Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = ionospheric nighttime enhancement (INE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4724 KB  
Article
Contrasting Low-Latitude Ionospheric Total Electron Content Responses to the 7–8 and 10–11 October 2024 Geomagnetic Storms
by Srijani Bhattacharjee, Mahesh N. Shrivastava, Uma Pandey, Bhuvnesh Brawar, Kousik Nanda, Sampad Kumar Panda, Stelios M. Potirakis, Sudipta Sasmal, Abhirup Datta and Ajeet K. Maurya
Atmosphere 2025, 16(12), 1364; https://doi.org/10.3390/atmos16121364 - 30 Nov 2025
Viewed by 553
Abstract
This study investigates the ionospheric responses to two successive geomagnetic storms that occurred on 7–8 and 10–11 October 2024 over the Indian equatorial and low-latitude sector. Using GNSS-derived vertical total electron content (VTEC) measurements and the Global Ionosphere Map (GIM)-derived VTEC variation, supported [...] Read more.
This study investigates the ionospheric responses to two successive geomagnetic storms that occurred on 7–8 and 10–11 October 2024 over the Indian equatorial and low-latitude sector. Using GNSS-derived vertical total electron content (VTEC) measurements and the Global Ionosphere Map (GIM)-derived VTEC variation, supported by O/N2 ratio variations, equatorial electrojet (EEJ) estimates, and modeled equatorial electric fields from the Prompt Penetration Equatorial Electric Field Model (PPEEFM), the distinct mechanisms driving storm-time ionospheric variability were identified. The 7–8 October storm produced a strong positive phase in the morning sector, with VTEC enhancements exceeding 100 TECU, followed by sharp afternoon depletions. This short-lived response was dominated by prompt penetration electric fields (PPEFs), subsequently suppressed by disturbance dynamo electric fields (DDEFs) and storm-induced compositional changes. In contrast, the 10–11 October storm generated a more complex and prolonged response, including sustained nighttime enhancements, suppression of early morning peaks, and strong afternoon depletions persisting into the recovery phase. This behavior was mainly controlled by DDEFs and significant reductions in O/N2, consistent with long-lasting negative storm effects. EEJ variability further confirmed the interplay of PPEF and DDEF drivers during both events. The results highlight that even storms of comparable intensity can produce fundamentally different ionospheric outcomes depending on the dominance of electrodynamic versus thermospheric processes. These findings provide new insights into storm-time ionospheric variability over the Indian sector and are crucial for improving space weather prediction and GNSS-based applications in low-latitude regions. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

22 pages, 3482 KB  
Article
Analysis of Ionospheric Response and GNSS Positioning on Geodetic and Low-Cost Receivers in Mexico During the May 2024 Geomagnetic Storm
by J. Rene Vazquez-Ontiveros, Angela Melgarejo-Morales, Carlos A. Martinez-Felix and J. Ramon Martinez-Batlle
Geosciences 2025, 15(11), 408; https://doi.org/10.3390/geosciences15110408 - 22 Oct 2025
Viewed by 1214
Abstract
Geomagnetic storms can severely disturb the ionosphere, degrading Global Navigation Satellite System (GNSS) performance, particularly at low latitudes. The 10 May 2024 superstorm produced a strong ionospheric response across Mexico, with well-defined positive and negative phases observed at all analyzed stations. The proximity [...] Read more.
Geomagnetic storms can severely disturb the ionosphere, degrading Global Navigation Satellite System (GNSS) performance, particularly at low latitudes. The 10 May 2024 superstorm produced a strong ionospheric response across Mexico, with well-defined positive and negative phases observed at all analyzed stations. The proximity in time of %dTEC peaks to the second and third steps of the storm’s main phase, together with their local time dependence, indicates that Prompt Penetration Electric Fields (PPEFs) dominated the initial positive phase on the dayside. These eastward electric fields uplifted the F-region plasma, enhancing TEC values—especially at northern stations, where increases reached ±180%. In contrast, the subsequent nighttime depletion and extended recovery were mainly driven by composition-related plasma loss and enhanced recombination. A suppression of TEC followed the positive phase, with depletions between −58% and −77%, showing a persistent latitudinal gradient. Low-cost GNSS receivers successfully captured these ionospheric signatures but exhibited higher positioning degradation—up to 50% greater than geodetic-grade receivers. Multi-constellation Precise Point Positioning (PPP) mitigated these effects, reducing 3D errors by up to 23% and 53% in geodetic and low-cost receivers, respectively. These findings reveal the day–night dependence of ionospheric storm phases and underscore the importance of regional multi-GNSS monitoring during extreme space weather. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

