Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = iron porphyrin complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1613 KiB  
Article
N-Methylpyridinium Porphyrin Complexes as Sensitizers for Sonodynamic Therapy Against Planktonic and Biofilm-Forming Multidrug-Resistant Microbes
by Daniel Ziental, Francesca Giuntini, Marcin Wysocki, Patrycja Talarska-Kulczyk, Agata Kubicka, Jolanta Dlugaszewska and Lukasz Sobotta
Int. J. Mol. Sci. 2025, 26(14), 6949; https://doi.org/10.3390/ijms26146949 - 19 Jul 2025
Viewed by 287
Abstract
Porphyrins play an extremely important role in both photodynamic (PDT) and sonodynamic therapy (SDT). These techniques, which have a lot in common, are largely based on the interaction between the sensitizer and light or ultrasounds (US), respectively, resulting in the formation of reactive [...] Read more.
Porphyrins play an extremely important role in both photodynamic (PDT) and sonodynamic therapy (SDT). These techniques, which have a lot in common, are largely based on the interaction between the sensitizer and light or ultrasounds (US), respectively, resulting in the formation of reactive oxygen species (ROS) that have the ability to destroy target cells. SDT requires the use of an appropriate frequency of US waves that are able to excite the chemical compound used. In this study, five porphyrin complexes were used: free-base meso-tetra(N-methyl-pyridinium-4-yl)porphyrin (TMPyP) and its transition metal complexes containing zinc(II), palladium(II), copper(II), and chloride-iron(II). The sonodynamic activity of these compounds was studied in vitro. The obtained results confirm the significant relationship between the chemical structure of the macrocycle and its stability and ability to generate ROS. The highest efficiency in ROS generation and high stability were demonstrated by non-metalated compound and its complex with zinc(II), while complex with copper(II), although less stable, were equally effective in terms of ROS production. Antibacterial activity tests showed the unique properties of the tested compounds, including a reduction in the number of both planktonic and biofilm antibiotic-resistant microorganisms above 5 log, which is rare among sonosensitizers. Full article
(This article belongs to the Collection Feature Papers in Molecular Microbiology)
Show Figures

Figure 1

22 pages, 3601 KiB  
Article
Fast Removal of Naphthol Blue Black B Dye from Water Using Polyethyleneimine Functionalized Zinc, Iron, and Manganese Porphyrinic Complexes: Structural Characterization, Kinetic, and Isotherms Studies
by Sahar Y. Rajeh, Aljazi Abdullah Alrashidi, Raoudha Soury and Mahjoub Jabli
Polymers 2025, 17(11), 1494; https://doi.org/10.3390/polym17111494 - 28 May 2025
Viewed by 361
Abstract
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed [...] Read more.
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed using several analytical techniques, including 1H NMR, FT-IR, UV-vis, XRD, XRF, TGA-DTA, SEM, and EDX. The presence of sharp main peaks at 2θ between 10° and 80°, in XRD analysis, for all studied compounds suggested the crystalline nature of the porphyrinic complexes. The morphological properties of the porphyrininc complexes were significantly affected by the chemical modification with polyethyleneimine. EDX result confirmed the complexation of zinc, iron, and manganese metals with the porphyrinic core. The increase in carbon and nitrogen contents after the addition of polyethyleneimine to the complexes (13) was noticeable. After thermal decomposition, the total mass loss was equal to 92.97%, 66.77%, and 26.78% for complexes (1), (2), and (3), respectively. However, for the complex (1)-PEI, complex (2)-PEI, and complex (3)-PEI, the total mass losses were 83.12%, 81.88%, and 35.78%, respectively. The synthetic compounds were additionally utilized for the adsorption of Naphthol blue black B from water. At optimum adsorption conditions (T = 20 °C, time = 60 min, pH = 5), the highest adsorption capacities were 154 mg/g, 139 mg/g, and 119 mg/g for complex (3)-PEI, complex (2)-PEI, and complex (1)-PEI, respectively. The adsorption mechanism followed the pseudo second order, the Freundlich, and the Temkin models. The results indicated that the adsorption process is reliant on chemical interactions. It was also governed by intraparticular diffusion and other kinetic phenomena. Full article
Show Figures

