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Abstract: Rehmannia glutinosa, a member of the Scrophulariaceae family, has been widely used in
traditional Chinese medicine since ancient times. The main bioactive component of R. glutinosa is
catalpol. However, the biogenesis of catalpol, especially its downstream pathway, remains unclear.
To identify candidate genes involved in the biosynthesis of catalpol, transcriptomes were constructed
from R. glutinosa using the young leaves of three cultivars, Beijing No. 3, Huaifeng, and Jin No. 9, as
well as the tuberous roots and adventitious roots of the Jin No. 9 cultivar. As a result, 71,142 unigenes
with functional annotations were generated. A comparative analysis of the R. glutinosa transcriptomes
identified over 200 unigenes of 13 enzymes potentially involved in the downstream steps of catalpol
formation, including 9 genes encoding UGTs, 13 for aldehyde dehydrogenases, 70 for oxidoreductases,
44 for CYP450s, 22 for dehydratases, 30 for decarboxylases, 19 for hydroxylases, and 10 for epoxidases.
Moreover, two novel genes encoding geraniol synthase (RgGES), which is the first committed
enzyme in catalpol production, were cloned from R. glutinosa. The purified recombinant proteins
of RgGESs effectively converted GPP to geraniol. This study is the first to discover putative genes
coding the tailoring enzymes mentioned above in catalpol biosynthesis, and functionally characterize
the enzyme-coding gene in this pathway in R. glutinosa. The results enrich genetic resources for
engineering the biosynthetic pathway of catalpol and iridoids.

Keywords: transcriptome; Rehmannia glutinosa; catalpol; biosynthesis; geraniol synthase

1. Introduction

R. glutinosa (Dihuang), a medicinal herb from the Scrophulariaceae family, has exten-
sive usage in traditional Chinese medicine for nourishing Yin and tonifying the kidney,
and it is considered a “top-grade” herb [1]. Pharmacological research has revealed that
R. glutinosa exerts positive effects on the blood system, endocrine system, nervous sys-
tem, cardiovascular system, and immune system, such as hemostasis, anti-tumor, and
immuno-enhancing activities [1]. Many kinds of compounds have been isolated from
R. glutinosa, including iridoids, phenylethanoid glycosides, amino acids, and flavonoids,
with iridoids being the most abundant metabolites. Catalpol, the main active iridoid gly-
coside of R. glutinosa, has been reported to possess various medicinal activities, such as
neuroprotective [2], anti-inflammatory [3], anti-diabetes [4], anti-depressive [5], anti-oxidative [6],
and anti-tumor effects [7]. Although catalpol displays a broad range of pharmaceutical
activities, its biosynthesis mechanism remains obscure. As predicted in the literature, there
are two principal routes for producing iridoids in plants. The biosynthetic route I can form
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iridoids of the 8β-series, such as seco-iridoids and their derivatives, while route II gives
rise to the compounds of 8α-stereochemistry and epi-series, including catalpol, aucubin,
and similar decarboxylated iridoid glucosides [8]. Route I has been well studied through
feeding and molecular experiments. It has been reported that route I is initiated with
the precursor geranyl diphosphate (GPP), which is generated by condensing isopentenyl
diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) from the mevalonate (MVA)
and/or methylerythritol 4-phosphate (MEP) pathways. GPP is transferred to the monoter-
pene compound geraniol, then hydroxylated to produce 10-hydroxygeraniol and converted
to 10-oxogeranial. The reduction and cyclization of 10-oxogeranial generate nepetalactol,
and it is further modified by oxidation, glycosylation, hydroxylation, methylation, and a
C-C bond cleavage reaction to produce series intermediates in sequence that are deoxy-
loganetic acid, deoxyloganic acid, loganic acid, loganin, and secologanin (Figure 1) [8].
Secologanin is considered the common precursor of seco-iridoids. The genes involved in
this route were isolated from Catharanthus roseus and several other plants (Figure 1) [9–19].

Route II is identical to route I until 10-oxogeranial is generated. From 10-oxogeranial,
route II splits into two branches, one of which produces 8-epi-deoxyloganic acid as fol-
lows: 10-oxogeranial→epi-nepetalactol→8-epi-deoxyloganetic acid→8-epi-deoxyloganic
acid, which shares similar steps to route I, except for the different stereochemistry. The
other branch involves 10-oxogeranial→epi-nepetalactol→epi-iridotrial→boschnaloside→8-
epi-deoxyloganic acid (Figure 1) [20–22]. Through a sequence of reactions, including
hydroxylation, dehydration, decarboxylation, and epoxidation, 8-epi-deoxyloganic acid
is modified to form catalpol via a series of intermediates, including mussaenosidic acid,
deoxygeniposidic acid, geniposidic acid, bartsioside, and aucubin (Figure 1) [23,24]. Based
on our knowledge of the structures of these intermediates, the enzymes responsible for
these steps from 10-oxogeranial to catalpol were proposed to be uridine diphosphate gly-
cosyltransferase (UGT), aldehyde dehydrogenase (ALD), oxidoreductase, hydroxylase,
dehydratase, decarboxylase, epoxidase, and cytochrome P450 (CYP450) (Figure 1). How-
ever, in addition to epi-iridoid synthase (epi-ISY) and aucubin synthase, no other gene in
route II has been identified to date, and the molecular mechanism of catalpol biosynthesis
remains unknown [25,26].

