Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = iridoid biosynthetic pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8631 KB  
Article
Integrated Transcriptomics and Metabolomics Reveal Key Insights into Iridoid Biosynthesis in Gentiana crassicaulis Seeds during Germination
by Lechen Xuan, Hongyang Xiao, Zhili Zhao, Jingxian Feng, Lianghong Ni and Jinrong Wu
Genes 2024, 15(10), 1255; https://doi.org/10.3390/genes15101255 - 26 Sep 2024
Cited by 4 | Viewed by 1644
Abstract
Background: Gentiana crassicaulis Duthie ex Burk., a key species used in traditional Chinese medicine for treating rheumatic pain and stroke, contains iridoids as its primary active component. However, the biosynthetic mechanisms underlying iridoid production are not fully understood. Methods: This study focused on [...] Read more.
Background: Gentiana crassicaulis Duthie ex Burk., a key species used in traditional Chinese medicine for treating rheumatic pain and stroke, contains iridoids as its primary active component. However, the biosynthetic mechanisms underlying iridoid production are not fully understood. Methods: This study focused on iridoid biosynthesis during the germination of G. crassicaulis seeds, integrating metabolomic and transcriptomic analyses to uncover the underlying pathways and key candidate genes. Results: 196,132 unigenes and 10 iridoid compounds were identified through RNA-seq and ultra performance liquid chromatography-quadrupole time of flight-mass spectrometer (UPLC-Q-TOF-MS), respectively. The intersection of results from Pearson correlation analysis and weighted gene co-expression network analysis (WGCNA) revealed a significant correlation between 26 genes and iridoid levels, suggesting their potential role in the iridoid metabolism. Notably, six highly expressed candidate genes (DL7H, SLS, CYP76, CYP72A2, CYP84A1, and 13-LOX3) and five iridoids (loganic acid, sweroside, swertiamarin, gentiopicroside, and 6′-O-β-D-glucosyl-gentiopicroside) responded to methyl jasmonate stimulation in G. crassicaulis seedlings. Conclusions: by combining the known functions of candidate gene families, It is hypothesized that the CYP716 and LOX families exert indirect influences on iridoid metabolism, while the CYP71, CYP81, CYP72, CYP76, CYP710 families, 2OG-FeII family, and the glucosyltransferase family are likely to play direct roles in the biosynthetic transformations of the five iridoids. This study provides a theoretical basis for further functional gene validation and metabolic engineering aimed at enhancing iridoid production. The insights gained could lead to improved iridoid production efficiency in medicinal plants, ultimately benefiting the quality and efficacy of medicinal materials. Full article
(This article belongs to the Special Issue Genomics and Genetics of Medicinal Plants)
Show Figures

Figure 1

20 pages, 7478 KB  
Article
Transcriptome Analysis Provides Insights into Catalpol Biosynthesis in the Medicinal Plant Rehmannia glutinosa and the Functional Characterization of RgGES Genes
by Yuanjun Li, Xiaoru Zhai, Ligang Ma, Le Zhao, Na An, Weisheng Feng, Longyu Huang and Xiaoke Zheng
Genes 2024, 15(2), 155; https://doi.org/10.3390/genes15020155 - 24 Jan 2024
Cited by 7 | Viewed by 3088
Abstract
Rehmannia glutinosa, a member of the Scrophulariaceae family, has been widely used in traditional Chinese medicine since ancient times. The main bioactive component of R. glutinosa is catalpol. However, the biogenesis of catalpol, especially its downstream pathway, remains unclear. To identify candidate [...] Read more.
Rehmannia glutinosa, a member of the Scrophulariaceae family, has been widely used in traditional Chinese medicine since ancient times. The main bioactive component of R. glutinosa is catalpol. However, the biogenesis of catalpol, especially its downstream pathway, remains unclear. To identify candidate genes involved in the biosynthesis of catalpol, transcriptomes were constructed from R. glutinosa using the young leaves of three cultivars, Beijing No. 3, Huaifeng, and Jin No. 9, as well as the tuberous roots and adventitious roots of the Jin No. 9 cultivar. As a result, 71,142 unigenes with functional annotations were generated. A comparative analysis of the R. glutinosa transcriptomes identified over 200 unigenes of 13 enzymes potentially involved in the downstream steps of catalpol formation, including 9 genes encoding UGTs, 13 for aldehyde dehydrogenases, 70 for oxidoreductases, 44 for CYP450s, 22 for dehydratases, 30 for decarboxylases, 19 for hydroxylases, and 10 for epoxidases. Moreover, two novel genes encoding geraniol synthase (RgGES), which is the first committed enzyme in catalpol production, were cloned from R. glutinosa. The purified recombinant proteins of RgGESs effectively converted GPP to geraniol. This study is the first to discover putative genes coding the tailoring enzymes mentioned above in catalpol biosynthesis, and functionally characterize the enzyme-coding gene in this pathway in R. glutinosa. The results enrich genetic resources for engineering the biosynthetic pathway of catalpol and iridoids. Full article
(This article belongs to the Special Issue Genetics and Transcriptomics of Medicinal Plants)
Show Figures

