Integrated Transcriptomics and Metabolomics Reveal Key Insights into Iridoid Biosynthesis in Gentiana crassicaulis Seeds during Germination
Highlights
- Twenty-six genes correlated with iridoid levels, implicating them in metabolism.
- The CYP716 and LOX families may indirectly affect iridoid metabolism; the CYP71, CYP81, CYP72, CYP76, CYP710 families, the 2OG-FeII family, and the glucosyltransferase family likely play direct roles.
- This study has uncovered iridoid biosynthesis in Gentiana crassicaulis, which is key for traditional medicine.
- This study has identified gene families crucial for iridoid production, enabling metabolic engineering in plants.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Seed Preparation and Germination
2.3. Determination of Iridoids Using UPLC-Q-TOF-MS
2.4. Transcriptome Analysis
2.5. qRT-PCR Analysis
2.6. Candidate Gene Mining
2.7. MeJA Treatment and Material Processing
2.8. Statistical Analysis
3. Results
3.1. Characterization and Enrichment Analysis of Iridoids during Seed Germination
3.2. Functional Annotation of Unigenes
3.3. qRT-PCR Validation
3.4. Correlation Analysis of Transcriptome and Metabolome
3.5. Response of Candidate Genes and Iridoids to MeJA Stimulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, F.; Zhang, J.; Zheng, X.; Dai, Z.; Liu, B.; Ma, S. Research Progress of the Structure and Biological Activities of Iridoids Compounds. Chin. Pharm. Aff. 2019, 33, 323–330. [Google Scholar] [CrossRef]
- Zhou, C. Review of pharmacological studies on the chemical constituents of iridoids. World Latest Med. Inf. 2016, 16, 38. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, X.; Guo, X.; Guo, Q.; Li, D. Metabolomics Characterization of Two Apocynaceae Plants, Catharanthus roseus and Vinca minor, Using GC-MS and LC-MS Methods in Combination. Molecules 2017, 22, 997. [Google Scholar] [CrossRef]
- Jin, Z.; Wan, R.; Yan, R.; Su, Y.; Huang, H.; Zi, L.; Yu, F. Microwave-Assisted Extraction of Multiple Trace Levels of Intermediate Metabolites for Camptothecin Biosynthesis in Camptotheca acuminata and Their Simultaneous Determination by HPLC-LTQ-Orbitrap-MS/MS and HPLC-TSQ-MS. Molecules 2019, 24, 815. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, D.; Qin, M.; Li, X. Simultaneous Determination of Catalpol, Aucubin, and Geniposidic Acid in Different Developmental Stages of Rehmannia glutinosa Leaves by High Performance Liquid Chromatography. J. Anal. Methods. Chem. 2016, 2016, 4956589. [Google Scholar] [CrossRef]
- Abdel-Kader, M.S.; Alqasoumi, S.I. In Vivo Hepatoprotective and Nephroprotective Activity of Acylated Iridoid Glycosides from Scrophularia hepericifolia. Biology 2021, 10, 145. [Google Scholar] [CrossRef]
- Wölfle, U.; Haarhaus, B.; Schempp, C.M. Amarogentin Displays Immunomodulatory Effects in Human Mast Cells and Keratinocytes. Mediators. Inflamm. 2015, 2015, 630128. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Y.; Xue, Z.; Zhang, X.; Liu, X.; Liu, G.; Wen, M.; Chen, A.; Huang, B.; Li, X.; et al. Valtrate, an iridoid compound in Valeriana, elicits anti-glioblastoma activity through inhibition of the PDGFRA/MEK/ERK signaling pathway. J. Transl. Med. 2023, 21, 147. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Wu, S.; He, Y.; Dai, Z.; Ma, S.; Liu, B. Studies of the structure-antioxidant activity relationships and antioxidant activity mechanism of iridoid valepotriates and their degradation products. PLoS ONE 2017, 12, e0189198. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, Y.; Liu, X.; Chai, Y.; Xu, J. Morroniside attenuates high glucose-induced BMSC dysfunction by regulating the Glo1/AGE/RAGE axis. Cell. Prolif. 2020, 53, e12866. [Google Scholar] [CrossRef]