In recent years, comparative transcriptome analysis has been used as an efficient
tool for exploring the biosynthesis of natural products. Zhi and Ma screened several
enzymes, such as flavanone 3-dioxygenase, uroporphyrinogen decarboxylase, and squa-
lene monooxygenase, which is probably involved in the downstream steps of catalpol
biosynthesis through sequencing approaches [27,28]. However, other important tailoring
enzymes, including CYP450, oxidoreductase, hydroxylase, dehydratase, decarboxylase,
and epoxidase, have never been identified. To elucidate the biosynthesis of catalpol, young
leaf transcriptomes were prepared from R. glutinosa Beijing No. 3, Huaifeng, and Jin No. 9
cultivars. The transcriptomes derived from the tuberous and adventitious roots of the Jin
No. 9 cultivar were also constructed to narrow down the number of putative genes involved
in catalpol formation. Using comparative transcriptome analysis, some candidate genes
were identified in this study. To confirm the reliability of the gene screening results, the
geraniol synthase, which was proposed to be the first committed enzyme in the formation
of catalpol, was isolated and characterized to analyze its biochemical function. The results
of this study enrich the gene information for elucidating the biosynthesis of catalpol in
R. glutinosa and are beneficial for improving the medicinal quality of R. glutinosa.
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2.2. RNA Extraction and Transcriptome Construction 

Figure 1. Proposed biosynthetic pathway of catalpol in R. glutinosa. GPP, geranyl diphosphate;
GES, geraniol synthase; G10H, geraniol 10-hydroxylase; 10HGO, 10-hydroxygeraniol oxidoreductase;
ISY, iridoid synthase; DLS, deoxyloganetic acid synthase; epi-ISY, epi-iridoid synthase; DLS-like,
deoxyloganetic acid synthase-like; ALD, aldehyde dehydrogenase; DLGT, deoxyloganetic acid
glucosyltransferase; DL7H, deoxyloganic acid 7-hydroxylase; LAMT, loganic acid methyltransferase;
SLS, secologanin synthase; UGT, uridine diphosphate glycosyltransferase. The dotted lines indicate
that the corresponding enzymes have not yet been isolated. The proposed pathway was prepared
according to the previous studies and the KEGG PATHWAY Database [8,29].

2. Materials and Methods
2.1. Plant Materials

Three R. glutinosa cultivars, Beijing No. 3, Huaifeng, and Jin No. 9, were grown in
the incubator at 23 °C under a 16 h–8 h light–dark cycle. An image of the R. glutinosa
plant is shown in Supplementary Figure S1. The tuberous roots, adventitious roots, and
young leaves were harvested 180 days after sprouting. The chemical standards catalpol
and geraniol were purchased from Shanghai Source Leaf Biological Technology Company
(Shanghai, China). GPP was from Sigma-Aldrich (Steinheim, Germany).
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2.2. RNA Extraction and Transcriptome Construction

R. glutinosa samples (young leaves, tuberous roots, and adventitious roots) were col-
lected and immediately ground to powder in liquid nitrogen. Total RNA was extracted
using the Trizol reagent. The RNA quality and quantity were evaluated using Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and Nanodrop spectrophotome-
ter (Thermo Fisher Scientific, Waltham, MA, USA). The purity of RNA was analyzed using
gel electrophoresis and Agilent 2100 Bioanalyzer. The Illumina NovaSeq 6000 platform
(Illumina, San Diego, CA, USA) was applied to construct transcriptomes. The low-quality
reads, including reads with adaptors, unknown nucleotides, or reads with more than 50%
of bases with Q-value ≤20, were discarded to generate clean reads. Q20, Q30, and GC
content of the clean data were calculated, and the downstream analyses were conducted
based on the clean data with high quality. Transcriptome assembly was accomplished using
Trinity software with min_kmer_cov set to 3 by default, and all other parameters set to
default [30].

2.3. Functional Annotation

The function of unigenes was annotated based on several public databases, including
the NCBI non-redundant protein (Nr, diamond v0.8.22, e-value = 10−5), the NCBI non-
redundant nucleotide (Nt, blast 2.2.28, e-value = 10−5), Protein family (Pfam, HMMER
3.0 package, e-value = 10−2), the Swiss-Prot (diamond v0.8.22, e-value = 10−5), the Kyoto
Encyclopedia of Genes and Genomes (KEGG, KAAS, e-value = 10−10), the euKaryotic
Orthology Groups (KOG, diamond v0.8.22, e-value = 10−3), and Gene Ontology (GO,
Blast2GO v2.5, e-value = 10−6).

2.4. Identification of the Differentially Expressed Genes (DEGs)

The expression levels of unigenes were estimated by the fragments per kilo-base of the
exon model per million mapped reads (FPKM) [31]. To identify the DEGs, the read counts
were adjusted by an edgeR program package through one scaling normalized factor. Then,
the DEGseq R package was used to perform differential expression analysis. p value was
adjusted by q value, and q value < 0.005 with log2 (foldchange) > 1 was set as the threshold
to identify significant DEGs [32]. GO enrichment analysis of these DEGs was accomplished
using the GOseq R packages based on Wallenius non-central hyper-geometric distribution.
KOBAS was applied to test the enrichment of DEGs in KEGG pathways [33].