Figure 1

20 pages, 2320 KB  
Article
Two Novel Iboga-Type and an Oxindole Glucuronide Alkaloid from Tabernaemontana peduncularis Disclose Related Biosynthetic Pathways to Tabernaemontana divaricata
by Florian Traxler, Haoqi Zhang, Wiratchanee Mahavorasirikul, Katharina Krivanek, Xiang-Hai Cai, Wichai Aiyakool, Martin Pfeiffer, Lothar Brecker and Johann Schinnerl
Molecules 2023, 28(18), 6664; https://doi.org/10.3390/molecules28186664 - 16 Sep 2023
Cited by 2 | Viewed by 2805
Abstract
Phytochemical investigation of the two Tabernaemontana species (Apocynaceae) T. peduncularis Wall. and T. divaricata (L.) R.Br. ex Roem. & Schult. indicated closely related biosynthetic pathways leading to lipophilic and hydrophilic alkaloids. In total, 18 specialized metabolites comprising indole-derived alkaloid aglycones, three [...] Read more.
Phytochemical investigation of the two Tabernaemontana species (Apocynaceae) T. peduncularis Wall. and T. divaricata (L.) R.Br. ex Roem. & Schult. indicated closely related biosynthetic pathways leading to lipophilic and hydrophilic alkaloids. In total, 18 specialized metabolites comprising indole-derived alkaloid aglycones, three oxindole-derived alkaloid glycosides, and two iridoid glucosides could be identified in the studied species. Among the alkaloids, the two Iboga-type alkaloids 3,7-coronaridine isoindolenine, coronaridine 3,4-iminium and a javaniside derivative bearing a glucuronic acid, named javanuronic acid, could be described by spectroscopic and spectrometric methods for the first time. A docking experiment using alpha-fold was performed to generate a protein model of the enzyme 7-deoxyloganetic acid glucosyl transferase. Performed bioassays exhibited a growth reduction of neonate Spodoptera littoralis larvae and reduced cell viability of HepG2 cells of the extracts containing Iboga alkaloids, whilst the javaniside derivatives containing hydrophilic fraction did not show any effects. These findings indicate a high flexibility in the formation of bioactive indole alkaloid aglycones by Tabernaemontana species and also evidence similar accumulation trends in both species as well as indicate that biosynthetic routes leading to oxindole alkaloids like javanisides are more widespread than reported. Furthermore, the incorporation of the three novel compounds into potential biosynthetic pathways is discussed. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

30 pages, 7893 KB  
Article
Analysis of Centranthera grandiflora Benth Transcriptome Explores Genes of Catalpol, Acteoside and Azafrin Biosynthesis
by Xiaodong Zhang, Caixia Li, Lianchun Wang, Yahong Fei and Wensheng Qin
Int. J. Mol. Sci. 2019, 20(23), 6034; https://doi.org/10.3390/ijms20236034 - 29 Nov 2019
Cited by 27 | Viewed by 5275
Abstract
Cardiovascular diseases (CVDs) are a major cause of health loss in the world. Prevention and treatment of this disease by traditional Chinese medicine is a promising method. Centranthera grandiflora Benth is a high-value medicinal herb in the prevention and treatment of CVDs; its [...] Read more.
Cardiovascular diseases (CVDs) are a major cause of health loss in the world. Prevention and treatment of this disease by traditional Chinese medicine is a promising method. Centranthera grandiflora Benth is a high-value medicinal herb in the prevention and treatment of CVDs; its main medicinal components include iridoid glycosides, phenylethanoid glycosides, and azafrin in roots. However, biosynthetic pathways of these components and their regulatory mechanisms are unknown. Furthermore, there are no genomic resources of this herb. In this article, we provide sequence and transcript abundance data for the root, stem, and leaf transcriptome of C. grandiflora Benth obtained by the Illumina Hiseq2000. More than 438 million clean reads were obtained from root, stem, and leaf libraries, which produced 153,198 unigenes. Based on databases annotation, a total of 557, 213, and 161 unigenes were annotated to catalpol, acteoside, and azafrin biosynthetic pathways, respectively. Differentially expressed gene analysis identified 14,875 unigenes differentially enriched between leaf and root with 8,054 upregulated genes and 6,821 downregulated genes. Candidate MYB transcription factors involved in catalpol, acteoside, and azafrin biosynthesis were also predicated. This work is the first transcriptome analysis in C. grandiflora Benth which will aid the deciphering of biosynthesis pathways and regulatory mechanisms of active components. Full article
(This article belongs to the Special Issue Plant Genomics 2019)
Show Figures

Figure 1

74 pages, 1216 KB  
Review
Secondary Metabolites from Rubiaceae Species
by Daiane Martins and Cecilia Veronica Nunez
Molecules 2015, 20(7), 13422-13495; https://doi.org/10.3390/molecules200713422 - 22 Jul 2015
Cited by 152 | Viewed by 22983
Abstract
This study describes some characteristics of the Rubiaceae family pertaining to the occurrence and distribution of secondary metabolites in the main genera of this family. It reports the review of phytochemical studies addressing all species of Rubiaceae, published between 1990 and 2014. Iridoids, [...] Read more.
This study describes some characteristics of the Rubiaceae family pertaining to the occurrence and distribution of secondary metabolites in the main genera of this family. It reports the review of phytochemical studies addressing all species of Rubiaceae, published between 1990 and 2014. Iridoids, anthraquinones, triterpenes, indole alkaloids as well as other varying alkaloid subclasses, have shown to be the most common. These compounds have been mostly isolated from the genera Uncaria, Psychotria, Hedyotis, Ophiorrhiza and Morinda. The occurrence and distribution of iridoids, alkaloids and anthraquinones point out their chemotaxonomic correlation among tribes and subfamilies. From an evolutionary point of view, Rubioideae is the most ancient subfamily, followed by Ixoroideae and finally Cinchonoideae. The chemical biosynthetic pathway, which is not so specific in Rubioideae, can explain this and large amounts of both iridoids and indole alkaloids are produced. In Ixoroideae, the most active biosysthetic pathway is the one that produces iridoids; while in Cinchonoideae, it produces indole alkaloids together with other alkaloids. The chemical biosynthetic pathway now supports this botanical conclusion. Full article
Show Figures

Figure 1

Back to TopTop