Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = irreversible thermodynamics of open systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1473 KiB  
Article
Stochastic Entropy Production Associated with Quantum Measurement in a Framework of Markovian Quantum State Diffusion
by Claudia L. Clarke and Ian J. Ford
Entropy 2024, 26(12), 1024; https://doi.org/10.3390/e26121024 - 26 Nov 2024
Cited by 5 | Viewed by 1015
Abstract
The reduced density matrix that characterises the state of an open quantum system is a projection from the full density matrix of the quantum system and its environment, and there are many full density matrices consistent with a given reduced version. Without a [...] Read more.
The reduced density matrix that characterises the state of an open quantum system is a projection from the full density matrix of the quantum system and its environment, and there are many full density matrices consistent with a given reduced version. Without a specification of relevant details of the environment, the time evolution of a reduced density matrix is therefore typically unpredictable, even if the dynamics of the full density matrix are deterministic. With this in mind, we investigate a two-level open quantum system using a framework of quantum state diffusion. We consider the pseudorandom evolution of its reduced density matrix when subjected to an environment-driven process that performs a continuous quantum measurement of a system observable, invoking dynamics that asymptotically send the system to one of the relevant eigenstates. The unpredictability is characterised by a stochastic entropy production, the average of which corresponds to an increase in the subjective uncertainty of the quantum state adopted by the system and environment, given the underspecified dynamics. This differs from a change in von Neumann entropy, and can continue indefinitely as the system is guided towards an eigenstate. As one would expect, the simultaneous measurement of two non-commuting observables within the same framework does not send the system to an eigenstate. Instead, the probability density function describing the reduced density matrix of the system becomes stationary over a continuum of pure states, a situation characterised by zero further stochastic entropy production. Transitions between such stationary states, brought about by changes in the relative strengths of the two measurement processes, give rise to finite positive mean stochastic entropy production. The framework investigated can offer useful perspectives on both the dynamics and irreversible thermodynamics of measurement in quantum systems. Full article
(This article belongs to the Special Issue Stochastic Thermodynamics of Microscopic Systems)
Show Figures

Figure 1

41 pages, 1918 KiB  
Review
Semi-Symmetric Metric Gravity: A Brief Overview
by Himanshu Chaudhary, Lehel Csillag and Tiberiu Harko
Universe 2024, 10(11), 419; https://doi.org/10.3390/universe10110419 - 7 Nov 2024
Cited by 3 | Viewed by 1296
Abstract
We present a review of the Semi-Symmetric Metric Gravity (SSMG) theory, representing a geometric extension of standard general relativity, based on a connection introduced by Friedmann and Schouten in 1924. The semi-symmetric connection is a connection that generalizes the Levi-Civita one by allowing [...] Read more.
We present a review of the Semi-Symmetric Metric Gravity (SSMG) theory, representing a geometric extension of standard general relativity, based on a connection introduced by Friedmann and Schouten in 1924. The semi-symmetric connection is a connection that generalizes the Levi-Civita one by allowing for the presence of a simple form of the torsion, described in terms of a torsion vector. The Einstein field equations are postulated to have the same form as in standard general relativity, thus relating the Einstein tensor constructed with the help of the semi-symmetric connection, with the energy–momentum tensor. The inclusion of the torsion contributions in the field equations has intriguing cosmological implications, particularly during the late-time evolution of the Universe. Presumably, these effects also dominate under high-energy conditions, and thus SSMG could potentially address unresolved issues in general relativity and cosmology, such as the initial singularity, inflation, or the 7Li problem of the Big-Bang Nucleosynthesis. The explicit presence of torsion in the field equations leads to the non-conservation of the energy–momentum tensor, which can be interpreted within the irreversible thermodynamics of open systems as describing particle creation processes. We also review in detail the cosmological applications of the theory, and investigate the statistical tests for several models, by constraining the model parameters via comparison with several observational datasets. Full article
(This article belongs to the Special Issue Dark Energy and Dark Matter)
Show Figures