2.5. HPLC Analysis

About 100 mg of ground plant materials of R. glutinosa was extracted with 1 mL
of methanol in a bath sonicator for 1 h at room temperature. The methanol extract was
evaporated to dryness and dissolved in 20% methanol. HPLC analysis was performed in a
Shimadzu LC-16 machine with a UV detection system. An Inertsil ODS-SP reverse phase
column (5 um, 250 mm × 4.6 mm) (Shimadzu, Kyoto, Japan) was used to separate different
compounds with water (A) and acetonitrile (B) as the mobile phase in a stepped gradient
mode as follows: 0.00–13.00 min, 3% B; 13.01–15.50 min, from 3 to 70% B; 15.51–20.00 min,
70% B; 20.01–25.00 min, 98% B; 25.01–35.00 min, 3% B. The flow rate was 1 mL/min with
the column oven temperature set to 30 ◦C, and the detection wavelength was 210 nm. The
standard catalpol curve was established to calculate the content of catalpol in different samples.

2.6. Gene Expression Analysis

Gene expression level was analyzed by quantitative real-time PCR (qRT-PCR) based on the
2−∆∆Ct method [34]. The R. glutinosa TIP41 gene (GenBank accession no. KT306007) was chosen
as an internal standard [35]. The gene-specific primers are listed in Supplementary Table S1. The
qRT-PCR was performed with the Applied Biosystems QuantStudio5 Real-time PCR System
using the FastStart Universal SYBR Green Mix (Roche) in three independent biological
replicates with three technical replicates. The thermal cycling parameters were as follows:
95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 15 s, 60 ◦C for 1 min.
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2.7. Identification and Sequence Analysis of Candidate Geraniol Synthase Genes

To identify the putative geraniol synthase cDNAs (RgGES) from R. glutinosa, the pub-
lished geraniol synthase from C. roseus (CrGES, GenBank accession No. JN882024.1) was
used as the query sequence to perform a TBLASTN search against the R. glutinosa transcrip-
tome. Multiple sequence alignment was conducted by the CLC Sequence Viewer 6.8 pro-
gram and the phylogenetic tree was constructed using the Neighbor-Joining method in the
MEGA 7.0 software.

2.8. Heterologous Expression of RgGES

The full-length coding sequence of the RgGES candidate was amplified with primer
27-28 and then subcloned into the expression vector pET28a at the BamH I/Sal I site to
generate the plasmid pET28a-RgGES. The expression of RgGES in Escherichia coli (E. coli)
BL21(DE3) cells was induced with 0.3 mM isopropyl-β-D-thiogalactopyranoside (IPTG)
at 16 ◦C, 160 rpm for 16 h. After the cultivation, the transgenic cells were collected by
centrifugation and broken by ultrasonication in the lysis buffer (20 mM sodium phosphate,
300 mM sodium chloride with 10 mM imidazole; pH 7.5). The crude protein extracts
were incubated with a HisPur Ni-NTA resin to purify the recombined RgGES protein
following the manufacturer’s instructions. The purified RgGES protein was desalted into
the assay buffer (100 mM HEPES-KOH, 1 mM MgCl2, pH 7.0). The concentration of RgGES
protein was evaluated by the Nanodrop spectrophotometer and its purity was analyzed
using SDS-PAGE.

2.9. Enzyme Assays

Enzyme assay was performed in 800 µL of 100 mM HEPES-KOH buffer (pH 7.0
containing 1 mM MgCl2), 10 mM GPP, and 3 µg of the purified RgGES protein. The reaction
mixture was overlaid with 800 µL of hexane and incubated at 30 ◦C for 2 h. By thoroughly
vortexing for 5 min, the reaction was stopped. Then, the hexane phase was collected by
centrifugation and analyzed through GC-MS. The empty vector pET28a was used as a
control. Enzyme assay was performed according to the previous literature with minor
modifications [36].

2.10. GC-MS Analysis

GC-MS analyses were carried out on the 8890 gas chromatograph coupled to a 7000D
mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). The products were
analyzed using an HP-5 MS column (30 m × 0.25 mm × 0.25 µm film thickness) with the
carrier gas being helium at a flow rate of 1 mL/min. For analyzing the enzymatic products,
the initial oven temperature was set at 60 ◦C for 1 min, followed by a 5 ◦C/min ramp to
150 ◦C, held at 150 ◦C for 5 min, then followed by a linear gradient to 240 ◦C at a rate of
20 ◦C/min, and held for 3 min. The splitless injection mode was used and the injector
temperature was 230 ◦C. Full mass spectra were generated by scanning within the m/z
range of 40–500 u. The compounds were confirmed by comparing the retention time and
mass fragmentation patterns with those of authentic standards. The GC-MS detection
method was determined based on the previous study [37].

The methodology in this study was summarized as a flowchart in Supplementary Figure S2.

3. Results
3.1. HPLC Analysis of Catalpol in R. glutinosa

Considering that catalpol was the major active compound of R. glutinosa, its production
in the Beijing No. 3, Huaifeng, and Jin No. 9 cultivars was analyzed. The result showed
that the content of catalpol was higher in the young leaves of the Jin No. 9 cultivar than
that of the Beijing No. 3 and Huaifeng cultivars (Figure 2B). Then, different parts of the
R. glutinosa Jin No. 9 cultivar, including the young leaves, old leaves, tuberous roots, and
adventitious roots were selected to explore the catalpol distribution pattern. As shown in
Figure 2C, catalpol was synthesized at a higher level in the young leaves than in the old
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leaves and tuberous roots. The content of catalpol in the old leaves was comparable with
that in the tuberous roots. Notably, catalpol was not detected in the adventitious roots.
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Figure 2. (A) R. glutinosa plant; (B) the content of catalpol in the young leaves of different R. glutinosa
cultivars. BJL, young leaves of Beijing No. 3; HFL, young leaves of Huaifeng; J9L, young leaves of
Jin No. 9; (C) the concentration of catalpol in different parts of R. glutinosa. YL, young leaf; OL, old
leaf; R, tuberous root. Error bars represent the standard errors of the means (SEMs) calculated from
three biological replicates. Asterisks indicate a significant difference (p < 0.05).

