Methodic Approach of Atomic-Force Microscopy (AFM) to Study Morphological Changes of Cells and Model Systems
Abstract
:1. Introduction
2. Material and Methods
2.1. AFM Research of Erythrocytes
Sample Preparation of Erythrocytes and Instrumentation
2.2. AFM Studies of Model Porphyrin Complexes
3. Results and Discussion
3.1. Imaging Erythrocyte Shape Using the AFM Method
3.2. AFM Research of the Effects of Phenolic Antioxidants
3.3. AFM Research of Model Porphyrin Complexes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFM method | Atomic-force microscopy method |
ATP | Adenosine triphosphate |
Glu | glutamic acid residue |
Hem | Hemin |
His | L-Histidine |
Ihfan-10 | |
PBS | Phosphate buffered saline–buffer solution of salts, NaCl, Na2HPO4, KCl, and KH2PO4, used in biological research. The osmolarity and concentrations of ions in the solution usually correspond to concentrations in the human body (i.e., this buffer solution is isotonic). |
Phenosan K | Phenozan potassium–potassium compound based on synthetic phenolic antioxidant β-(4-hydroxy-3,5-di-tert-butylphenyl) propionic acid |
P450 | Porphyrin-450 |
Tyr | L-Tyrosine |
References
- Kankozha, M.K. Erythrocyte glucose transport during experimental hypoxia. In Proceedings of the Materials of the International Scientific and Practical Conference “Fundamental Biomedical Sciences and Practical Health Care”, St. Petersburg, Russia, 22–23 April 2010; Available online: http://www.rusnauka.com/12_ENXXI_2010/Medecine/64619.doc.htm (accessed on 1 January 2019).
- Skorkina, M.Y.; Fedorova, M.Z.; Muravyov, A.V.; Sladkova, E.A. The use of nanomechanical sensor for studying the morphofunctional properties of lymphocytes from healthy donors and patients with chronic lymphoblastic leukemia. Cell Technol. Biol. Med. 2012, 154, 172–176. (In Russian) [Google Scholar]
- Dinarelli, S.; Longo, G.; Germanova-Taneva, S.; Todinova, S.; Krumova, S.; Girasole, M. Surprising Structural and Functional Properties of Favism Erythrocytes Are Linked to Special Metabolic Regulation: A Cell Aging Study. Int. J. Mol. Sci. 2022, 24, 637. [Google Scholar] [CrossRef] [PubMed]
- Marcuello, C.; Frempong, G.A.; Balsera, M.; Medina, M.; Lostao, A. Atomic Force Microscopy to Elicit Conformational Transitions of Ferredoxin-Dependent Flavin Thioredoxin Reductases. Antioxidants 2021, 10, 1437. [Google Scholar] [CrossRef] [PubMed]
- Panyusheva, E.S.; Bodryagina, A.M.; Sonina, M.V.; Ivanova, I.A.; Stolbovskaya, O.V. Investigation of the Structural and Functional State of Erythrocytes by Atomic Force Spectroscopy. Available online: www.scienceforum.ru/2013/pdf/3697.pdf (accessed on 1 January 2019).
- Sabanova, R.K. Seasonal changes in hematological parameters in rodents, reflecting their adaptive capabilities. Agric. Biol. 2008, 43, 117–119. [Google Scholar]
- Binyukov, V.I.; Alekseeva, O.M.; Mil, E.M.; Albantova, A.A.; Fattakhov, S.G.; Goloshchapov, A.N.; Burlakova, E.B.; Konovalov, A.I. Research of influence of PHENOSAN, Ihfan-10, MELAPHEN on erythrocytes (in vivo) by Atomic-Force Microscopy. Dokl. Biochem. Biophys. 2011, 441, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Slater, A.G.; Perdigão, L.M.A.; Beton, P.H.; Champness, N.R. Surface-Based Supramolecular Chemistry Using Hydrogen Bonds. Accounts Chem. Res. 2014, 47, 3417–3427. [Google Scholar] [CrossRef] [PubMed]
- Matienko, L.I.; Mil, E.M.; Binyukov, V.I. AFM Research of Supramolecular Structures. Russ. J. Phys. Chem. B 2020, 14, 559–563. [Google Scholar] [CrossRef]
- Zachee, P.; Snauwaert, J.; Vandenberghe, P.; Hellemans, L.; Boogaerts, M. Imaging red blood cells with the atomic force microscope. Br. J. Haematol. 1996, 95, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Ataullakhanov, F.I.; Korunova, N.O.; Spiridonov, I.S.; Pivovarov, I.O.; Kalyagina, N.V.; Martynov, M.V. How erythrocyte volume is regulated, or what mathematical models can and cannot do for biology. Biochem. Moscow Suppl. Ser. A 2009, 3, 101–115. [Google Scholar] [CrossRef]