Figure 1

40 pages, 796 KiB  
Review
Energy-Momentum Squared Gravity: A Brief Overview
by Ricardo A. C. Cipriano, Nailya Ganiyeva, Tiberiu Harko, Francisco S. N. Lobo, Miguel A. S. Pinto and João Luís Rosa
Universe 2024, 10(9), 339; https://doi.org/10.3390/universe10090339 - 23 Aug 2024
Cited by 6 | Viewed by 1464
Abstract
In this work, we present a review of Energy-Momentum Squared Gravity (EMSG)—more specifically, f(R,TμνTμν) gravity, where R represents the Ricci scalar and Tμν denotes the energy-momentum tensor. The inclusion of quadratic [...] Read more.
In this work, we present a review of Energy-Momentum Squared Gravity (EMSG)—more specifically, f(R,TμνTμν) gravity, where R represents the Ricci scalar and Tμν denotes the energy-momentum tensor. The inclusion of quadratic contributions from the energy-momentum components has intriguing cosmological implications, particularly during the Universe’s early epochs. These effects dominate under high-energy conditions, enabling EMSG to potentially address unresolved issues in General Relativity (GR), such as the initial singularity and aspects of big-bang nucleosynthesis in certain models. The theory’s explicit non-minimal coupling between matter and geometry leads to the non-conservation of the energy-momentum tensor, which prompts the investigation of cosmological scenarios through the framework of irreversible thermodynamics of open systems. By employing this formalism, we interpret the energy-balance equations within EMSG from a thermodynamic perspective, viewing them as descriptions of irreversible matter creation processes. Since EMSG converges to GR in a vacuum and differences emerge only in the presence of an energy-momentum distribution, these distinctions become significant in high-curvature regions. Therefore, deviations from GR are expected to be pronounced in the dense cores of compact objects. This review delves into these facets of EMSG, highlighting its potential to shed light on some of the fundamental questions in modern cosmology and gravitational theory. Full article
(This article belongs to the Collection Modified Theories of Gravity and Cosmological Applications)
Show Figures

Figure 1

12 pages, 310 KiB  
Article
Thermodynamic Considerations on the Biophysical Interaction between Low-Energy Electromagnetic Fields and Biosystems
by Umberto Lucia and Giulia Grisolia
Membranes 2024, 14(8), 179; https://doi.org/10.3390/membranes14080179 - 22 Aug 2024
Viewed by 1854
Abstract
A general theory explaining how electromagnetic waves affect cells and biological systems has not been completely accepted yet; nevertheless, extremely low-frequency electromagnetic fields (ELF-EMFs) can interfere with and modify several molecular cellular processes. The therapeutic effect of EMFs has been investigated in several [...] Read more.
A general theory explaining how electromagnetic waves affect cells and biological systems has not been completely accepted yet; nevertheless, extremely low-frequency electromagnetic fields (ELF-EMFs) can interfere with and modify several molecular cellular processes. The therapeutic effect of EMFs has been investigated in several clinical conditions with promising results: in this context a better understanding of mechanisms by which ELF-EMF influences cellular events is necessary and it could lead to more extended and specific clinical applications in different pathological conditions. This paper develops a thermodynamic model to explain how ELF-EMF directly interferes with the cellular membrane, inducing a biological response related to a cellular energy conversion and modification of flows across cell membranes. Indeed, energy, irreversibly consumed by cellular metabolism, is converted into entropy variation. The proposed thermodynamic model views living systems as adaptative open systems, analysing the changes in energy and matter moving in and out of the cell. Full article
27 pages, 3988 KiB  
Article
Methods to Calculate Entropy Generation
by Jude A. Osara and Michael D. Bryant
Entropy 2024, 26(3), 237; https://doi.org/10.3390/e26030237 - 7 Mar 2024
Cited by 4 | Viewed by 5142
Abstract
Entropy generation, formulated by combining the first and second laws of thermodynamics with an appropriate thermodynamic potential, emerges as the difference between a phenomenological entropy function and a reversible entropy function. The phenomenological entropy function is evaluated over an irreversible path through thermodynamic [...] Read more.
Entropy generation, formulated by combining the first and second laws of thermodynamics with an appropriate thermodynamic potential, emerges as the difference between a phenomenological entropy function and a reversible entropy function. The phenomenological entropy function is evaluated over an irreversible path through thermodynamic state space via real-time measurements of thermodynamic states. The reversible entropy function is calculated along an ideal reversible path through the same state space. Entropy generation models for various classes of systems—thermal, externally loaded, internally reactive, open and closed—are developed via selection of suitable thermodynamic potentials. Here we simplify thermodynamic principles to specify convenient and consistently accurate system governing equations and characterization models. The formulations introduce a new and universal Phenomenological Entropy Generation (PEG) theorem. The systems and methods presented—and demonstrated on frictional wear, grease degradation, battery charging and discharging, metal fatigue and pump flow—can be used for design, analysis, and support of diagnostic monitoring and optimization. Full article
(This article belongs to the Special Issue Trends in the Second Law of Thermodynamics)
Show Figures