3.2. Transcriptome Sequencing and De Novo Assembly

To globally identify candidate genes in the biosynthesis of valuable compounds in
R. glutinosa, transcriptomes from the young leaves, tuberous roots, and adventitious roots of
the Jin No. 9 cultivar, as well as the young leaves of the Beijing No. 3 and Huaifeng cultivars,
were constructed using an Illumina NovaSeq 6000 platform, and were designated as J9L,
J9R, J9AR, BJL, and HFL, respectively. As a result, more than 29 million clean reads per
transcriptome were produced. The Q20 and Q30 of all the libraries were over 97.75% and
93.19%, indicating these clean data could be used for further analysis (Table 1). The error
rate of all the libraries was 0.03, and its distribution is provided in Supplementary Figure S3.
The clean reads from all the transcriptomes were assembled into 71,142 unigenes with a
mean length of 1131 bp and an N50 length of 1732 bp (Supplementary Table S2). The raw
data from the transcriptomes were submitted to the publicly accessible Genome Sequence
Archive (GSA) database in the BIG Data Center under the accession number CRA005581.

Table 1. Statistics of sequencing of R. glutinosa transcriptomes.

Sample Raw Reads Clean Reads Clean Bases Error Rate Q20 (%) Q30 (%) GC (%)

J9L 31,180,906 29,195,338 8.76 G 0.03 97.84 93.43 45.42
J9R 31,674,784 30,297,505 9.09 G 0.03 97.85 93.38 44.44

J9AR 30,827,652 29,371,270 8.81 G 0.03 97.75 93.19 45.10
BJL 30,882,434 29,153,263 8.75 G 0.03 97.83 93.36 45.02
HFL 31,220,770 29,902,124 8.97 G 0.03 98.01 93.91 44.47

3.3. Functional Annotation and Classification of the R. glutinosa Unigenes

A total of 71,142 unigenes were successfully annotated by searching all these se-
quences against seven public databases, including the Nr, Nt, Pfam, Swiss-Prot, KEGG,
KOG, and GO. Among these databases, the highest annotation percentage was in the Nr
(38,788 unigenes; 54.52%), followed by the Nt database (30,861 unigenes; 43.37%) and the
Swiss-Prot (29,731 unigenes; 41.79%) (Table 2).
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Table 2. Statistics of annotation for assembled unigenes from R. glutinosa.

Databases Number of Unigenes Percentage

Annotated in all databases 6958 9.78
Annotated in KOG 10,119 14.22

Annotated in KEGG 13,862 19.48
Annotated in GO 28,511 40.07

Annotated in Pfam 28,512 40.07
Annotated in Swiss-Prot 29,731 41.79

Annotated in Nt 30,861 43.37
Annotated in Nr 38,788 54.52

Annotated in at least one database 71,142 100
Total unigenes 71,142 100

The KOG annotation revealed that 10,119 unigenes were classified into 25 terms, of which
the largest category was “posttranslational modification, protein turnover, chaperones”, in-
cluding 1367 unigenes, followed by “general function prediction only” (1232 unigenes) and
“translation, ribosomal structure, and biogenesis” (1150 unigenes) (Figure 3A, Supplemen-
tary Table S3). To further explain the function of unigenes in biological pathways, all the
unigenes were searched against the KEGG database. The result showed 13,862 unigenes were
classified into 34 KEGG pathways (Figure 3B, Supplementary Table S4), of which “signal
transduction” (1757 unigenes), “carbohydrate metabolism” (1350 unigenes), and “translation”
(1340 unigenes) were the highest represented pathways. To functionally classify the R. gluti-
nosa transcriptome, 28,511 unigenes were categorized into three GO terms: biological process,
cellular component, and molecular function. The subcategory for “cellular process” (16,395 uni-
genes) was the most abundant group, followed by “metabolic process” (15,485 unigenes) and
“binding” (15,155 unigenes) (Figure 3C, Supplementary Table S5).

The FPKM method was applied to calculate the transcript abundance of the uni-
genes. Given that the content of catalpol is highest in the young leaves, followed by
the tuberous roots and adventitious roots, the DEGs between the different tissues of
R. glutinosa were screened. A total of 16,241 DGEs were obtained from the J9L library
versus the J9AR library, including 5421 up-regulated DEGs and 10,820 down-regulated
DEGs (Figure 4A). The GO annotation of these up-regulated genes showed that the highest
number of unigenes was under the term of “catalytic activity” (1662 unigenes), followed by
“single-organism metabolic process” (886 unigenes). For the up-regulated genes in the J9L
library, the top three enriched pathways were “starch and sucrose metabolism”, “carbon
fixation in photosynthetic organisms”, and “glyoxylate and dicarboxylate metabolism”
(Figure 4B). By comparing the J9L library with the J9R library, 5139 up-regulated DGEs as
well as 3545 down-regulated DGEs were identified. The up-regulated genes were mainly
classified into the pathway “carbon fixation in photosynthetic organisms” (Figure 4B).
When the J9R library was compared to the J9AR library, 1408 up-regulated genes and
7779 down-regulated ones were generated, and the enriched pathway of the up-regulated
genes in the J9R library was “starch and sucrose metabolism” (Figure 4B). A total of
187 unigenes showed up-regulation in all the comparisons, including the J9L library versus
the J9AR library, the J9L library versus the J9R library, and the J9R library versus the J9AR
library, exhibiting positive correlation with the content of catalpol (Figure 4C). The top
three representative pathways of these 187 sequences were “starch and sucrose metabolism”,
“phenylpropanoid biosynthesis”, and “cyanoamino acid metabolism” (Figure 4D).
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Figure 4. Number of DEGs (A) and KEGG enrichment analysis of up-regulated genes (B) between
different parts of R. glutinosa; (C) Venn diagram of up-regulated unigenes in different tissues of
R. glutinosa (J9L vs. J9AR, J9L vs. J9R, and J9R vs. J9AR); (D) representative pathway of the common
up-regulated genes from J9L vs. J9AR, J9L vs. J9R, and J9R vs. J9AR.