- Contin, A.; Heijden, R.V.D.; Lefeber, A.W.M.; Verpoorte, R. The iridoid gluco-side secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett. 1998, 434, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Liu, X.L. Progress of biosynthetic pathway and the key enzyme genes of iridoids. Chin. J. Ethnomed. Ethnopharm. 2017, 08, 44–48. [Google Scholar] [CrossRef]
- Yang, R.; Fang, L.; Li, J.; Zhang, Y.Q. Research progress on biosynthetic pathways and related enzymes of iridoid glycosides. Chin. Tradit. Herb. Drugs. 2018, 49, 2482–2488. [Google Scholar] [CrossRef]
- Coscia, C.J.; Botta, L.; Guarnaccia, R. On the mechanism of iridoid and secoiridoid monoterpene biosynthesis. Arch. Biochem. Biophys. 1970, 136, 498–506. [Google Scholar] [CrossRef]
- Inouye, H.; Nakamura, Y. Über die monoterpenglucoside und verwandte naturstoffe—XIV: Die struktur der beiden stark bitter schmeckenden glucoside amarogentin und amaroswerin aus Swertia japonica. Tetrahedron 1971, 27, 1951–1966. [Google Scholar] [CrossRef]
- Inouye, H.; Ueda, S.; Takeda, Y.S. Studies on Monoterpene Glucosides and Related Natural Products. XII. Incorporation of [10-14C]-Swerosideinto Gentiopicroside and the Alkaloids in Vinca and Cincona Plants. Chem. Pharm. Bull. 1971, 19, 587–594. [Google Scholar] [CrossRef]
- Jensen, S.R.; Schripsema, J. Chemotaxonomy and Pharmacology of Gentianaceae; Cambridge University Express: Cambrige, UK, 2001; pp. 573–632. [Google Scholar] [CrossRef]
- Editorial Committee of Chinese Flora, Chinese Academy of Sciences. Flora Republicae Popularis Sinicae; Beijing Science Press: Beijing, China, 1993; pp. 67–68. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China: Vol I; China Medical Science Press: Beijing, China, 2020; pp. 99, 140, 204, 282. [Google Scholar]
- Yang, Y.C. Tibetan Medicine; Qinghai People Press: Xining, China, 1991; pp. 11–12. [Google Scholar]
- Ji, W.; Xie, H.; Wu, J.; Ni, L.; Zhao, Z. Chemical constituents of underground part of Gentiana crassicaulis with different processing methods based on UPLC-LTQ-Orbitrap MS/MS. Chin. Tradit. Herb. Drugs. 2023, 54, 4641–4648. [Google Scholar] [CrossRef]
- Prakash, A.N.; Prasad, N.; Puppala, E.R.; Panda, S.R.; Jain, S.; Ravichandiran, V.; Singh, M.; Naidu, V.G.M. Loganic acid protects against ulcerative colitis by inhibiting TLR4/NF-κB mediated inflammation and activating the SIRT1/Nrf2 anti-oxidant responses in-vitro and in-vivo. Int. Immunopharmacol. 2023, 122, 110585. [Google Scholar] [CrossRef]
- Park, E.; Lee, C.G.; Lim, E.; Hwang, S.; Yun, S.H.; Kim, J.; Jeong, H.; Yong, Y.; Yun, S.H.; Choi, C.W.; et al. Osteoprotective Effects of Loganic Acid on Osteoblastic and Osteoclastic Cells and Osteoporosis-Induced Mice. Int. J. Mol. Sci. 2020, 22, 233. [Google Scholar] [CrossRef]
- Park, E.; Kim, J.; Yeo, S.; Kim, G.; Ko, E.H.; Lee, S.W.; Li, W.Y.; Choi, C.W.; Jeong, S.Y. Antiadipogenic Effects of Loganic Acid in 3T3-L1 Preadipocytes and Ovariectomized Mice. Molecules 2018, 23, 1663. [Google Scholar] [CrossRef]
