic, immune, and cardiac disorders. Screening for critical congenital conditions affecting [...] Read more.
Newborn screening (NBS) represents an important public health measure for the early detection of specified disorders; such screening can prevent disability and death, not only from metabolic disorders but also from endocrine, hematologic, immune, and cardiac disorders. Screening for critical congenital conditions affecting newborns’ health is a great challenge, especially in developing countries such as Morocco, where NBS program infrastructure is lacking. In addition, the consanguinity rate is high in Morocco. This study aimed to demonstrate the feasibility of integrating NBS into a diagnostic laboratory for routine analysis. Six primary severe conditions were included: congenital hypothyroidism (CH), cystic fibrosis (CF), phenylketonuria (PKU), glucose-6-phosphate dehydrogenase deficiency (G6PD), congenital adrenal hyperplasia (CAH), and hemoglobinopathies. Methods: A retrospective investigation was carried out to examine the outcomes of NBS in Casablanca, Morocco. A total of 5511 newborn blood samples were collected via heel-prick sampling and tested for the above disorders. Most of the samples were collected within the third and sixth days of birth. The dried blood spots were analyzed via a quantitative immunofluorescence technique and isoelectric focusing. Results: A total of 72 newborns had one of the six pathological conditions. The most prevalent disorders were hemoglobinopathies, which were identified in 47 newborns (0.9%), with 29 having HbC carrier status (0.5%), 15 having Hb S carrier status (0.3%), and 3 having an Hb Bart’s carrier profile (0.05%). This was followed by G6PD deficiency, which was found to affect 16 newborns (0.32% of cases). CF was found in one case (0.02%), whereas five newborns (0.09%) tested positive for CAH. Additionally, two newborns (0.04%) tested positive for CH, and one newborn tested positive for PKU (0.02%). Conclusion: Our findings underscore the importance and success of NBS programs in preventing morbidity and mortality and improving the quality of life of affected neonates. The significant gap in data and research on these disorders within the Moroccan population highlights the urgent need to integrate NBS into routine practice in diagnostic laboratories across Morocco. This integration is crucial for enhancing the health and well-being of Moroccan newborns. Full article
Show Figures

Figure 1

17 pages, 3335 KiB  
Article
Characterization of the Bax Inhibitor-1 Family in Cauliflower and Functional Analysis of BobBIL4
by Xin Liu, Ning Guo, Shasha Li, Mengmeng Duan, Guixiang Wang, Mei Zong, Shuo Han, Zihan Wu, Fan Liu and Junjie Zhang
Int. J. Mol. Sci. 2024, 25(17), 9562; https://doi.org/10.3390/ijms25179562 - 3 Sep 2024
Cited by 2 | Viewed by 1152
Abstract
The Bax inhibitor-1 (BI-1) gene family, which is important for plant growth, development, and stress tolerance, remains largely unexplored in cauliflower. In this study, we identified and characterized cauliflower BI-1 family genes. Based on aligned homologous sequences and collinearity with Arabidopsis [...] Read more.
The Bax inhibitor-1 (BI-1) gene family, which is important for plant growth, development, and stress tolerance, remains largely unexplored in cauliflower. In this study, we identified and characterized cauliflower BI-1 family genes. Based on aligned homologous sequences and collinearity with Arabidopsis genes, we identified nine cauliflower BI-1 genes, which encode proteins that varied in length, molecular weight, isoelectric point, and predicted subcellular localization, including the Golgi apparatus, plasma membrane, and various compartments within the chloroplast. Phylogenetic analyses detected evolutionary conservation and divergence among these genes. Ten structural motifs were identified, with Motif 5 found to be crucial for inhibiting apoptosis. According to the cis-regulatory elements in their promoters, these genes likely influence hormone signaling and stress responses. Expression profiles among tissues highlighted the functional diversity of these genes, with particularly high expression levels observed in the silique and root. Focusing on BobBIL4, we investigated its role in brassinosteroid (BR)-mediated root development and salt stress tolerance. BobBIL4 expression levels increased in response to BR and salt treatments. The functional characterization of this gene in Arabidopsis revealed that it enhances root growth and salinity tolerance. These findings provide insights into BI-1 gene functions in cauliflower while also highlighting the potential utility of BobBIL4 for improving crop stress resistance. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 4704 KiB  
Review
Polysaccharide as a Separation Medium for Gel Electrophoresis
by Tsutomu Arakawa, Masataka Nakagawa, Chiaki Sakuma, Yui Tomioka, Yasunori Kurosawa and Teruo Akuta
Polysaccharides 2024, 5(3), 380-398; https://doi.org/10.3390/polysaccharides5030024 - 5 Aug 2024
Cited by 3 | Viewed by 3881
Abstract
Gel electrophoresis and size exclusion chromatography (SEC) are vital techniques in biochemical research, employing gel matrix structures made of polysaccharides or synthetic polymers like polyacrylamide for the analysis and separation of macromolecules. Polysaccharides, such as agarose, offer safer alternatives to acrylamide. Polysaccharide gels, [...] Read more.
Gel electrophoresis and size exclusion chromatography (SEC) are vital techniques in biochemical research, employing gel matrix structures made of polysaccharides or synthetic polymers like polyacrylamide for the analysis and separation of macromolecules. Polysaccharides, such as agarose, offer safer alternatives to acrylamide. Polysaccharide gels, notably agarose, facilitate the analysis and purification of proteins and nucleic acids through a molecular sieving mechanism. Gel electrophoresis for proteins is mainly divided into denaturing and native methods. Denaturing electrophoresis with sodium dodecyl sulfate (SDS) simplifies protein migration but disrupts molecular interactions. Conversely, native gel electrophoresis, without SDS, allows proteins to migrate based on the running pH and the isoelectric point of the proteins, while nucleic acids consistently migrate toward the anode. The electrophoresis of proteins with variable charges presents complexes. This review focuses on the use of polysaccharides, particularly agarose, for native gel electrophoresis, highlighting their applications in separating macromolecules. It also discusses the applications and limitations of agarose gels when used as a matrix for electrophoresis. Such information should help in designing electrophoresis experiments using polysaccharides. Full article
(This article belongs to the Collection Current Opinion in Polysaccharides)
Show Figures