3.4. Identification of Putative Genes in the Pathway of Catalpol Biosynthesis

We focused attention on the downstream steps to catalpol. According to the proposed
biosynthetic pathway of catalpol shown in Figure 1, GPP was converted to 10-oxogeranial
by GES, G10H, and 10HGO in sequence, which were common enzymes in route I and
route II. Subsequently, epi-nepetalactol was formed from 10-oxogeranial by epi-ISY pro-
tein, followed by its conversion into either 8-epi-deoxyloganetic acid or iridotrial by DLS-
like enzyme. The candidate genes for these enzymes were screened by keyword searching,
and a total of 51 sequences were found (Supplementary Table S6). Among them, several
unigenes, including one for GES (Cluster-11149.40193), one for G10H (Cluster-11149.27919),
four for 10HGO (Cluster11149.19580, Cluster-11149.22551, Cluster-11149.34028, and Cluster-
11149.31299), two for epi-ISY (Cluster-11149.20854 and Cluster-11149.27465), and two for DLS-
like (Cluster-11149.30874 and Cluster-11149.34412), were selected as putative genes involved in
catalpol biosynthesis, due to their similar expression to the accumulation pattern of catalpol.
These putative candidate genes displayed their presence in all the Beijing No. 3, Huaifeng, and
Jin No. 9 cultivars; meanwhile, their highest expression level was in the young leaves, followed
by the tuberous roots and adventitious roots (Figure 5A). Discarding two unigenes for 10HGO
(Cluster-11149.31299 and Cluster-11149.19580) and one for DLS-like (Cluster-11149.34412), the
others with complete open reading frames (ORFs) were selected for the qRT-PCR analysis.
The expression levels of these unigenes were consistent between the qRT-PCR results and the
FPKM data, except for Cluster-11149.40193 (Figure 5B). The qRT-PCR melting curves are
shown in Supplementary Figure S4. Additionally, GES (AFD64744.1), G10H (CAC80883.1),
10HGO (AHA82031.1), ISY (AFW98981.1), and DLS (AHX24370.1) from C. roseus were
used as the query sequences to conduct the tBLASTn searching, and the highest hits
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in the R. glutinosa transcriptomes were Cluster-11149.40193 (GES), Cluster-11149.27919
(G10H), Cluster-11149.22551 (10HGO), Cluster-11149.27465 (epi-ISY), and Cluster-11149.11401
(DLS-like), respectively (Supplementary Table S6).
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As depicted in Figure 1, UGT catalyzed the conversion of 8-epi-deoxyloganetic acid and
iridotrial into 8-epi-deoxyloganic acid and boschnaloside, respectively. A total of 167 UGT
unigenes were discovered in the R. glutinosa transcriptomes (Supplementary Table S7) while
8 of them (RgUGT1-8) satisfied our gene screening criteria. In addition, 21 sequences were
annotated as UGT candidates related to the iridoid glucosides biosynthesis. The cluster analysis
of all these UGT candidate genes revealed that RgUGT1-8 were assigned to the same cluster,
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which formed a separate group with other UGT candidates (Figure 6A). CrUGT8 (AB733667)
from C. roseus, which glycosylated deoxyloganetic acid to deoxyloganic acid in route I,
was used as the query sequence to search in the R. glutinosa transcriptomes. As a result,
the highest hit was Cluster-11149.23607 (RgUGT9), which was highly expressed in the
adventitious roots compared to the tuberous roots [10]. Previous studies have suggested
that UGT genes involved in the production of iridoids usually belong to group G of the
Family 1 plant secondary product glycosyltransferases (PSPGs). The members of Family 1
PSPGs are responsible for the glycosylation of various natural plant products [10]. The
phylogenetic analysis of RgUGT1-9 showed that RgUGT1,2,3,9 fell into group G, while
RgUGT4 and RgUGT6 belonged to group O and F, respectively. RgUGT1 and RgUGT9
were closely related to CrUGT8 (Figure 6B, Supplementary Table S8). Furthermore, the
qRT-PCR analysis revealed that RgUGT1 and RgUGT9 were highly expressed in the young
leaves compared to the roots (Figure 6C).
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Figure 6. (A) The heatmap showing an expression clustering of putative UGT genes in catalpol
biosynthesis; (B) phylogenetic analysis of RgUGT1-9 with other known UGTs from different groups.
The tree was constructed with the Neighbor-Joining method (with 1000 bootstrap replications) in the
MEGA 7.0 software. Accession numbers of UGTs were shown in Supplementary Table S8; (C) the
qRT-PCR analysis of UGT candidate genes in catalpol formation. Asterisks indicate a significant
difference (*** p < 0.001).
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It has been predicted that ALDs/NADP+ oxidoreductases might catalyze the oxidation
of boschnaloside to form 8-epi-deoxyloganic acid. In the transcriptomic databases, 104 genes
for aldehyde dehydrogenases and 439 genes for NADP+ oxidoreductases were identified.
Among them, 13 aldehyde dehydrogenase genes and 70 NADP+ oxidoreductase genes met
the gene screening criteria and showed significantly higher expression levels in the young
leaves than those in the tuberous and adventitious roots (Supplementary Tables S9 and 10).