Figure 1

18 pages, 4137 KiB  
Article
Synthesis, X-ray Crystallography, Spectroscopic Characterizations, Density Functional Theory, and Hirshfeld Surface Analyses of a Novel (Carbonato) Picket Fence Iron(III) Complex
by Mondher Dhifet, Bouzid Gassoumi, Maxim A. Lutoshkin, Anna S. Kazachenko, Aleksandr S. Kazachenko, Omar Al-Dossary, Noureddine Issaoui and Habib Nasri
Molecules 2024, 29(16), 3722; https://doi.org/10.3390/molecules29163722 - 6 Aug 2024
Cited by 2 | Viewed by 1494
Abstract
An Fe(III)-carbonato six-coordinate picket fence porphyrin complex with the formula [K(2,2,2-crypt)][FeIII(TpivPP)(CO3)]·C6H5Cl·3H2O (I) has been synthesized and characterized by UV-Vis and FT-IR spectra. The structure of (carbonato)(α,α,α,α-tetrakis(o-pivalamidophenyl)porphinato)ferrate(III) was also established [...] Read more.
An Fe(III)-carbonato six-coordinate picket fence porphyrin complex with the formula [K(2,2,2-crypt)][FeIII(TpivPP)(CO3)]·C6H5Cl·3H2O (I) has been synthesized and characterized by UV-Vis and FT-IR spectra. The structure of (carbonato)(α,α,α,α-tetrakis(o-pivalamidophenyl)porphinato)ferrate(III) was also established by XRD. The iron atom is hexa-coordinated by the four nitrogen atoms of the pyrrol rings and the two oxygen atoms of the CO32− group. Complex I, characterized as a ferric high-spin complex (S = 5/2), presented higher Fe-Np (2.105(6) Å) and Fe-PC (0.654(2) Å) distances. Both X-ray molecular structure and Hirshfeld surface analysis results show that the crystal packing of I is made by C-H⋯O and C-H⋯Cg weak intermolecular hydrogen interactions involving neighboring [FeIII(TpivPP)(CO3)] ion complexes. Computational studies were carried out at DFT/B3LYP-D3/LanL2DZ to investigate the HOMO and LUMO molecular frontier orbitals and the reactivity within the studied compound. The stability of compound I was investigated by analyzing both intra- and inter-molecular interactions using the 2D and 3DHirshfeld surface (HS) analyses. Additionally, the frontier molecular orbital (FMO) calculations and the molecular electronic potential (MEP) analyses were conducted to determine the electron localizations, electrophilic, and nucleophilic regions, as well as charge transfer (ECT) within the studied system. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

12 pages, 2295 KiB  
Article
Catalytic Degradation of Triphenylmethane Dyes with an Iron Porphyrin Complex as a Cytochrome P450 Model
by Xiaoyan Lu, Qiman Che, Xinkai Niu, Yilin Zhang, Yu’e Chen, Qing Han, Miaoqing Li, Shuang Wang and Jihong Lan
Molecules 2023, 28(14), 5401; https://doi.org/10.3390/molecules28145401 - 14 Jul 2023
Cited by 4 | Viewed by 1864
Abstract
The organic dyes used in printing and dyeing wastewater have complex components, diverse structures and strong chemical stability, which make them not suitable for treatment and difficult to degrade in the environment. Porphyrins are macromolecules with 18 π electrons formed by four pyrrole [...] Read more.
The organic dyes used in printing and dyeing wastewater have complex components, diverse structures and strong chemical stability, which make them not suitable for treatment and difficult to degrade in the environment. Porphyrins are macromolecules with 18 π electrons formed by four pyrrole molecules connected with a methylene bridge that has a stable structure. Porphyrin combines with iron to form an active intermediate with a structure similar to the cytochrome P450 enzyme, so they are widely used in the biomimetic field. In the current study, 5,10,15,20-tetra (4-carboxyphenyl) porphine ferric chloride (III) (Fe(III)TCPP) was used as a catalyst and iodosobenzene was used as an oxidant to explore the catalytic degradation of triphenylmethane dyes, such as rhodamine B (RhB) and malachite green (MG). The results of UV-Vis spectral analysis have shown that the conversion rate of the rhodamine B was over 90% when the amount of Fe(III)TCPP was 0.027 mM and the amount of iodosobenzene was eight equivalents. When the catalyst was 0.00681 mM and the amount of the oxidant was five equivalents, the conversion rate of the malachite green reached over 95%. This work provides a feasible method for the degradation of triphenylmethane dyes. Full article
(This article belongs to the Special Issue Synthesis and Reaction Mechanisms of Organometallic Compounds)
Show Figures