Graphical abstract

24 pages, 4256 KiB  
Article
Physical Grounds for Causal Perspectivalism
by Gerard J. Milburn, Sally Shrapnel and Peter W. Evans
Entropy 2023, 25(8), 1190; https://doi.org/10.3390/e25081190 - 10 Aug 2023
Cited by 1 | Viewed by 1581
Abstract
We ground the asymmetry of causal relations in the internal physical states of a special kind of open and irreversible physical system, a causal agent. A causal agent is an autonomous physical system, maintained in a steady state, far from thermal equilibrium, with [...] Read more.
We ground the asymmetry of causal relations in the internal physical states of a special kind of open and irreversible physical system, a causal agent. A causal agent is an autonomous physical system, maintained in a steady state, far from thermal equilibrium, with special subsystems: sensors, actuators, and learning machines. Using feedback, the learning machine, driven purely by thermodynamic constraints, changes its internal states to learn probabilistic functional relations inherent in correlations between sensor and actuator records. We argue that these functional relations just are causal relations learned by the agent, and so such causal relations are simply relations between the internal physical states of a causal agent. We show that learning is driven by a thermodynamic principle: the error rate is minimised when the dissipated power is minimised. While the internal states of a causal agent are necessarily stochastic, the learned causal relations are shared by all machines with the same hardware embedded in the same environment. We argue that this dependence of causal relations on such ‘hardware’ is a novel demonstration of causal perspectivalism. Full article
(This article belongs to the Special Issue Information-Theoretic Concepts in Physics)
Show Figures