The cytochrome P450 enzymes (CYP450s) exhibit a broad range of activities in hydrox-
ylation, epoxidation, decarboxylation, as well as C-C oxidative cleavage reactions. CYP450s
might participate in a series of modifications in catalpol biosynthesis (Figure 1) [38]. A total
of 363 unigenes were annotated as CYP450s while the expression level of 44 genes corre-
lated well with the catalpol content in R. glutinosa (Supplementary Table S11). Given that the
reported CYP450 genes, including G10H, DLS, DL7H, and SLS in route I of iridoid biosynthesis,
belong to the CYP72 and CYP76 families, these 44 candidate sequences were further screened,
resulting in 12 CYP72 and 7 CYP76 sequences, respectively (Supplementary Table S11). Among
these CYP450 members, Cluster-11149.22060 showed the highest sequence similarity with the
reported aucubin synthase [26], which exactly met the gene screening criteria of this study
(Supplementary Table S11).

The dehydration of mussaenosidic acid may be catalyzed by dehydratase. In the
R. glutinosa transcriptomes, there were 85 sequences annotated as dehydratase, of which
22 candidates showed higher expression levels in the young leaves compared with the
roots, and met the screening criteria (Supplementary Table S12). The transformation of
geniposidic acid to bartsioside can take place by decarboxylation, which is usually catalyzed
by decarboxylase. By keyword searching, a total of 239 decarboxylase unigenes were found,
and the expression level of 30 sequences matched the accumulation pattern of catalpol
(Supplementary Table S13). Hydroxylase and epoxidase also participate in the biosynthesis
of catalpol. Hydroxylase is proposed to catalyze the hydroxylation of 8-epi-deoxyloganic
acid, deoxygeniposidic acid, and bartsioside, while epoxidase can convert aucubin to form
catalpol. A total of 19 genes for hydroxylases and 10 genes for epoxidases, which met
the gene screening criteria herein, were predicted to be involved in catalpol formation in
R. glutinosa (Supplementary Table S14). Among these hydroxylase candidates, Cluster-
11149.14301 and Cluster-11149.10607 were annotated as iridoid hydroxylase and exhibited
higher expression levels in the young leaves than in the roots (Figure 7). The heatmap of all
the candidate genes in the biosynthetic pathway of catalpol is shown in Supplementary
Figure S5.
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3.5. Cloning and Sequence Analysis of RgGES in R. glutinosa

Given that geraniol synthase plays an important role in the production of catalpol, it
is necessary to identify the corresponding gene from R. glutinosa and analyze its function.
Cluster-11149.40193, which was annotated as GES, was selected for further analysis. As
a result, two homologous GES genes (RgGES1 and RgGES2) with several mutations were



Genes 2024, 15, 155 13 of 20

obtained by the PCR method (Supplementary Figure S6). The ORFs of RgGES1 (GenBase
Accession No. C_AA047852.1) and RgGES2 (GenBase Accession No. C_AA047853.1) were
1749 bp, which encoded 582 amino acids.

The phylogenetic analysis of the RgGESs with the known terpene synthases from other
plants revealed that RgGES1 and RgGES2 were classified into the TPS g group [39], and the
RgGES proteins were most closely related to the geraniol synthase from Ocimum basilicum
(Figure 8). The multiple sequence alignment showed that RgGES1 and RgGES2 contained
several highly conserved domains, similar to the GESs from C. roseus (AFD64744.1) and
O. basilicum (AAR11765.1), including DDxxD, RxR, and NSE/DTE (Figure 9). The DDxxD
and NSE/DTE motifs are important for the fixation of the pyrophosphate substrate, while
RxR, which is located about 35 amino acids ahead of the DDxxD motif, is involved in the
complexation of the diphosphate [40].
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Figure 8. Phylogenetic analysis of the putative RgGESs with other known terpene synthases from
different subfamilies. The tree was constructed using the Neighbor-Joining method in the MEGA 7.0.
TPS a–g stand for terpene synthase subfamilies. Accession numbers of various TPSs are provided in
Supplementary Table S15.

3.6. Functional Characterization of RgGES Genes

To verify the biochemical activity of the RgGESs from R. glutinosa, RgGES1 and
RgGES2 were subcloned into a pET28a plasmid to construct pET28a-RgGES1-2 vectors,
and subsequently expressed in E. coli BL21(DE3) cells. The recombined RgGES proteins
were purified using a His-tag (Supplementary Figure S7) and further incubated with the
substrate GPP. The enzymatic products were detected by GC-MS. In comparison with
the control reaction, both RgGES1 and RgGES2 catalyzed GPP to produce a new peak
(Figure 10), which showed identical retention time and mass fragmentation patterns to
those of the authentic standard geraniol, suggesting RgGES1 and RgGES2 converted GPP
to geraniol.
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Figure 9. Amino acid sequence alignment of RgGESs and other GESs. The CLC Sequence Viewer
program was used to conduct the multiple sequence alignment. Highly conserved motifs of TPSs
were indicated with boxes, including DDxxD, RxR, and NSE/DTE. ObGES, O. basilicum, AAR11765.1;
CrGES, C. roseus, AFD64744.1.
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Figure 10. GC-MS analysis of the products in the in vitro assays using the purified RgGESs pro-
teins (A) and mass spectra of the peaks from A (B). The protein extracted from the E. coli cells
harboring the empty vector pET28a was used for the control reaction. Total ion chromatograms were
shown for the reaction with RgGES1 and RgGES2 yielding geraniol (peaks 1 and 2).