Figure 1

18 pages, 4285 KiB  
Article
Surface Charge-Modulated Toxicity of Cysteine-Stabilized Silver Nanoparticles
by Magdalena Oćwieja, Anna Barbasz, Monika Wasilewska, Piotr Smoleń, Dorota Duraczyńska, Bogna D. Napruszewska, Mikołaj Kozak and Adam Węgrzynowicz
Molecules 2024, 29(15), 3629; https://doi.org/10.3390/molecules29153629 - 31 Jul 2024
Cited by 5 | Viewed by 1677
Abstract
The toxicity of silver nanoparticles (AgNPs) depends on their physicochemical properties. The ongoing research aims to develop effective methods for modifying AgNPs using molecules that enable control over the processes induced by nanoparticles in both normal and cancerous cells. Application of amino acid-stabilized [...] Read more.
The toxicity of silver nanoparticles (AgNPs) depends on their physicochemical properties. The ongoing research aims to develop effective methods for modifying AgNPs using molecules that enable control over the processes induced by nanoparticles in both normal and cancerous cells. Application of amino acid-stabilized nanoparticles appears promising, exhibiting tunable electrokinetic properties. Therefore, this study focused on determining the influence of the surface charge of cysteine (CYS)-stabilized AgNPs on their toxicity towards human normal B (COLO-720L) and T (HUT-78) lymphocyte cell lines. CYS-AgNPs were synthesized via the chemical reduction. Transmission electron microcopy (TEM) imaging revealed that they exhibited a quasi-spherical shape with an average size of 18 ± 3 nm. CYS-AgNPs remained stable under mild acidic (pH 4.0) and alkaline (7.4 and 9.0) conditions, with an isoelectric point observed at pH 5.1. Following a 24 h treatment of lymphocytes with CYS-AgNPs, concentration-dependent alterations in cell morphology were observed. Positively charged CYS-AgNPs notably decreased lymphocyte viability. Furthermore, they exhibited grater genotoxicity and more pronounced disruption of biological membranes compared to negatively charged CYZ-AgNPs. Despite both types of AgNPs interacting similarly with fetal bovine serum (FBS) and showing comparable profiles of silver ion release, the biological assays consistently revealed that the positively charged CYS-AgNPs exerted stronger effects at all investigated cellular levels. Although both types of CYS-AgNPs have the same chemical structure in their stabilizing layers, the pH-induced alterations in their surface charge significantly affect their biological activity. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry: 3rd Edition)
Show Figures