Figure 1

12 pages, 4607 KiB  
Review
Hydrogen-Bonding Secondary Coordination Sphere Effect on CO2 Reduction
by Anamarija Briš and Davor Margetić
Organics 2023, 4(2), 277-288; https://doi.org/10.3390/org4020022 - 5 Jun 2023
Cited by 2 | Viewed by 2725
Abstract
Great efforts of the scientific community are focused on the development of catalysts for the reduction of carbon dioxide (CO2) to useful molecules such as carbon monoxide, formic acid, methanol, ethanol, methane, ethylene, or acetate. Various metal porphyrin complexes were synthesized [...] Read more.
Great efforts of the scientific community are focused on the development of catalysts for the reduction of carbon dioxide (CO2) to useful molecules such as carbon monoxide, formic acid, methanol, ethanol, methane, ethylene, or acetate. Various metal porphyrin complexes were synthesized and studied to develop highly active and selective catalysts. While the substituents on the porphyrin core (the primary coordination sphere) determine the reactivity of the metal, the introduction of the secondary coordination is important for the binding and activation of CO2. In this review, selected examples of iron porphyrin catalysts with a secondary coordination sphere capable of stabilizing intermediates of the CO2 reduction process by hydrogen bonding are presented. Full article
Show Figures

Graphical abstract

9 pages, 24452 KiB  
Communication
Iron(II) Complexes with Porphyrin and Tetrabenzoporphyrin: CASSCF/MCQDPT2 Study of the Electronic Structures and UV–Vis Spectra by sTD-DFT
by Alexey V. Eroshin, Andrey I. Koptyaev, Arseniy A. Otlyotov, Yury Minenkov and Yuriy A. Zhabanov
Int. J. Mol. Sci. 2023, 24(8), 7070; https://doi.org/10.3390/ijms24087070 - 11 Apr 2023
Cited by 5 | Viewed by 2182
Abstract
The geometry and electronic structures of iron(II) complexes with porphyrin (FeP) and tetrabenzoporphyrin (FeTBP) in ground and low-lying excited electronic states are determined by DFT (PBE0/def2-TZVP) calculations and the complete active space self-consistent field (CASSCF) method, followed by the [...] Read more.
The geometry and electronic structures of iron(II) complexes with porphyrin (FeP) and tetrabenzoporphyrin (FeTBP) in ground and low-lying excited electronic states are determined by DFT (PBE0/def2-TZVP) calculations and the complete active space self-consistent field (CASSCF) method, followed by the multiconfigurational quasi-degenerate second-order perturbation theory (MCQDPT2) approach to determine the dynamic electron correlation. The minima on the potential energy surfaces (PESs) of the ground (3A2g) and low-lying, high-spin (5A1g) electronic states correspond to the planar structures of FeP and FeTBP with D4h symmetry. According to the results of the MCQDPT2 calculations, the wave functions of the 3A2g and 5A1g electronic states are single determinant. The electronic absorption (UV–Vis) spectra of FeP and FeTBP are simulated within the framework of the simplified time-dependent density functional theory (sTDDFT) approach with the use of the long-range corrected CAM-B3LYP function. The most intensive bands of the UV–Vis spectra of FeP and FeTBP occur in the Soret near-UV region of 370–390 nm. Full article
(This article belongs to the Special Issue Molecular Structure of Macroheterocyclic Compounds)
Show Figures

Figure 1

9 pages, 3051 KiB  
Article
Methodic Approach of Atomic-Force Microscopy (AFM) to Study Morphological Changes of Cells and Model Systems
by Vladimir Binyukov, Elena Mil, Ludmila Matienko, Anastasia Albantova and Alexander Goloshchapov
Micro 2023, 3(2), 382-390; https://doi.org/10.3390/micro3020026 - 28 Mar 2023
Cited by 4 | Viewed by 2289
Abstract
For the first time AFM (atomic-force microscopy) was used to record significant changes in the geometric parameters of the image of erythrocytes in vitro under conditions of glycolytic starvation (ATP (Adenosine triphosphate) deficiency). The difference in the action of antioxidants, phenosan K, and [...] Read more.
For the first time AFM (atomic-force microscopy) was used to record significant changes in the geometric parameters of the image of erythrocytes in vitro under conditions of glycolytic starvation (ATP (Adenosine triphosphate) deficiency). The difference in the action of antioxidants, phenosan K, and Ihfan-10 on erythrocytes that we detected with AFM seems to be mainly due to their difference in hydrophobicity. We used the AFM method to research the self-organization of the components of the active center of P450 (Porphyrin-450) metalloenzymes that are part of a class of hemoproteins with functions of affinity to molecular oxygen O2. Stable supramolecular nanostructures in the form of triangular prisms based on the iron porphyrin complex with amino acids due to self-assembly involving intermolecular hydrogen bonds were received. A possible scheme for the formation of such structures is proposed. Full article
Show Figures