4. Discussion

R. glutinosa has been extensively utilized as a medicinal plant to clear away heat
and promote salivation [1]. Catalpol, the main active constituent in R. glutinosa, has been
reported to possess anti-inflammatory, anti-oxidant, anti-diabetic, and neuroprotective
effects. Previous studies have investigated catalpol accumulations, and found that different
cultivars of R. glutinosa, as well as distinct plant samples from the same cultivar, showed
diverse catalpol production abilities [41]. Ji discovered a correlation between catalpol
concentration and growth stage [42]. Furthermore, our unpublished data indicated that
the difference in the accumulation of catalpol existed among different leaves from the
same plant. Therefore, it is necessary to analyze the catalpol content before constructing
R. glutinosa transcriptomes. Herein, we employed HPLC to detect the content of catalpol in
different cultivars and tissues. Under the condition of this study, young leaves of the Jin
No. 9 cultivar exhibited a higher catalpol accumulation than that of the Beijing No. 3 and
Huaifeng cultivars (Figure 2). The HPLC analysis of the different tissues of the Jin No. 9
cultivar revealed that the concentration of catalpol was significantly higher in the young
leaves compared with the other parts, suggesting the young leaves were more suitable for
isolating catalpol. This result was consistent with Ji’s study [42].

Transcriptome analysis has been a universal tool to investigate molecular mechanisms.
In the case of R. glutinosa, Li and Sun employed transcriptome sequencing technology
to identify miRNAs and genes associated with replanting disease and root development,
respectively [43,44]. RNA sequencing technology was also applied to discover functional
genes involved in natural product formation in R. glutinosa. To explore the biosynthesis of
acteoside in R. glutinosa, Zhou and Wang established transcriptomic databases from the
tuberous roots and the hairy roots, respectively [45,46]. Sun constructed an EST dataset from
the roots and subsequently screened a number of genes in the MVA and MEP pathways, as
well as GES, G10H, and 10HGO in the upstream pathway of iridoid biosynthesis [47]. In
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addition, Zhi constructed transcriptome libraries from the radial striation and non-radial
striation of tuberous roots to identify several enzymes in the downstream pathway of
catalpol production, such as iridoid synthase, cytochrome P450 monooxygenase, aldehyde
dehydrogenase, flavanone 3-dioxygenase, uroporphyrinogen decarboxylase, and squalene
monooxygenase [27]. Ma reported genome information of R. glutinosa using nanopore tech-
nology. Besides the enzymes mentioned in Zhi’s research, Ma also identified DL7H, DLGT,
LAMT, and SLS in route I of iridoid biosynthesis [28]. Zhou constructed the metabolome
and transcriptome from R. glutinosa dedifferentiated cells and cambial meristematic cells,
and further identified neomenthol dehydrogenase, cytochrome P450 family 76 subfamily A,
7-deoxyloganetin glucosyltransferase, and 8-carboxylinalool synthase in the downstream
steps of monoterpenoid biosynthesis [48]. Although previous studies have identified
some enzyme-coding genes in catalpol formation, there are still a number of important
enzymes that have never been reported in R. glutinosa, such as CYP450, oxidoreductase, de-
hydratase, hydroxylase, and epoxidase. These enzymes probably participate in modifying
the epi-nepetalactol skeleton to catalpol.

Given the fact that catalpol is highly accumulated in the young leaves, we constructed
transcriptomes from the young leaves of three R. glutinosa cultivars (Beijing No. 3, Huaifeng,
and Jin No. 9 cultivars) to elucidate the catalpol biosynthetic pathway in this study.
Moreover, considering the difference in the catalpol content among different tissues, the
transcriptomic data from the tuberous and adventitious roots were further obtained. The
transcriptomes yielded a total of 71,142 unigenes with functional annotation. The number
of functionally annotated unigenes was more than that in the tuberous root transcriptome
from the R. glutinosa Wen 85-5 cultivar, but less than that generated from root databases
from 1706, BJ1, Wen 85-5, and QH1 cultivars [27,45]. This difference might result from
the use of different cultivars and tissues in different studies. The transcriptome from
the adventitious roots which had no catalpol was first applied to reduce the number of
candidate genes in catalpol biosynthesis. The adventitious root library can provide more
reliable evidence for the comparative transcriptome analysis. According to the HPLC
detection results, the rationale for discovering genes in the catalpol biosynthetic pathway
was designed as follows: first, compared with the adventitious roots, candidate genes
would show higher expression in the young leaves with fold changes larger than two, and
second, the transcript level of the selected genes would be highest in the young leaves,
followed by the tuberous roots and the adventitious roots, in sequence. In addition, the
candidate genes would be present in all the Beijing No. 3, Huaifeng, and Jin No. 9 cultivars.
Using the comparative transcriptome analysis, more candidate genes in the downstream
pathway of catalpol biosynthesis were obtained in this study.