Graphical abstract

17 pages, 1092 KiB  
Review
Advances in Therapeutic Peptides Separation and Purification
by Othman Al Musaimi and Da’san M. M. Jaradat
Separations 2024, 11(8), 233; https://doi.org/10.3390/separations11080233 - 29 Jul 2024
Cited by 8 | Viewed by 6535
Abstract
Peptides are gaining prominence in various fields, including the pharmaceutical industry. To meet regulatory requirements, they must achieve a certain purity threshold to ensure safe administration. Numerous purification technologies have been employed to purify peptides, aiming to reduce cost and time while being [...] Read more.
Peptides are gaining prominence in various fields, including the pharmaceutical industry. To meet regulatory requirements, they must achieve a certain purity threshold to ensure safe administration. Numerous purification technologies have been employed to purify peptides, aiming to reduce cost and time while being sustainable and efficient. These include chromatography, magnetic nanoparticles, isoelectric focusing, and membrane filtration. The physicochemical properties of peptides are the main driving element behind these technologies. While chromatographic separation remains the gold standard for peptide separation and purification, with various models to predict the elution behaviors of peptides, other technologies have demonstrated their capability to meet the performance of established chromatographic methodologies, with better productivity and reduced cost. This opens the door for further investigational studies to assess these outcomes and potentially introduce new techniques for peptide purification. In this review, we examine these technologies in terms of their efficiency and their ability to meet sustainability requirements, concluding with remarks and an outlook on future advancements. Full article
(This article belongs to the Special Issue Peptide Synthesis, Separation and Purification)
Show Figures

Figure 1

17 pages, 4257 KiB  
Article
Functionalised Fibres as a Coupling Reinforcement Agent in Recycled Polymer Composites
by Klementina Pušnik Črešnar, Olivija Plohl and Lidija Fras Zemljič
Materials 2024, 17(11), 2739; https://doi.org/10.3390/ma17112739 - 4 Jun 2024
Cited by 2 | Viewed by 1185
Abstract
This study addresses the structure–property relationship within the green concept of wood fibres with cellulose nanofibre functionalised composites (nW-PPr) containing recycled plastic polyolefins, in particular, polypropylene (PP-r). It focuses especially on the challenges posed by nanoscience in relation to wood fibres (WF) and [...] Read more.
This study addresses the structure–property relationship within the green concept of wood fibres with cellulose nanofibre functionalised composites (nW-PPr) containing recycled plastic polyolefins, in particular, polypropylene (PP-r). It focuses especially on the challenges posed by nanoscience in relation to wood fibres (WF) and explores possible changes in the thermal properties, crystallinity, morphology, and mechanical properties. In a two-step methodology, wood fibres (50% wt%) were first functionalised with nanocellulose (nC; 1–9 wt%) and then, secondly, processed into composites using an extrusion process. The surface modification of nC improves its compatibility with the polymer matrix, resulting in improved adhesion, mechanical properties, and inherent biodegradability. The effects of the functionalised WF on the recycled polymer composites were investigated systematically and included analyses of the structure, crystallisation, morphology, and surface properties, as well as thermal and mechanical properties. Using a comprehensive range of techniques, including X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), zeta potential measurements, and dynamic mechanical analysis (DMA), this study aims to unravel the intricate interplay of factors affecting the performance and properties of the developed nanocellulose-functionalised wood fibre–polymer composites. The interfacial adhesion of the nW-PPr polymer composites, crystallisation process, and surface properties was improved due to the formation of an H-bond between the nW coupling agent and neat PP-r. In addition, the role of nW (1.0 wt%) as a nucleating agent resulted in increased crystallinity, or, on the other hand, promoted the interfacial interaction with the highest amount (3.0% wt%, 9.0% wt%) of nW in the PP-r preferentially between the nW and neat PP-r, and also postponed the crystallisation temperature. The changes in the isoelectric point of the nW-PPr polymer composites compared to the neat PP-r polymer indicate the acid content of the polymer composite and, consequently, the final surface morphology. Finally, the higher storage modulus of the composites compared to neat r-PP shows a dependence on improved crystallinity, morphology, and adhesion. It was clear that the results of this study contribute to a better understanding of sustainable materials and can drive the development of environmentally friendly composites applied in packaging. Full article
Show Figures