Figure 1

22 pages, 2085 KiB  
Article
Common Reactivity and Properties of Heme Peroxidases: A DFT Study of Their Origin
by Daniel R. Ramos, Paul G. Furtmüller, Christian Obinger, Ángeles Peña-Gallego, Ignacio Pérez-Juste and J. Arturo Santaballa
Antioxidants 2023, 12(2), 303; https://doi.org/10.3390/antiox12020303 - 28 Jan 2023
Cited by 2 | Viewed by 3212
Abstract
Electronic structure calculations using the density-functional theory (DFT) have been performed to analyse the effect of water molecules and protonation on the heme group of peroxidases in different redox (ferric, ferrous, compounds I and II) and spin states. Shared geometries, spectroscopic properties at [...] Read more.
Electronic structure calculations using the density-functional theory (DFT) have been performed to analyse the effect of water molecules and protonation on the heme group of peroxidases in different redox (ferric, ferrous, compounds I and II) and spin states. Shared geometries, spectroscopic properties at the Soret region, and the thermodynamics of peroxidases are discussed. B3LYP and M06-2X density functionals with different basis sets were employed on a common molecular model of the active site (Fe-centred porphine and proximal imidazole). Computed Gibbs free energies indicate that the corresponding aquo complexes are not thermodynamically stable, supporting the five-coordinate Fe(III) centre in native ferric peroxidases, with a water molecule located at a non-bonding distance. Protonation of the ferryl oxygen of compound II is discussed in terms of thermodynamics, Fe–O bond distances, and redox properties. It is demonstrated that this protonation is necessary to account for the experimental data, and computed Gibbs free energies reveal pKa values of compound II about 8.5–9.0. Computation indicates that the general oxidative properties of peroxidase intermediates, as well as their reactivity towards water and protons and Soret bands, are mainly controlled by the iron porphyrin and its proximal histidine ligand. Full article
Show Figures

Graphical abstract

16 pages, 2397 KiB  
Review
Isolating Fe-O2 Intermediates in Dioxygen Activation by Iron Porphyrin Complexes
by Xiaoyan Lu, Shuang Wang and Jian-Hua Qin
Molecules 2022, 27(15), 4690; https://doi.org/10.3390/molecules27154690 - 22 Jul 2022
Cited by 11 | Viewed by 3917
Abstract
Dioxygen (O2) is an environmentally benign and abundant oxidant whose utilization is of great interest in the design of bioinspired synthetic catalytic oxidation systems to reduce energy consumption. However, it is unfortunate that utilization of O2 is a significant challenge [...] Read more.
Dioxygen (O2) is an environmentally benign and abundant oxidant whose utilization is of great interest in the design of bioinspired synthetic catalytic oxidation systems to reduce energy consumption. However, it is unfortunate that utilization of O2 is a significant challenge because of the thermodynamic stability of O2 in its triplet ground state. Nevertheless, nature is able to overcome the spin state barrier using enzymes, which contain transition metals with unpaired d-electrons facilitating the activation of O2 by metal coordination. This inspires bioinorganic chemists to synthesize biomimetic small-molecule iron porphyrin complexes to carry out the O2 activation, wherein Fe-O2 species have been implicated as the key reactive intermediates. In recent years, a number of Fe-O2 intermediates have been synthesized by activating O2 at iron centers supported on porphyrin ligands. In this review, we focus on a few examples of these advances with emphasis in each case on the particular design of iron porphyrin complexes and particular reaction environments to stabilize and isolate metal-O2 intermediates in dioxygen activation, which will provide clues to elucidate structures of reactive intermediates and mechanistic insights in biological processes. Full article
Show Figures

