Surface Charge-Modulated Toxicity of Cysteine-Stabilized Silver Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of CYS-AgNPs Dispersed in Suspensions of Controlled pH
2.2. Determination of Interactions between CYS-AgNPs and Protein Molecules
2.3. Biological Activity of CYS-AgNPs Towards Lymphocytes
2.4. The Changes in the Lymphocyte Morphology as a Result of the CYS-AgNP Treatment
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Aqueous Suspension of CYS-AgNPs
3.3. Physicochemical Characteristic of CYS-AgNPs Dispersed in Suspensions
3.4. Estimation of Interactions between Biotinylated Bovine Serum Albumin (BSA-Bt) with CYS-AgNPs
3.5. Deposition of CYS-AgNPs on Solid Substrate
3.6. Physicochemical Characteristics of CYS-AgNP Monolayers and Their Interactions with Culture Medium Using Streaming Potential Measurements and Microscopic Imaging
3.7. Exposure of Lymphocytes to CYS-AgNPs
3.8. Determination of Cell Viability after CYS-AgNP Treatment
3.9. Determination of CYS-AgNP Uptake
3.10. Assessment of Lymphocyte DNA Damage after the CYS-AgNP Exposure
3.11. Determination of Lymphocyte Morphology after Exposure to CYS-AgNPs
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magdy, G.; Aboelkassim, E.; Abd Elhaleem, S.M.; Belal, F. A comprehensive review on silver nanoparticles: Synthesis approaches, characterization techniques, and recent pharmaceutical, environmental, and antimicrobial applications. Microchem. J. 2023, 196, 109615. [Google Scholar] [CrossRef]
- Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masarudin, M.J.; Zulkharnain, A.; Nawawi, N.M.; Karim, M.; Che Abdullah, C.A.; Ahmad, S.A. Synthesis, characterization and biomedical application of silver nanoparticles. Materials 2022, 15, 427. [Google Scholar] [CrossRef]
- Luceri, A.; Francese, R.; Lembo, D.; Ferraris, M.; Balagna, C. Silver nanoparticles: Review of antiviral properties, mechanism of action and applications. Microorganisms 2023, 11, 629. [Google Scholar] [CrossRef]
- Thammawithan, S.; Siritongsuk, P.; Nasompag, S.; Daduang, S.; Klaynongsruang, S.; Prapasarakul, N.; Patramanon, R. A biological study of anisotropic silver nanoparticles and their antimicrobial application for topical use. Vet. Sci. 2021, 8, 177. [Google Scholar] [CrossRef]
- Shehabeldine, A.M.; Salem, S.S.; Ali, O.M.; Abd-Elsalam, K.A.; Elkady, F.M.; Hashem, A.H. Multifunctional silver nanoparticles based on chitosan: Antibacterial, antibiofilm, antifungal, antioxidant, and wound-healing activities. J. Fungi 2022, 8, 612. [Google Scholar] [CrossRef]
- Gherasim, O.; Puiu, R.A.; Bîrcă, A.C.; Burdușel, A.C.; Grumezescu, A.M. An updated review on silver nanoparticles in biomedicine. Nanomaterials 2020, 10, 2318. [Google Scholar] [CrossRef]
- Hayat, P.; Khan, I.; Rehman, A.; Jamil, T.; Hayat, A.; Rehman, M.U.; Ullah, N.; Sarwar, A.; Alharbi, A.A.; Dablool, A.S.; et al. Myogenesis and analysis of the antimicrobial potential of silver nanoparticles (AgNPs) against pathogenic bacteria. Molecules 2023, 28, 637. [Google Scholar] [CrossRef] [PubMed]
- Grelich, C.; Braun, D.; Peetsch, A.; Diendorf, J.; Siebers, B.; Epple, M.; Köller, M. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv. 2012, 2, 6981. [Google Scholar] [CrossRef]
- Arjun, P.N.J.; Sankar, B.; Shankar, K.V.; Kulkarni, N.V.; Sivasankaran, S.; Shankar, B. Silver and silver nanoparticles for the potential treatment of COVID-19: A review. Coatings 2022, 12, 1679. [Google Scholar] [CrossRef]
- Baselga, M.; Uranga-Murillo, I.; de Miguel, D.; Arias, M.; Sebastián, V.; Pardo, J.; Arruebo, M. Silver nanoparticles–polyethyleneimine-based coatings with antiviral activity against SARS-CoV-2: A new method to functionalize filtration media. Materials 2022, 15, 4742. [Google Scholar] [CrossRef]