Figure 1

17 pages, 338 KiB  
Review
Irreversible Geometrothermodynamics of Open Systems in Modified Gravity
by Miguel A. S. Pinto, Tiberiu Harko and Francisco S. N. Lobo
Entropy 2023, 25(6), 944; https://doi.org/10.3390/e25060944 - 15 Jun 2023
Cited by 6 | Viewed by 1517
Abstract
In this work, we explore the formalism of the irreversible thermodynamics of open systems and the possibility of gravitationally generated particle production in modified gravity. More specifically, we consider the scalar–tensor representation of f(R,T) gravity, in which the [...] Read more.
In this work, we explore the formalism of the irreversible thermodynamics of open systems and the possibility of gravitationally generated particle production in modified gravity. More specifically, we consider the scalar–tensor representation of f(R,T) gravity, in which the matter energy–momentum tensor is not conserved due to a nonminimal curvature–matter coupling. In the context of the irreversible thermodynamics of open systems, this non-conservation of the energy–momentum tensor can be interpreted as an irreversible flow of energy from the gravitational sector to the matter sector, which, in general, could result in particle creation. We obtain and discuss the expressions for the particle creation rate, the creation pressure, and the entropy and temperature evolutions. Applied together with the modified field equations of scalar–tensor f(R,T) gravity, the thermodynamics of open systems lead to a generalization of the ΛCDM cosmological paradigm, in which the particle creation rate and pressure are considered effectively as components of the cosmological fluid energy–momentum tensor. Thus, generally, modified theories of gravity in which these two quantities do not vanish provide a macroscopic phenomenological description of particle production in the cosmological fluid filling the Universe and also lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Full article
(This article belongs to the Special Issue Geometrothermodynamics and Its Applications)
20 pages, 5132 KiB  
Article
Entropy Generation Minimization of Two-Phase Flow Irreversibilities in Hydrocarbon Reservoirs
by Murtada A. Elhaj, Syed A. Imtiaz, Greg F. Naterer and Sohrab Zendehboudi
Energies 2023, 16(10), 4096; https://doi.org/10.3390/en16104096 - 15 May 2023
Cited by 3 | Viewed by 1544
Abstract
The efficient use of available energy in hydrocarbon extraction processes is essential to reducing overall emissions in the petroleum industry. The inefficient design of an extraction process leads to higher emissions per unit mass of hydrocarbon recovery. Fluid friction and heat transfer are [...] Read more.
The efficient use of available energy in hydrocarbon extraction processes is essential to reducing overall emissions in the petroleum industry. The inefficient design of an extraction process leads to higher emissions per unit mass of hydrocarbon recovery. Fluid friction and heat transfer are irreversible processes that are vital in decreasing the overall system’s operational efficiency. To reduce these irreversible energy losses in the petroleum reservoir production’s life, contributing factors such as the characteristic features of a reservoir formation, reservoir fluids, and production rate are investigated in this paper. This study examines irreversible energy loss in porous media and wellbore formations using entropy generation minimization at various stages of production and thermodynamic conditions, eventually achieving higher hydrocarbon recovery factors. Entropy production is used to develop predictive models that calculate reservoir and wellbore energy losses for multiphase flow. The proposed models consider oil and water as the working fluids in a porous medium and a wellbore. This paper also investigates the thermophysical effects around the wellbore by incorporating Hawkin’s model. A sensitivity analysis assessed the impact of rock and fluid properties and thermodynamic conditions such as temperature, wettability, and capillary pressure on the total entropy generation. The findings reveal that the capillary pressure significantly impacts the oil and water recovery factor and total entropy production. Additionally, the capillary pressure strongly influences the reservoir production life. The two-phase models show that as the recovery factor increases, the total entropy production decreases at lower production rates. This article helps to address the impact of irreversible processes on multiphase hydrocarbon reservoir operational efficiency. Furthermore, the results obtained from the numerical-simulation model open up a new research area for scholars to maximize the recovery factor using entropy generation minimization in heterogeneous reservoirs. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