Graphical abstract

19 pages, 1469 KiB  
Review
A Recap of Heme Metabolism towards Understanding Protoporphyrin IX Selectivity in Cancer Cells
by Martin Kiening and Norbert Lange
Int. J. Mol. Sci. 2022, 23(14), 7974; https://doi.org/10.3390/ijms23147974 - 19 Jul 2022
Cited by 30 | Viewed by 8024
Abstract
Mitochondria are essential organelles of mammalian cells, often emphasized for their function in energy production, iron metabolism and apoptosis as well as heme synthesis. The heme is an iron-loaded porphyrin behaving as a prosthetic group by its interactions with a wide variety of [...] Read more.
Mitochondria are essential organelles of mammalian cells, often emphasized for their function in energy production, iron metabolism and apoptosis as well as heme synthesis. The heme is an iron-loaded porphyrin behaving as a prosthetic group by its interactions with a wide variety of proteins. These complexes are termed hemoproteins and are usually vital to the whole cell comportment, such as the proteins hemoglobin, myoglobin or cytochromes, but also enzymes such as catalase and peroxidases. The building block of porphyrins is the 5-aminolevulinic acid, whose exogenous administration is able to stimulate the entire heme biosynthesis route. In neoplastic cells, this methodology repeatedly demonstrated an accumulation of the ultimate heme precursor, the fluorescent protoporphyrin IX photosensitizer, rather than in healthy tissues. While manifold players have been proposed, numerous discrepancies between research studies still dispute the mechanisms underlying this selective phenomenon that yet requires intensive investigations. In particular, we wonder what are the respective involvements of enzymes and transporters in protoporphyrin IX accretion. Is this mainly due to a boost in protoporphyrin IX anabolism along with a drop of its catabolism, or are its transporters deregulated? Additionally, can we truly expect to find a universal model to explain this selectivity? In this report, we aim to provide our peers with an overview of the currently known mitochondrial heme metabolism and approaches that could explain, at least partly, the mechanism of protoporphyrin IX selectivity towards cancer cells. Full article
(This article belongs to the Special Issue Photodynamic Therapy and Photodetection)
Show Figures

Figure 1

20 pages, 5303 KiB  
Article
Environment-Friendly Catalytic Mineralization of Phenol and Chlorophenols with Cu- and Fe- Tetrakis(4-aminophenyl)-porphyrin—Silica Hybrid Aerogels
by Enikő Győri, Ádám Kecskeméti, István Fábián, Máté Szarka and István Lázár
Gels 2022, 8(4), 202; https://doi.org/10.3390/gels8040202 - 23 Mar 2022
Cited by 5 | Viewed by 3186
Abstract
Fenton reactions with metal complexes of substituted porphyrins and hydrogen peroxide are useful tools for the mineralization of environmentally dangerous substances. In the homogeneous phase, autooxidation of the prophyrin ring may also occur. Covalent binding of porphyrins to a solid support may increase [...] Read more.
Fenton reactions with metal complexes of substituted porphyrins and hydrogen peroxide are useful tools for the mineralization of environmentally dangerous substances. In the homogeneous phase, autooxidation of the prophyrin ring may also occur. Covalent binding of porphyrins to a solid support may increase the lifetime of the catalysts and might change its activity. In this study, highly water-insoluble copper and iron complexes of 5,10,15,20-tetrakis(4-aminophenyl)porphyrin were synthesized and bonded covalently to a very hydrophilic silica aerogel matrix prepared by co-gelation of the propyl triethoxysilyl-functionalized porphyrin complex precursors with tetramethoxysilane, followed by a supercritical carbon dioxide drying. In contrast to the insoluble nature of the porphyrin complexes, the as-prepared aerogel catalysts were highly compatible with the aqueous phase. Their catalytic activities were tested in the mineralization reaction of phenol, 3-chlorophenol, and 2,4-dichlorophenol with hydrogen peroxide. The results show that both aerogels catalyzed the oxidation of phenol and chlorophenols to harmless short-chained carboxylic acids under neutral conditions. In batch experiments, and also in a miniature continuous-flow tubular reactor, the aerogel catalysts gradually reduced their activity, due to the slow oxidation of the porphyrin ring. However, the rate and extent of the degradation was moderate and did not exclude the possibility that the as-prepared catalysts, as well as their more stable derivatives, might find practical applications in environment protection. Full article
(This article belongs to the Special Issue Aerogel Hybrids and Nanocomposites)
Show Figures