- Kumari, S.A.; Patlolla, A.K.; Madhusudhanachary, P. Biosynthesis of silver nanoparticles using Azadirachta indica and their antioxidant and anticancer effects in cell lines. Micromachines 2022, 13, 1416. [Google Scholar] [CrossRef] [PubMed]
- Alduraihem, N.S.; Bhat, R.S.; Al-Zahrani, S.A.; Elnagar, D.M.; Alobaid, H.M.; Daghestani, M.H. Anticancer and antimicrobial activity of silver nanoparticles synthesized from pods of Acacia nilotica. Processes 2023, 11, 301. [Google Scholar] [CrossRef]
- Gomes, H.I.; Martins, C.S.; Prior, J.A. Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. Nanomaterials 2021, 11, 964. [Google Scholar] [CrossRef] [PubMed]
- El Badawy, A.M.; Silva, R.G.; Morris, B.; Scheckel, K.G.; Suidan, M.T.; Tolaymat, T.M. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 2011, 45, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. J. Nanomater. 2015, 16, 53. [Google Scholar] [CrossRef]
- Suresh, A.K.; Pelletier, D.A.; Wang, W.; Morrell-Falvey, J.L.; Gu, B.; Doktycz, M.J. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 2012, 28, 2727. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.; Pokhrel, L.R.; Dubey, B.; Tolaymat, T.M.; Maier, K.J.; Liu, X. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity. Sci. Total Environ. 2014, 468, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Kasemets, K.; Käosaar, S.; Vija, H.; Fascio, U.; Mantecca, P. Toxicity of differently sized and charged silver nanoparticles to yeast Saccharomyces cerevisiae BY4741: A nano-biointeraction perspective. Nanotoxicology 2019, 13, 1041–1059. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xiang, Q.; Shen, L.; Ling, J.; Zhou, C.; Hu, J.; Chen, L. Surface charge-dependent bioaccumulation dynamics of silver nanoparticles in freshwater algae. Chemosphere 2020, 247, 125936. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef]
- Kubo, A.L.; Capjak, I.; Vrček, I.V.; Bondarenko, O.M.; Kurvet, I.; Vija, H.; Ivask, A.; Kasements, K.; Kahru, A. Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids Surf. Biointerfaces 2018, 170, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Gibała, A.; Żeliszewska, P.; Gosiewski, T.; Krawczyk, A.; Duraczyńska, D.; Szaleniec, J.; Szaleniec, M.; Oćwieja, M. Antibacterial and antifungal properties of silver nanoparticles—Effect of a surface-stabilizing agent. Biomolecules 2021, 11, 1481. [Google Scholar] [CrossRef]
- Oćwieja, M.; Barbasz, A.; Walas, S.; Roman, M.; Paluszkiewicz, C. Physicochemical properties and cytotoxicity of cysteine-functionalized silver nanoparticles. Colloids Surf. Biointerfaces 2017, 160, 429. [Google Scholar] [CrossRef]
- Oćwieja, M. Self-assembly of cysteine-functionalized silver nanoparticles at solid/liquid interfaces. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 520. [Google Scholar] [CrossRef]
- Oćwieja, M.; Morga, M. Electrokinetic properties of cysteine-stabilized silver nanoparticles dispersed in suspensions and deposited on solid surfaces in the form of monolayers. Electrochim. Acta 2019, 297, 1000. [Google Scholar] [CrossRef]
- Bertelà, F.; Marsotto, M.; Meneghini, C.; Burratti, L.; Maraloiu, V.A.; Iucci, G.; Battocchio, C. Biocompatible Silver Nanoparticles: Study of the Chemical and Molecular Structure, and the Ability to Interact with Cadmium and Arsenic in Water and Biological Properties. Nanomaterials 2021, 11, 2540. [Google Scholar] [CrossRef]
- Wypij, M.; Jędrzejewski, T.; Trzcińska-Wencel, J.; Ostrowski, M.; Rai, M.; Golińska, P. Green synthesized silver nanoparticles: Antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front. Microbiol. 2021, 12, 632505. [Google Scholar] [CrossRef] [PubMed]
- Mariam, J.; Dongre, P.M.; Kothari, D.C. Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J. Fluoresc. 2021, 21, 2193. [Google Scholar] [CrossRef]