21 pages, 2620 KiB  
Article
Self-Organization of Enzyme-Catalyzed Reactions Studied by the Maximum Entropy Production Principle
by Andrej Dobovišek, Marko Vitas, Tina Blaževič, Rene Markovič, Marko Marhl and Aleš Fajmut
Int. J. Mol. Sci. 2023, 24(10), 8734; https://doi.org/10.3390/ijms24108734 - 13 May 2023
Cited by 1 | Viewed by 2647
Abstract
The self-organization of open reaction systems is closely related to specific mechanisms that allow the export of internally generated entropy from systems to their environment. According to the second law of thermodynamics, systems with effective entropy export to the environment are better internally [...] Read more.
The self-organization of open reaction systems is closely related to specific mechanisms that allow the export of internally generated entropy from systems to their environment. According to the second law of thermodynamics, systems with effective entropy export to the environment are better internally organized. Therefore, they are in thermodynamic states with low entropy. In this context, we study how self-organization in enzymatic reactions depends on their kinetic reaction mechanisms. Enzymatic reactions in an open system are considered to operate in a non-equilibrium steady state, which is achieved by satisfying the principle of maximum entropy production (MEPP). The latter is a general theoretical framework for our theoretical analysis. Detailed theoretical studies and comparisons of the linear irreversible kinetic schemes of an enzyme reaction in two and three states are performed. In both cases, in the optimal and statistically most probable thermodynamic steady state, a diffusion-limited flux is predicted by MEPP. Several thermodynamic quantities and enzymatic kinetic parameters, such as the entropy production rate, the Shannon information entropy, reaction stability, sensitivity, and specificity constants, are predicted. Our results show that the optimal enzyme performance may strongly depend on the number of reaction steps when linear reaction mechanisms are considered. Simple reaction mechanisms with a smaller number of intermediate reaction steps could be better organized internally and could allow fast and stable catalysis. These could be features of the evolutionary mechanisms of highly specialized enzymes. Full article
(This article belongs to the Special Issue Molecular Advances in Enzyme Kinetics)
Show Figures

Figure 1

10 pages, 864 KiB  
Review
How “Berry Phase” Analysis of Non-Adiabatic Non-Hermitian Systems Reflects Their Geometry
by Chris Jeynes
Entropy 2023, 25(2), 390; https://doi.org/10.3390/e25020390 - 20 Feb 2023
Cited by 2 | Viewed by 2880
Abstract
There is currently great interest in systems represented by non-Hermitian Hamiltonians, including a wide variety of real systems that may be dissipative and whose behaviour can be represented by a “phase” parameter that characterises the way “exceptional points” (singularities of various sorts) determine [...] Read more.
There is currently great interest in systems represented by non-Hermitian Hamiltonians, including a wide variety of real systems that may be dissipative and whose behaviour can be represented by a “phase” parameter that characterises the way “exceptional points” (singularities of various sorts) determine the system. These systems are briefly reviewed here with an emphasis on their geometrical thermodynamics properties. Full article
(This article belongs to the Special Issue Geometry in Thermodynamics III)
Show Figures

Figure 1

17 pages, 1095 KiB  
Article
How the Brain Becomes the Mind: Can Thermodynamics Explain the Emergence and Nature of Emotions?
by Éva Déli, James F. Peters and Zoltán Kisvárday
Entropy 2022, 24(10), 1498; https://doi.org/10.3390/e24101498 - 20 Oct 2022
Cited by 4 | Viewed by 8730
Abstract
The neural systems’ electric activities are fundamental for the phenomenology of consciousness. Sensory perception triggers an information/energy exchange with the environment, but the brain’s recurrent activations maintain a resting state with constant parameters. Therefore, perception forms a closed thermodynamic cycle. In physics, the [...] Read more.
The neural systems’ electric activities are fundamental for the phenomenology of consciousness. Sensory perception triggers an information/energy exchange with the environment, but the brain’s recurrent activations maintain a resting state with constant parameters. Therefore, perception forms a closed thermodynamic cycle. In physics, the Carnot engine is an ideal thermodynamic cycle that converts heat from a hot reservoir into work, or inversely, requires work to transfer heat from a low- to a high-temperature reservoir (the reversed Carnot cycle). We analyze the high entropy brain by the endothermic reversed Carnot cycle. Its irreversible activations provide temporal directionality for future orientation. A flexible transfer between neural states inspires openness and creativity. In contrast, the low entropy resting state parallels reversible activations, which impose past focus via repetitive thinking, remorse, and regret. The exothermic Carnot cycle degrades mental energy. Therefore, the brain’s energy/information balance formulates motivation, sensed as position or negative emotions. Our work provides an analytical perspective of positive and negative emotions and spontaneous behavior from the free energy principle. Furthermore, electrical activities, thoughts, and beliefs lend themselves to a temporal organization, an orthogonal condition to physical systems. Here, we suggest that an experimental validation of the thermodynamic origin of emotions might inspire better treatment options for mental diseases. Full article
(This article belongs to the Special Issue Brain Connectivity Complex Systems)
Show Figures