Figure 1

18 pages, 2260 KiB  
Review
Multiple Sclerosis: From the Application of Oligoclonal Bands to Novel Potential Biomarkers
by Grazia Maglio, Marina D’Agostino, Francesco Pio Caronte, Luciano Pezone, Amelia Casamassimi, Monica Rienzo, Erika Di Zazzo, Carmela Nappo, Nicola Medici, Anna Maria Molinari and Ciro Abbondanza
Int. J. Mol. Sci. 2024, 25(10), 5412; https://doi.org/10.3390/ijms25105412 - 15 May 2024
Cited by 6 | Viewed by 4285
Abstract
Multiple sclerosis is a chronic immune-mediated disorder of the central nervous system with a high heterogeneity among patients. In the clinical setting, one of the main challenges is a proper and early diagnosis for the prediction of disease activity. Current diagnosis is based [...] Read more.
Multiple sclerosis is a chronic immune-mediated disorder of the central nervous system with a high heterogeneity among patients. In the clinical setting, one of the main challenges is a proper and early diagnosis for the prediction of disease activity. Current diagnosis is based on the integration of clinical, imaging, and laboratory results, with the latter based on the presence of intrathecal IgG oligoclonal bands in the cerebrospinal fluid whose detection via isoelectric focusing followed by immunoblotting represents the gold standard. Intrathecal synthesis can also be evidenced by the measurement of kappa free light chains in the cerebrospinal fluid, which has reached similar diagnostic accuracy compared to that of oligoclonal bands in the identification of patients with multiple sclerosis; moreover, recent studies have also highlighted its value for early disease activity prediction. This strategy has significant advantages as compared to using oligoclonal band detection, even though some issues remain open. Here, we discuss the current methods applied for cerebrospinal fluid analysis to achieve the most accurate diagnosis and for follow-up and prognosis evaluation. In addition, we describe new promising biomarkers, currently under investigation, that could contribute both to a better diagnosis of multiple sclerosis and to its monitoring of the therapeutic treatment response. Full article
(This article belongs to the Special Issue Insights in Multiple Sclerosis (MS) and Neuroimmunology)
Show Figures

Figure 1

19 pages, 6738 KiB  
Review
Short-Chained Linear Scorpion Peptides: A Pool for Novel Antimicrobials
by Tolis Panayi, Spiridoula Diavoli, Vicky Nicolaidou, Christos Papaneophytou, Christos Petrou and Yiannis Sarigiannis
Antibiotics 2024, 13(5), 422; https://doi.org/10.3390/antibiotics13050422 - 5 May 2024
Cited by 6 | Viewed by 3155
Abstract
Scorpion venom peptides are generally classified into two main groups: the disulfide bridged peptides (DBPs), which usually target membrane-associated ion channels, and the non-disulfide bridged peptides (NDBPs), a smaller group with multifunctional properties. In the past decade, these peptides have gained interest because [...] Read more.
Scorpion venom peptides are generally classified into two main groups: the disulfide bridged peptides (DBPs), which usually target membrane-associated ion channels, and the non-disulfide bridged peptides (NDBPs), a smaller group with multifunctional properties. In the past decade, these peptides have gained interest because most of them display functions that include antimicrobial, anticancer, haemolytic, and anti-inflammatory activities. Our current study focuses on the short (9–19 amino acids) antimicrobial linear scorpion peptides. Most of these peptides display a net positive charge of 1 or 2, an isoelectric point at pH 9–10, a broad range of hydrophobicity, and a Grand Average of Hydropathy (GRAVY) Value ranging between −0.05 and 1.7. These features allow these peptides to be attracted toward the negatively charged phospholipid head groups of the lipid membranes of target cells, a force driven by electrostatic interactions. This review outlines the antimicrobial potential of short-chained linear scorpion venom peptides. Additionally, short linear scorpion peptides are in general more attractive for large-scale synthesis from a manufacturing point of view. The structural and functional diversity of these peptides represents a good starting point for the development of new peptide-based therapeutics. Full article
(This article belongs to the Special Issue Insights into Natural Antimicrobial Peptides)
Show Figures