Graphical abstract

18 pages, 28499 KiB  
Article
The Comparison of Advanced Electrospun Materials Based on Poly(-3-hydroxybutyrate) with Natural and Synthetic Additives
by Polina Tyubaeva, Ivetta Varyan, Alexey Krivandin, Olga Shatalova, Svetlana Karpova, Anton Lobanov, Anatoly Olkhov and Anatoly Popov
J. Funct. Biomater. 2022, 13(1), 23; https://doi.org/10.3390/jfb13010023 - 28 Feb 2022
Cited by 8 | Viewed by 3048
Abstract
The comparison of the effect of porphyrins of natural and synthetic origin containing the same metal atom on the structure and properties of the semi-crystalline polymer matrix is of current concern. A large number of modifying additives and biodegradable polymers for biomedical purposes, [...] Read more.
The comparison of the effect of porphyrins of natural and synthetic origin containing the same metal atom on the structure and properties of the semi-crystalline polymer matrix is of current concern. A large number of modifying additives and biodegradable polymers for biomedical purposes, composed of poly(-3-hydroxybutyrate)-porphyrin, are of particular interest because of the combination of their unique properties. The objective of this work are electrospun fibrous material based on poly(-3-hydroxybutyrate) (PHB), hemin (Hmi), and tetraphenylporphyrin with iron (Fe(TPP)Cl). The structure of these new materials was investigated by methods such as optical and scanning electron microscopy, X-ray diffraction analysis, Electron paramagnetic resonance method, and Differential scanning calorimetry. The properties of the electrospun materials were analyzed by mechanical and biological tests, and the wetting contact angle was measured. In this work, it was found that even small concentrations of porphyrin can increase the antimicrobial properties by 12 times, improve the physical and mechanical properties by at least 3.5 times, and vary hydrophobicity by at least 5%. At the same time, additives similar in the structure had an oppositely directed effect on the supramolecular structure, the composition of the crystalline, and the amorphous phases. The article considers assumptions about the nature of such differences due to the influence of Hmi and Fe(TPP)Cl) on the macromolecular and fibrous structure of PHB. Full article
(This article belongs to the Special Issue Biodegradable Polymers and Textiles)
Show Figures

Figure 1

27 pages, 6365 KiB  
Article
Low Blue Dose Photodynamic Therapy with Porphyrin-Iron Oxide Nanoparticles Complexes: In Vitro Study on Human Melanoma Cells
by Simona Nistorescu, Ana-Maria Udrea, Madalina Andreea Badea, Iulia Lungu, Mihai Boni, Tatiana Tozar, Florian Dumitrache, Valentin-Adrian Maraloiu, Roua Gabriela Popescu, Claudiu Fleaca, Ecaterina Andronescu, Anca Dinischiotu, Angela Staicu and Mihaela Balas
Pharmaceutics 2021, 13(12), 2130; https://doi.org/10.3390/pharmaceutics13122130 - 10 Dec 2021
Cited by 14 | Viewed by 3573
Abstract
The purpose of this study was to investigate the effectiveness in photodynamic therapy of iron oxide nanoparticles (γ-Fe2O3 NPs), synthesized by laser pyrolysis technique, functionalized with 5,10,15,20-(Tetra-4-sulfonatophenyl) porphyrin tetraammonium (TPPS) on human cutaneous melanoma cells, after only 1 min blue [...] Read more.
The purpose of this study was to investigate the effectiveness in photodynamic therapy of iron oxide nanoparticles (γ-Fe2O3 NPs), synthesized by laser pyrolysis technique, functionalized with 5,10,15,20-(Tetra-4-sulfonatophenyl) porphyrin tetraammonium (TPPS) on human cutaneous melanoma cells, after only 1 min blue light exposure. The efficiency of porphyrin loading on the iron oxide nanocarriers was estimated by using absorption and FTIR spectroscopy. The singlet oxygen yield was determined via transient characteristics of singlet oxygen phosphorescence at 1270 nm both for porphyrin functionalized nanoparticles and rose bengal used as standard. The irradiation was performed with a LED (405 nm, 1 mW/cm2) for 1 min after melanoma cells were treated with TPPS functionalized iron oxide nanoparticles (γ-Fe2O3 NPs_TPPS) and incubated for 24 h. Biological tests revealed a high anticancer effect of γ-Fe2O3 NPs_TPPS complexes indi-cated by the inhibition of tumor cell proliferation, reduction of cell adhesion, and induction of cell death through ROS generated by TPPS under light exposure. The biological assays were combined with the pharmacokinetic prediction of the porphyrin. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies (Volume II))
Show Figures