- Loyola-Leyva, A.; Alcántara-Quintana, L.E.; Terán-Figueroa, Y.; González, F.J. In vitro effect of high glucose concentrations on erythrocyte morphology assessed by scanning electron microscopy. Micron 2022, 154, 103179. [Google Scholar] [CrossRef] [PubMed]
- Parshina, E.Y.; Gendel, L.Y.; Rubin, A.B. Effect of Hybrid Antioxidants—IHFAN-10-on the Surface Architectonics of Eritrocytes. In Chemical and Biochemical Reactions; Nova Science Publ. Inc.: New York, NY, USA, 2011; pp. 71–78. [Google Scholar]
- Panin, L.E.; Mokrushnikov, P.V.; Kunitsyn, V.G.; Zaitsev, B.N. Interaction Mechanism of Cortisol and Catecholamines with Structural Components of Erythrocyte Membranes. J. Phys. Chem. B 2010, 114, 9462–9473. [Google Scholar] [CrossRef] [PubMed]
- Matienko, L.I.; Mosolova, L.A.; Zaikov, G.E. Selective Catalytic Hydrocarbons Oxidation: New Perspectives; Nova Science Publ. Inc.: New York, NY, USA, 2010; 150p. [Google Scholar]
- Kneipp, J.; Balakrishnan, G.; Chen, R.; Shen, T.J.; Sahu, S.C.; Ho, N.T.; Giovannelli, J.L.; Simplaceanu, V.; Ho, C.; Spiro, T. Dynamics of allostery in hemoglobin: Roles of the penultimate tyrosine H bonds. J. Mol. Biol. 2005, 356, 335–353. [Google Scholar] [CrossRef] [PubMed]
- Beletskaya, I.; Tyurin, V.S.; Tsivadze, A.Y.; Guilard, R.R.; Stem, C. Supramolecular Chemistry of Metalloporphyrins. Chem. Rev. 2009, 109, 1659–1713. [Google Scholar] [CrossRef] [PubMed]
- Murry, D.T.; Tysko, R. Side Chain Hydrogen-Bonding Interactions within Amiloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2020, 59, 304–378. [Google Scholar]
- Matienko, L.I.; Binyukov, V.I.; Mil, E.M.; Mosolova, L.A.; Zaikov, G.E. Application of the AFM method to studying the role of Supramolecular structures and Tyr-fragment in the mechanism of Ni(Fe)ARD action on model systems. Oxid. Commun. 2018, 41, 429–440. [Google Scholar]
- Biedermann, F.; Schneider, H.-J. Experimental Binding Energies in Supramolecular Complexes. Chem. Rev. 2016, 116, 5216–5300. [Google Scholar] [CrossRef] [PubMed]
- Basom, E.J.; Bryce, A.M.; Thielges, M.C. Conformational Heterogeneity and the Affinity of Substrate Molecular Recognition by Cytochrome P450cam. Biochemistry 2017, 56, 3248–3256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, R. Molecular level structural studies of metalloproteins/metalloenzymes by scanning tunneling microscopy; Scopes and promises. Curr. Sci. 2003, 84, 1202–1210. [Google Scholar]
- Sarkar, R.; Xie, T.-Z.; Endres, K.J.; Wang, Z.; Moorefield, C.N.; Saunders, M.J.; Ghorai, S.; Patri, A.K.; Wesdemiotis, C.; Dobrynin, A.V.; et al. Sierpinski Pyramids by Molecular Entanglement. J. Am. Chem. Soc. 2020, 142, 5526–5530. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binyukov, V.; Mil, E.; Matienko, L.; Albantova, A.; Goloshchapov, A. Methodic Approach of Atomic-Force Microscopy (AFM) to Study Morphological Changes of Cells and Model Systems. Micro 2023, 3, 382-390. https://doi.org/10.3390/micro3020026
Binyukov V, Mil E, Matienko L, Albantova A, Goloshchapov A. Methodic Approach of Atomic-Force Microscopy (AFM) to Study Morphological Changes of Cells and Model Systems. Micro. 2023; 3(2):382-390. https://doi.org/10.3390/micro3020026
Chicago/Turabian StyleBinyukov, Vladimir, Elena Mil, Ludmila Matienko, Anastasia Albantova, and Alexander Goloshchapov. 2023. "Methodic Approach of Atomic-Force Microscopy (AFM) to Study Morphological Changes of Cells and Model Systems" Micro 3, no. 2: 382-390. https://doi.org/10.3390/micro3020026
APA StyleBinyukov, V., Mil, E., Matienko, L., Albantova, A., & Goloshchapov, A. (2023). Methodic Approach of Atomic-Force Microscopy (AFM) to Study Morphological Changes of Cells and Model Systems. Micro, 3(2), 382-390. https://doi.org/10.3390/micro3020026