Figure 1

18 pages, 3985 KiB  
Article
Identification of Fouling Occurring during Coupled Electrodialysis and Bipolar Membrane Electrodialysis Treatment for Tofu Whey Protein Recovery
by Rosie Deschênes Gagnon, Marie-Ève Langevin, Florence Lutin and Laurent Bazinet
Membranes 2024, 14(4), 88; https://doi.org/10.3390/membranes14040088 - 11 Apr 2024
Cited by 2 | Viewed by 2121
Abstract
Tofu whey, a by-product of tofu production, is rich in nutrients such as proteins, minerals, fats, sugars and polyphenols. In a previous work, protein recovery from tofu whey was studied by using a coupled environmental process of ED + EDBM to valorize this [...] Read more.
Tofu whey, a by-product of tofu production, is rich in nutrients such as proteins, minerals, fats, sugars and polyphenols. In a previous work, protein recovery from tofu whey was studied by using a coupled environmental process of ED + EDBM to valorize this by-product. This process allowed protein recovery by reducing the ionic strength of tofu whey during the ED process and acidifying the proteins to their isoelectric point during EDBM. However, membrane fouling was not investigated. The current study focuses on the fouling of membranes at each step of this ED and EDBM process. Despite a reduction in the membrane conductivities and some changes in the mineral composition of the membranes, no scaling was evident after three runs of the process with the same membranes. However, it appeared that the main fouling was due to the presence of isoflavones, the main polyphenols in tofu whey. Indeed, a higher concentration was observed on the AEMs, giving them a yellow coloration, while small amounts were found in the CEMs, and there were no traces on the BPMs. The glycosylated forms of isoflavones were present in higher concentrations than the aglycone forms, probably due to their high amounts of hydroxyl groups, which can interact with the membrane matrices. In addition, the higher concentration of isoflavones on the AEMs seems to be due to a combination of electrostatic interactions, hydrogen bonding, and π–π stacking, whereas only π–π stacking and hydrogen bonds were possible with the CEMs. To the best of our knowledge, this is the first study to investigate the potential fouling of BPMs by polyphenols, report the fouling of IEMs by isoflavones and propose potential interactions. Full article
Show Figures

Figure 1

10 pages, 2385 KiB  
Article
Molecular Characterization and Phylogenetic Analysis of Flightin Gene in Vespa basalis (Hymenoptera, Vespidae)
by Hasin Ullah, Xiaojuan Huang, Tong Zhou, Yan Tang, Danyang Zhu, Hongli Xu and Jiangli Tan
Animals 2024, 14(6), 978; https://doi.org/10.3390/ani14060978 - 21 Mar 2024
Viewed by 1698
Abstract
Flight is a complex physiological process requiring precise coordination of muscular contraction. A key protein in insect flight is flightin, which plays an integral role in the flight muscles. This research sought to evaluate the flight competence of the social wasp V. basalis [...] Read more.
Flight is a complex physiological process requiring precise coordination of muscular contraction. A key protein in insect flight is flightin, which plays an integral role in the flight muscles. This research sought to evaluate the flight competence of the social wasp V. basalis by characterizing the molecular components involved. Our study focused on Vespa basalis, one of the most dangerous hornet species, utilizing PCR to obtain a partial cDNA sequence of the flightin protein. We then employed phylogenetic and sequence analysis to gain insights into this protein in flight-related adaptations. The cDNA has an 1189-base pair sequence including an open reading frame (453 bp) encoding 150 amino acids. Analyzing the deduced amino acid sequence using an online tool revealed a molecular weight of 18.05 kDa, an isoelectric point of 5.84, four functional site patterns, and no transmembrane topology. We constructed a phylogenetic tree of flightin based on 38 species. Our analysis indicated that V. basalis is most closely related to V. mandarinia; this alignment is consistent with their similar aggressive behavior, but their evolutionary relationship, based on mitochondrial sequences, presents a contrast. These initial findings on the flightin gene in V. basalis lay the groundwork for future functional studies to elucidate its specific role in flight adaptations and explore its potential as a target for pest management strategies. Full article
(This article belongs to the Special Issue Adaptive Evolution and Trait Formation of Animals)
Show Figures

Figure 1

Back to TopTop