- Gong, J.; Yang, F.; Yang, Q.; Tang, X.; Shu, F.; Xu, L.; Wang, Z.; Yang, L. Sweroside ameliorated carbon tetrachloride (CCl4)-induced liver fibrosis through FXR-miR-29a signaling pathway. J. Nat. Med. 2020, 74, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; El-Raey, M.; El-Kashak, W.; Batiha, G.E.; Althumairy, D.; Alamer, S.; Mostafa, N.M.; Eldahshan, O.A. Sweroside: An iridoid glycoside of potential neuroprotective, antidiabetic, and antioxidant activities supported by molecular docking. Amino Acids. 2023, 55, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Jaishree, V.; Badami, S. Antioxidant and hepatoprotective effect of swertiamarin from Enicostemma axillare against D-galactosamine induced acute liver damage in rats. J. Ethnopharmacol. 2010, 130, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Dhanavathy, G. Immunohistochemistry, histopathology, and biomarker studies of swertiamarin, a secoiridoid glycoside, prevents and protects streptozotocin-induced β-cell damage in Wistar rat pancreas. J. Endocrinol. Investig. 2015, 38, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Pandikumar, P.; Babu, N.P.; Islam, V.; Thirugnanasambantham, K.; Paulraj, M.G.; Balakrishna, K.; Ignacimuthu, S. In vivo and in vitro immunomodulatory potential of swertiamarin isolated from Enicostema axillare (Lam.) A. Raynal that acts as an anti-inflammatory agent. Inflammation 2014, 37, 1374–1388. [Google Scholar] [CrossRef]
- Leong, X.Y.; Thanikachalam, P.V.; Pandey, M.; Ramamurthy, S. A systematic review of the protective role of Swertiamarin in cardiac and metabolic diseases. Biomed. Pharmacother. 2016, 84, 1051–1060. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, T.; Li, B.; Zhu, Z.; Ma, X.; Zhang, Y.; Li, L.; Zhu, J.; Zhang, G. Gentiopicroside inhibits the progression of gastric cancer through modulating EGFR/PI3K/AKT signaling pathway. Eur. J. Med. Res. 2024, 29, 47. [Google Scholar] [CrossRef]
- Yao, T.; Cui, Q.; Liu, Z.; Wang, C.; Zhang, Q.; Wang, G. Metabolomic evidence for the therapeutic effect of gentiopicroside in a corticosterone-induced model of depression. Biomed. Pharmacother. 2019, 120, 109549. [Google Scholar] [CrossRef]
- Jiang, H.; Zhong, J.; Li, W.; Dong, J.; Xian, C.J.; Shen, Y.K.; Yao, L.; Wu, Q.; Wang, L. Gentiopicroside promotes the osteogenesis of bone mesenchymal stem cells by modulation of β-catenin-BMP2 signalling pathway. J. Cell Mol. Med. 2021, 25, 10825–10836. [Google Scholar] [CrossRef]
- He, M.; Hu, C.; Chen, M.; Gao, Q.; Li, L.; Tian, W. Effects of Gentiopicroside on activation of NLRP3 inflammasome in acute gouty arthritis mice induced by MSU. J. Nat. Med. 2022, 76, 178–187. [Google Scholar] [CrossRef]
- Wu, J.R.; Zhao, Z.L.; Wu, L.H.; Wang, Z.T. Authentication of Gentiana straminea Maxim. and its substitutes based on chemical profiling of iridoids using liquid chromatography with mass spectrometry. Biomed. Chromatogr. 2016, 30, 2061–2066. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wei, M.; Sun, D.; Chen, W.; Li, L.; Wang, L.; Chen, X. Identification and Quality Evaluation of Gentiana scabra Bge. and Gentiana rigescens Franch. Based on HPLC Fingerprints Combined with Chemometrics. Chin. J. Inform. Trad. Chine. Med. 2020, 27, 75–81. [Google Scholar]