As a typical iridoid glucoside with 8α-stereochemistry, catalpol may be formed by route
II: geraniol→10-hydroxygeraniol→10-oxogeranial→epi-nepetalactol→8-epi-deoxyloganetic
acid or boschnaloside→8-epi-deoxyloganic acid. 8-epi-deoxyloganic acid is subsequently
modified to catalpol by hydroxylation, dehydration, decarboxylation, and epoxidation
(Figure 1) [8,22,24]. However, the knowledge of genes responsible for the biosynthetic steps
in route II is poor. In this study, the formation of catalpol is divided into two periods to con-
duct analysis. The first period is the production of 8-epi-deoxyloganic acid from GPP, which
shares similar steps with route I. The first step of this period is the conversion of GPP to
geraniol by GES. A GES candidate gene (Cluster-11149.40193) was found in R. glutinosa, and
it showed 71% amino acid identity with the GES from C. roseus. It is predicted that the trans-
formation of geraniol to 8-epi-deoxyloganic acid is catalyzed by common enzymes, such as
G10H, 10HGO, epi-ISY, and DLS-like. Using keyword and blast searching approaches, all
these common enzymes were found here. Nine sequences encoding these four enzymes
met the gene screening criteria in this study. These candidates showed identical expression
features to the accumulation pattern of catalpol (Figure 5), indicating their possible roles in
catalpol production. Glycosylation reactions in secondary metabolism are usually catalyzed
by glycosyltransferases from Family 1 PSPGs [10]. A total of 167 UGT sequences were
identified, and the transcript level of eight unigenes (RgUGT1-8) matched the catalpol
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accumulation. However, the other UTG sequence Cluster-11149.23607 (RgUGT9) showed
the highest amino acid identity with CrUGT8, a reported UGT in iridoid biosynthesis. The
phylogenetic analysis suggested that RgUGT1,2,3,9 belonged to group G (Figure 6), which
contains several iridoid-specific glucosyltransferase members, indicating these unigenes
might play roles in the catalpol biosynthesis in R. glutinosa. Considering that sequence
homology is not enough to predict the precise enzymatic activity of glycosyltransferase,
RgUGT1-3 as well as RgUGT9 will be further cloned to analyze their functions.

The conversion of 8-epi-deoxyloganic acid to catalpol is considered the second period
of catalpol production. Cytochrome P450s play important roles in this stage. A total of
44 unigenes of the CYP450 family met the screening criteria based on the FPKM analysis.
Given that the known CYP450s in route I belong to the CYP72 and 76 families, 12 unigenes
of the CYP72 family and 7 members of the CYP76 family were further identified in this
study. The top three most highly expressed sequences of the CYP72 family were annotated
as dehydrogenase, oxidoreductase, and SLS, respectively. The highest expressed unigenes of
the CYP76 family were DLS and G10H. The identification of genes in the iridoids biosynthesis
suggested that the keyword searching method and the gene screening criteria were reliable in
discovering putative genes in catalpol biosynthesis. As shown in Figure 1, hydroxylases are
responsible for three steps in catalpol formation. The step from 8-epi-deoxyloganic acid to mus-
saenosidic acid is similar to the reaction catalyzed by DL7H in route I. Herein, two unigenes
(Cluster-11149.14301 and Cluster-11149.10607) were annotated as DL7H, and their expres-
sion profile showed a positive correlation with the accumulation of catalpol (Figure 7),
suggesting these two unigenes might catalyze the hydroxylation of 8-epi-deoxyloganic acid.

Geraniol synthase is the first branch enzyme in the biogenesis of catalpol. In the
R. glutinosa transcriptomic databases, Cluster-11149.40193 was selected as a GES candidate
for functional characterization. Using the PCR approach, RgGES1 and RgGES2 with several
mutations were isolated from the young leaves. Since R. glutinosa is an autotetraploid
plant [28], it is reasonable to isolate two similar sequences from R. glutinosa for one unigene.
The phylogenetic analysis revealed RgGES1 and RgGES2 belonged to the TPS g group,
which specifically produce acyclic terpenes like geraniol and linalool. As the general
structural feature of the members from the TPS g group, RgGES1 and RgGES2 lacked the
RRX8W motif, which has been present in many, but not always found in, monoterpene
synthases [49]. Like the geraniol synthase from O. basilicum and Dendrobium officinale [32,50],
the purified recombinant RgGES1 and RgGES2 catalyzed GPP to uniquely produce geraniol
in the in vitro assay (Figure 10), suggesting RgGES1 and RgGES2 were classified as geraniol
synthase in R. glutinosa. In addition, given that RgGES (Cluster-11149.40193) is highly
expressed in the young leaves, it was reasonable to assume that RgGES1 and RgGES2
participate in catalpol biosynthesis in R. glutinosa.

5. Conclusions

Transcriptome sequencing was performed in the young leaves of R. glutinosa Beijing
No. 3, Huaifeng, and Jin No. 9 cultivars. Meanwhile, transcriptomes from the tuberous and
adventitious roots of the Jin No. 9 cultivar were also constructed. Using the comparative
transcriptome analysis, many important candidate genes that participated in catalpol
biosynthesis were identified, such as CYP450, UGTs, oxidoreductases, hydroxylase, and
decarboxylases. In addition, RgGES1 and RgGES2 were isolated and characterized as
geraniol synthase, which catalyzed GPP to produce the precursor geraniol. The findings in
this study will facilitate functional studies of catalpol biogenesis in R. glutinosa.
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