- Hyltegren, K.; Hulander, M.; Andersson, M.; Skepö, M. Adsorption of fibrinogen on silica surfaces—The effect of attached nanoparticles. Biomolecules 2020, 10, 413. [Google Scholar] [CrossRef] [PubMed]
- Carine Dal, P.; Filippin-Monteiro, F.B.; Sierra Restrepo, J.A.; Pittella, F.; Silva, A.H.; de Souza, P.A.; de Campos, A.M.; Creczynski-Pasa, T.B. Influence of surfactant and lipid type on the physicochemical properties and biocompatibility of solid lipid nanoparticles. Int. J. Environ. Res. Public Health 2014, 11, 8581–8596. [Google Scholar] [CrossRef]
- AshaRani, P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Kéri, A.; Kálomista, I.; Ungor, D.; Bélteki, Á.; Csapó, E.; Dékány, I.; Galbács, G. Determination of the structure and composition of Au-Ag bimetallic spherical nanoparticles using single particle ICP-MS measurements performed with normal and high temporal resolution. Talanta 2018, 179, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Wilchek, M.; Bayer, E.A. Methods in Enzymology. In Avidin-Biotin Technology; Academic Press: San Diego, CA, USA, 1990; Volume 184. [Google Scholar]
- Adamczyk, Z.; Zaucha, M.; Zembala, M. Zeta potential of mica covered by colloid particles: A streaming potential study. Langmuir 2010, 26, 9368–9377. [Google Scholar] [CrossRef] [PubMed]
- Monteiro-Riviere, N.A.; Samberg, M.E.; Oldenburg, S.J.; Riviere, J.E. Protein binding modulates the cellular uptake of silver nanoparticles into human cells: Implications for in vitro to in vivo extrapolations? Toxicol. Lett. 2013, 220, 286–293. [Google Scholar] [CrossRef] [PubMed]
Property/Conditions [Unit] Value | pH | ||
---|---|---|---|
4.0 | 7.4 | 9.0 | |
plasmon absorption maximum [nm] | 401 | 397 | 397 |
nanoparticle size (diameter) [nm] from TEM | 18 ± 3 | 18 ± 2 | 19 ± 4 |
polydispersity index (PdI) | 0.17 | 0.11 | 0.21 |
diffusion coefficient [10−7 cm2 s−1] T = 37 °C, determined from DLS technique at ionic strength: 10−4 M NaCl 10−2 M NaCl | 3.58 ± 0.03 0.52 ± 0.12 | 3.39 ± 0.03 0.36 ± 0.15 | 3.79 ± 0.03 0.66 ± 0.13 |
hydrodynamic diameter [nm] T = 37 °C, at ionic strength: 10−4 M NaCl 10−2 M NaCl | 18 ± 3 124 ± 12 | 19 ± 3 178 ± 12 | 18 ± 4 18 ± 2 |
electrophoretic mobility [(μmcm)(Vs)−1] T = 37 °C, determined from ELS technique at ionic strength: 10−4 M NaCl 10−2 M NaCl | 4.24 ± 0.03 2.11 ± 0.03 | −2.45 ± 0.03 −1.19 ± 0.10 | −3.11 ± 0.08 −1.55 ± 0.03 |
zeta potential [mV] T = 37 °C, at ionic strength: 10−4 M NaCl 10−2 M NaCl | 69 ± 2 28 ± 4 | −39 ± 2 −18 ± 4 | −48 ± 3 −23 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oćwieja, M.; Barbasz, A.; Wasilewska, M.; Smoleń, P.; Duraczyńska, D.; Napruszewska, B.D.; Kozak, M.; Węgrzynowicz, A. Surface Charge-Modulated Toxicity of Cysteine-Stabilized Silver Nanoparticles. Molecules 2024, 29, 3629. https://doi.org/10.3390/molecules29153629
Oćwieja M, Barbasz A, Wasilewska M, Smoleń P, Duraczyńska D, Napruszewska BD, Kozak M, Węgrzynowicz A. Surface Charge-Modulated Toxicity of Cysteine-Stabilized Silver Nanoparticles. Molecules. 2024; 29(15):3629. https://doi.org/10.3390/molecules29153629
Chicago/Turabian StyleOćwieja, Magdalena, Anna Barbasz, Monika Wasilewska, Piotr Smoleń, Dorota Duraczyńska, Bogna D. Napruszewska, Mikołaj Kozak, and Adam Węgrzynowicz. 2024. "Surface Charge-Modulated Toxicity of Cysteine-Stabilized Silver Nanoparticles" Molecules 29, no. 15: 3629. https://doi.org/10.3390/molecules29153629
APA StyleOćwieja, M., Barbasz, A., Wasilewska, M., Smoleń, P., Duraczyńska, D., Napruszewska, B. D., Kozak, M., & Węgrzynowicz, A. (2024). Surface Charge-Modulated Toxicity of Cysteine-Stabilized Silver Nanoparticles. Molecules, 29(15), 3629. https://doi.org/10.3390/molecules29153629