Graphical abstract

19 pages, 4009 KiB  
Article
Shock-Induced Mesoparticles and Turbulence Occurrence
by Tatiana A. Khantuleva and Yurii I. Meshcheryakov
Particles 2022, 5(3), 407-425; https://doi.org/10.3390/particles5030032 - 16 Sep 2022
Cited by 4 | Viewed by 1939
Abstract
The development of a new approach to describe turbulent motions in condensed matter on the basis of nonlocal modeling of highly non-equilibrium processes in open systems is performed in parallel with an experiment studying the mesostructure of dynamically deformed solids. The shock-induced mesostructure [...] Read more.
The development of a new approach to describe turbulent motions in condensed matter on the basis of nonlocal modeling of highly non-equilibrium processes in open systems is performed in parallel with an experiment studying the mesostructure of dynamically deformed solids. The shock-induced mesostructure formation inside the propagating waveform registered in real time allows the transient stages of non-equilibrium processes to be qualitatively and quantitatively revealed. A new nonlocal approach, developed on the basis of the nonlocal and retarded transport equations obtained within the non-equilibrium statistical physics, is used to describe the occurrence of turbulence. Within the approach, the reason for the transition to turbulence is that the non-equilibrium spatiotemporal correlation function generates the dynamic structures in the form of finite-size clusters on the mesoscale, with almost identical values of macroscopic densities moving as almost solid particles that can interact and rotate. The fragmentation of spatiotemporal correlations upon impact forms the mesoparticles that move at different speeds and transfer mass, momentum and energy-like wave packets. The movements recorded simultaneously at two scale levels indicate the energy exchange between them. Its description required a redefinition of the concept of energy far from local thermodynamic equilibrium. The experimental results show that the irreversible part of the dynamic mesostructure remains frozen into material as a new defect. Full article
(This article belongs to the Special Issue Particles: Feature Papers)
Show Figures

Figure 1

19 pages, 1507 KiB  
Review
Water as a Link between Membrane and Colloidal Theories for Cells
by E. Anibal Disalvo, A. Sebastian Rosa, Jimena P. Cejas and María de los A. Frias
Molecules 2022, 27(15), 4994; https://doi.org/10.3390/molecules27154994 - 5 Aug 2022
Cited by 6 | Viewed by 3522
Abstract
This review is an attempt to incorporate water as a structural and thermodynamic component of biomembranes. With this purpose, the consideration of the membrane interphase as a bidimensional hydrated polar head group solution, coupled to the hydrocarbon region allows for the reconciliation of [...] Read more.
This review is an attempt to incorporate water as a structural and thermodynamic component of biomembranes. With this purpose, the consideration of the membrane interphase as a bidimensional hydrated polar head group solution, coupled to the hydrocarbon region allows for the reconciliation of two theories on cells in dispute today: one considering the membrane as an essential part in terms of compartmentalization, and another in which lipid membranes are not necessary and cells can be treated as a colloidal system. The criterium followed is to describe the membrane state as an open, non-autonomous and responsive system using the approach of Thermodynamic of Irreversible Processes. The concept of an open/non-autonomous membrane system allows for the visualization of the interrelationship between metabolic events and membrane polymorphic changes. Therefore, the Association Induction Hypothesis (AIH) and lipid properties interplay should consider hydration in terms of free energy modulated by water activity and surface (lateral) pressure. Water in restricted regions at the lipid interphase has thermodynamic properties that explain the role of H-bonding networks in the propagation of events between membrane and cytoplasm that appears to be relevant in the context of crowded systems. Full article
(This article belongs to the Special Issue Aquaphotomics - Exploring Water Molecular Systems in Nature)
Show Figures