- Wang, X.; Chen, X.; You, R.; Ju, J.; Xu, J.; Fan, J.; Zhou, H. Analysis on chemical constituents from Swertia mileensis by UPLC-ESI-Q-TOF-MS. Chin. Tradit. Herb. Drugs. 2017, 48, 453–459. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Elam, E.; Ni, Z.J.; Zhang, F.; Thakur, K.; Wang, S.; Zhang, J.G.; Wei, Z.J. LC-MS/MS targeting analysis of terpenoid metabolism in Carya cathayensis at different developmental stages. Food. Chem. 2022, 366, 130583. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Shen, S.; Zhou, S.; Li, Y.; Mao, Y.; Zhou, J.; Shi, Y.; An, L.; Zhou, Q.; Peng, W.; et al. Rice metabolic regulatory network spanning the entire life cycle. Mol. Plant. 2022, 15, 258–275. [Google Scholar] [CrossRef] [PubMed]
- Shu, P.; Zhang, Z.; Wu, Y.; Chen, Y.; Li, K.; Deng, H.; Zhang, J.; Zhang, X.; Wang, J.; Liu, Z.; et al. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). New Phytol. 2023, 238, 2064–2079. [Google Scholar] [CrossRef]
- Qian, C.S.; Zhao, Z.L.; Cheng, X.M.; Wu, J.R. Content Determination of Loganic Acid and Gentiopicroside During Process of Seed Germination in Gentiana crassicaulis. Chin. J. Exp. Tradit. Med. Form. 2017, 23, 23–26. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 88, 1494–1512. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- He, Y.H.; Yin, Y.Y.; Hu, W.; Li, B.; Sun, X.C.; Wang, N.; Huang, W.J.; Yue, Z.G. Bioinformatics analysis of WRKY transcription factor family of Gentiana macrophylla. Chin. Tradit. Herb. Drugs. 2022, 53, 7499–7506. [Google Scholar] [CrossRef]
- Wu, J.R.; Wu, L.H.; Zhao, Z.L.; Wang, Z.T. Simultaneous determination of five iridoids in Gentianae Macrophyllae Radix and their local variety by HPLC. Chin. J. Chin. Mater. Med. 2014, 39, 715–720. [Google Scholar]
- Matsuda, J.; Okabe, S.; Hashimoto, T.; Yamada, Y. Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J. Biol. Chem. 1991, 25–26, 9460–9464. [Google Scholar] [CrossRef]
- Islam, M.S.; Leissing, T.M.; Chowdhury, R.; Hopkinson, R.J.; Schofield, C.J. 2-Oxoglutarate-Dependent Oxygenases. Annu. Rev. Biochem. 2018, 20, 585–620. [Google Scholar] [CrossRef]
- De Bruyn, C.; Ruttink, T.; Lacchini, E.; Rombauts, S.; Haegeman, A.; De Keyser, E.; Van, P.C.; Desmet, S.; Jacobs, T.B.; Eeckhaut, T.; et al. Identification and characterization of CYP71 subclade cytochrome P450 enzymes involved in the biosynthesis of bitterness compounds in Cichorium intybus. Front. Plant Sci. 2023, 14, 1200253. [Google Scholar] [CrossRef]
- Ma, Y.; Cui, G.; Chen, T.; Ma, X.; Wang, R.; Jin, B.; Yang, J.; Kang, L.; Tang, J.; Lai, C.; et al. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nat. Commun. 2021, 12, 685. [Google Scholar] [CrossRef]
- Bathe, U.; Tissier, A. Cytochrome P450 enzymes: A driving force of plant diterpene diversity. Phytochemistry 2019, 161, 149–162. [Google Scholar] [CrossRef]
- Morikawa, T.; Mizutani, M.; Aoki, N.; Watanabe, B.; Saga, H.; Saito, S.; Oikawa, A.; Suzuki, H.; Sakurai, N.; Shibata, D.; et al. Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in Arabidopsis and tomato. Plant Cell. 2006, 18, 1008–1022. [Google Scholar] [CrossRef]
- Vasav, A.P.; Godbole, R.C.; Darshetkar, A.M.; Pable, A.A.; Barvkar, V.T. Functional genomics-enabled characterization of CYP81B140 and CYP81B141 from Plumbago zeylanica L. substantiates their involvement in plumbagin biosynthesis. Planta 2022, 25, 102. [Google Scholar] [CrossRef] [PubMed]