Figure 1

24 pages, 7672 KiB  
Review
High-Pressure Mechanistic Insight into Bioinorganic NO Chemistry
by Łukasz Orzeł, Maria Oszajca, Justyna Polaczek, Dominika Porębska, Rudi van Eldik and Grażyna Stochel
Molecules 2021, 26(16), 4947; https://doi.org/10.3390/molecules26164947 - 16 Aug 2021
Cited by 1 | Viewed by 2349
Abstract
Pressure is one of the most important parameters controlling the kinetics of chemical reactions. The ability to combine high-pressure techniques with time-resolved spectroscopy has provided a powerful tool in the study of reaction mechanisms. This review is focused on the supporting role of [...] Read more.
Pressure is one of the most important parameters controlling the kinetics of chemical reactions. The ability to combine high-pressure techniques with time-resolved spectroscopy has provided a powerful tool in the study of reaction mechanisms. This review is focused on the supporting role of high-pressure kinetic and spectroscopic methods in the exploration of nitric oxide bioinorganic chemistry. Nitric oxide and other reactive nitrogen species (RNS) are important biological mediators involved in both physiological and pathological processes. Understanding molecular mechanisms of their interactions with redox-active metal/non-metal centers in biological targets, such as cofactors, prosthetic groups, and proteins, is crucial for the improved therapy of various diseases. The present review is an attempt to demonstrate how the application of high-pressure kinetic and spectroscopic methods can add additional information, thus enabling the mechanistic interpretation of various NO bioinorganic reactions. Full article
(This article belongs to the Special Issue In Honor of the 80th Birthday of Professor Janusz Jurczak)
Show Figures

Figure 1

17 pages, 6833 KiB  
Article
Molecular Dynamics of Cobalt Protoporphyrin Antagonism of the Cancer Suppressor REV-ERBβ
by Taufik Muhammad Fakih, Fransiska Kurniawan, Muhammad Yusuf, Mudasir Mudasir and Daryono Hadi Tjahjono
Molecules 2021, 26(11), 3251; https://doi.org/10.3390/molecules26113251 - 28 May 2021
Cited by 3 | Viewed by 3900
Abstract
Nuclear receptor REV-ERBβ is an overexpressed oncoprotein that has been used as a target for cancer treatment. The metal-complex nature of its ligand, iron protoporphyrin IX (Heme), enables the REV-ERBβ to be used for multiple therapeutic modalities as a photonuclease, a photosensitizer, or [...] Read more.
Nuclear receptor REV-ERBβ is an overexpressed oncoprotein that has been used as a target for cancer treatment. The metal-complex nature of its ligand, iron protoporphyrin IX (Heme), enables the REV-ERBβ to be used for multiple therapeutic modalities as a photonuclease, a photosensitizer, or a fluorescence imaging agent. The replacement of iron with cobalt as the metal center of protoporphyrin IX changes the ligand from an agonist to an antagonist of REV-ERBβ. The mechanism behind that phenomenon is still unclear, despite the availability of crystal structures of REV-ERBβ in complex with Heme and cobalt protoporphyrin IX (CoPP). This study used molecular dynamic simulations to compare the effects of REV-ERBβ binding to Heme and CoPP, respectively. The initial poses of Heme and CoPP in complex with agonist and antagonist forms of REV-ERBβ were predicted using molecular docking. The binding energies of each ligand were calculated using the MM/PBSA method. The computed binding affinity of Heme to REV-ERBβ was stronger than that of CoPP, in agreement with experimental results. CoPP altered the conformation of the ligand-binding site of REV-ERBβ, disrupting the binding site for nuclear receptor corepressor, which is required for REV-ERBβ to regulate the transcription of downstream target genes. Those results suggest that a subtle change in the metal center of porphyrin can change the behavior of porphyrin in cancer cell signaling. Therefore, modification of porphyrin-based agents for cancer therapy should be conducted carefully to avoid triggering unfavorable effects. Full article
(This article belongs to the Special Issue Phthalocyanines and Porphyrins)
Show Figures

Figure 1

Back to TopTop