Figure 1

56 pages, 1985 KiB  
Article
Metabolic Pathway Analysis in the Presence of Biological Constraints
by Philippe Dague
Computation 2021, 9(10), 111; https://doi.org/10.3390/computation9100111 - 19 Oct 2021
Viewed by 3142
Abstract
Metabolic pathway analysis is a key method to study a metabolism in its steady state, and the concept of elementary fluxes (EFs) plays a major role in the analysis of a network in terms of non-decomposable pathways. The supports of the EFs contain [...] Read more.
Metabolic pathway analysis is a key method to study a metabolism in its steady state, and the concept of elementary fluxes (EFs) plays a major role in the analysis of a network in terms of non-decomposable pathways. The supports of the EFs contain in particular those of the elementary flux modes (EFMs), which are the support-minimal pathways, and EFs coincide with EFMs when the only flux constraints are given by the irreversibility of certain reactions. Practical use of both EFMs and EFs has been hampered by the combinatorial explosion of their number in large, genome-scale systems. The EFs give the possible pathways in a steady state but the real pathways are limited by biological constraints, such as thermodynamic or, more generally, kinetic constraints and regulatory constraints from the genetic network. We provide results on the mathematical structure and geometrical characterization of the solution space in the presence of such biological constraints (which is no longer a convex polyhedral cone or a convex polyhedron) and revisit the concept of EFMs and EFs in this framework. We show that most of the results depend only on very general properties of compatibility of constraints with vector signs: either sign-invariance, satisfied by regulatory constraints, or sign-monotonicity (a stronger property), satisfied by thermodynamic and kinetic constraints. We show in particular that the solution space for sign-monotone constraints is a union of particular faces of the original polyhedral cone or polyhedron and that EFs still coincide with EFMs and are just those of the original EFs that satisfy the constraint, and we show how to integrate their computation efficiently in the double description method, the most widely used method in the tools dedicated to EFs computation. We show that, for sign-invariant constraints, the situation is more complex: the solution space is a disjoint union of particular semi-open faces (i.e., without some of their own faces of lesser dimension) of the original polyhedral cone or polyhedron and, if EFs are still those of the original EFs that satisfy the constraint, their computation cannot be incrementally integrated into the double description method, and the result is not true for EFMs, that are in general strictly more numerous than those of the original EFMs that satisfy the constraint. Full article
(This article belongs to the Special Issue Formal Method for Biological Systems Modelling)
Show Figures

Figure 1

29 pages, 28185 KiB  
Article
The Problem of Engines in Statistical Physics
by Robert Alicki, David Gelbwaser-Klimovsky and Alejandro Jenkins
Entropy 2021, 23(8), 1095; https://doi.org/10.3390/e23081095 - 22 Aug 2021
Cited by 4 | Viewed by 5230
Abstract
Engines are open systems that can generate work cyclically at the expense of an external disequilibrium. They are ubiquitous in nature and technology, but the course of mathematical physics over the last 300 years has tended to make their dynamics in time a [...] Read more.
Engines are open systems that can generate work cyclically at the expense of an external disequilibrium. They are ubiquitous in nature and technology, but the course of mathematical physics over the last 300 years has tended to make their dynamics in time a theoretical blind spot. This has hampered the usefulness of statistical mechanics applied to active systems, including living matter. We argue that recent advances in the theory of open quantum systems, coupled with renewed interest in understanding how active forces result from positive feedback between different macroscopic degrees of freedom in the presence of dissipation, point to a more realistic description of autonomous engines. We propose a general conceptualization of an engine that helps clarify the distinction between its heat and work outputs. Based on this, we show how the external loading force and the thermal noise may be incorporated into the relevant equations of motion. This modifies the usual Fokker–Planck and Langevin equations, offering a thermodynamically complete formulation of the irreversible dynamics of simple oscillating and rotating engines. Full article
(This article belongs to the Special Issue Nonequilibrium Thermodynamics and Stochastic Processes)
Show Figures

Figure 1

Back to TopTop