- Shimada, N.; Akashi, T.; Aoki, T.; Ayabe, S. Induction of isoflavonoid pathway in the model legume Lotus japonicus: Molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci. 2000, 160, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P.D.; Pauwels, L.; et al. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nat. Commun. 2017, 8, 14153. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148, 63–106. [Google Scholar] [CrossRef]
- Liavonchanka, A.; Feussner, I. Lipoxygenases: Occurrence, functions and catalysis. J. Plant Physiol. 2006, 163, 348–357. [Google Scholar] [CrossRef]
- Joo, Y.C.; Oh, D.K. Lipoxygenases: Potential starting biocatalysts for the synthesis of signaling compounds. Biotechnol. Adv. 2012, 30, 1524–1532. [Google Scholar] [CrossRef]
- Van Moerkercke, A.; Steensma, P.; Schweizer, F.; Pollier, J.; Gariboldi, I.; Payne, R.; Vanden, B.R.; Miettinen, K.; Espoz, J.; Purnama, P.C.; et al. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proc. Natl. Acad. Sci. USA 2015, 112, 8130–8135. [Google Scholar] [CrossRef]
- Van Moerkercke, A.; Steensma, P.; Gariboldi, I.; Espoz, J.; Purnama, P.C.; Schweizer, F.; Miettinen, K.; Vanden, B.R.; De Clercq, R.; Memelink, J.; et al. The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. Plant J. 2016, 88, 3–12. [Google Scholar] [CrossRef]
No. | KEGG Secondary Metabolic Pathways | Pathway ID | No. of Unigenes | Percentage |
---|---|---|---|---|
1 | Phenylpropanoid biosynthesis | ko00940 | 328 | 12.08% |
2 | Terpenoid backbone biosynthesis | ko00900 | 226 | 8.32% |
3 | Porphyrin and chlorophyll metabolism | ko00860 | 196 | 7.22% |
4 | Ubiquinone and other terpenoid-quinone biosynthesis | ko00130 | 156 | 5.74% |
5 | One carbon pool by folate | ko00670 | 153 | 5.63% |
6 | Nicotinate and nicotinamide metabolism | ko00760 | 133 | 4.90% |
7 | Pantothenate and CoA biosynthesis | ko00700 | 115 | 4.23% |
8 | Folate biosynthesis | ko00790 | 102 | 3.76% |
9 | Isoquinoline alkaloid biosynthesis | ko00950 | 99 | 3.65% |
10 | Tropane, piperidine, and pyridine alkaloid biosynthesis | ko00960 | 77 | 2.84% |
47 secondary metabolic pathways in all | 2716 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xuan, L.; Xiao, H.; Zhao, Z.; Feng, J.; Ni, L.; Wu, J. Integrated Transcriptomics and Metabolomics Reveal Key Insights into Iridoid Biosynthesis in Gentiana crassicaulis Seeds during Germination. Genes 2024, 15, 1255. https://doi.org/10.3390/genes15101255
Xuan L, Xiao H, Zhao Z, Feng J, Ni L, Wu J. Integrated Transcriptomics and Metabolomics Reveal Key Insights into Iridoid Biosynthesis in Gentiana crassicaulis Seeds during Germination. Genes. 2024; 15(10):1255. https://doi.org/10.3390/genes15101255
Chicago/Turabian StyleXuan, Lechen, Hongyang Xiao, Zhili Zhao, Jingxian Feng, Lianghong Ni, and Jinrong Wu. 2024. "Integrated Transcriptomics and Metabolomics Reveal Key Insights into Iridoid Biosynthesis in Gentiana crassicaulis Seeds during Germination" Genes 15, no. 10: 1255. https://doi.org/10.3390/genes15101255
APA StyleXuan, L., Xiao, H., Zhao, Z., Feng, J., Ni, L., & Wu, J. (2024). Integrated Transcriptomics and Metabolomics Reveal Key Insights into Iridoid Biosynthesis in Gentiana crassicaulis Seeds during Germination. Genes, 15(10), 1255. https://doi.org/10.3390/genes15101255