17 pages, 16750 KB  
Article
Nighttime Tweek Characteristics in Mid–Low Latitudes: Insights from Long-Term VLF Observations in China
by Qingshan Wang, Binbin Ni, Jingyuan Feng, Xudong Gu, Wei Xu, Shiwei Wang, Mengyao Hu, Wenchen Ma, Wen Cheng, Yufeng Wu and Junjie Zhang
Remote Sens. 2025, 17(3), 438; https://doi.org/10.3390/rs17030438 - 27 Jan 2025
Cited by 1 | Viewed by 1053
Abstract
An improved method for identifying nighttime tweek signals in WHU VLF measurements was developed by redesigning the extraction process and validated through comparison with World-Wide Lightning Location Network (WWLLN) data. Using the enhanced method, 1,728,032 tweek signals were identified from four years (2018–2021) [...] Read more.
An improved method for identifying nighttime tweek signals in WHU VLF measurements was developed by redesigning the extraction process and validated through comparison with World-Wide Lightning Location Network (WWLLN) data. Using the enhanced method, 1,728,032 tweek signals were identified from four years (2018–2021) of VLF data, forming the most comprehensive tweek dataset for the mid–low latitude region in China. Statistical analysis reveals distinct nighttime variations in tweek occurrence rates, which increase from 18:00 LT to 20:00 LT, remain high until 04:00 LT, and gradually decrease towards sunrise. Seasonal differences in propagation distance are evident, ranging from ~2000 km in summer to ~4000 km in winter, corresponding to the seasonal shift of lightning activity. The cutoff frequency showed apparent daily and seasonal fluctuations, and the trends of daily variation are opposite between winter and summer. The annual variation in cutoff frequency presents a pattern different from previous cognition, with a minimum of 1.62 kHz in summer and a maximum of 1.68 kHz in winter, influenced by the magnetic cyclotron frequency at ionospheric reflection points. These findings improve the understanding of nighttime tweek characteristics and ionospheric dynamics in East Asia, offering valuable insights for ionospheric research and VLF communication systems. Full article
Show Figures

Figure 1

14 pages, 3241 KB  
Article
Modeling the Effect of Ionospheric Electron Density Profile and Its Inhomogeneities on Sprite Halos
by Jinbo Zhang, Jiawei Niu, Zhibin Xie, Yajun Wang, Xiaolong Li and Qilin Zhang
Atmosphere 2024, 15(10), 1169; https://doi.org/10.3390/atmos15101169 - 30 Sep 2024
Cited by 1 | Viewed by 1550
Abstract
Sprite halos are diffuse glow discharges in the D-region ionosphere triggered by the quasi-electrostatic (QES) fields of lightning discharges. A three-dimensional (3D) QES model is adopted to investigate the effect of ionospheric electron density on sprite halos. The electron density is described by [...] Read more.
Sprite halos are diffuse glow discharges in the D-region ionosphere triggered by the quasi-electrostatic (QES) fields of lightning discharges. A three-dimensional (3D) QES model is adopted to investigate the effect of ionospheric electron density on sprite halos. The electron density is described by an exponential formula, parameterized by reference height (h’) and sharpness (β), and the local inhomogeneity has a Gaussian density distribution. Simulation results indicate that the reference height and steepness of the nighttime electron density affect the penetration altitudes and amplitudes of normalized electric fields, as well as the altitudes and intensities of the corresponding sprite halos optical emissions. A comparison of the daytime and nighttime conditions demonstrates that the daytime electron density profile is not favorable for generating sprite halos emissions. Furthermore, the pre-existing electron density inhomogeneities lead to enhanced local electric fields and optical emissions, potentially offering a plausible explanation for the horizontal displacement between sprites and their parent lightning, as well as their clustering. Full article
(This article belongs to the Special Issue Impact of Thunderstorms on the Upper Atmosphere)
Show Figures

Figure 1

16 pages, 7136 KB  
Article
A Spatial Reconstruction Method of Ionospheric foF2 Based on High Accuracy Surface Modeling Theory
by Jian Wang, Han Han and Yafei Shi
Remote Sens. 2024, 16(17), 3247; https://doi.org/10.3390/rs16173247 - 2 Sep 2024
Viewed by 1480
Abstract
The ionospheric F2 critical frequency (foF2) is one of the most crucial application parameters in high-frequency communication, detection, and electronic warfare. To improve the accuracy of spatial reconstruction of the ionospheric foF2, we propose a high-accuracy surface (HAS) modeling method. This method converts [...] Read more.
The ionospheric F2 critical frequency (foF2) is one of the most crucial application parameters in high-frequency communication, detection, and electronic warfare. To improve the accuracy of spatial reconstruction of the ionospheric foF2, we propose a high-accuracy surface (HAS) modeling method. This method converts difficult-to-solve differential equations into more manageable algebraic equations using direct difference approximation, significantly reducing algorithm complexity and computational load while exhibiting excellent convergence properties. We used seven stations in Brisbane, Canberra, Darwin, Hobart, Learmonth, Perth, and Townsville, with one station as a validation station and six as training stations (e.g., Brisbane as a validation station and the other stations—Canberra, Darwin, Hobart, Learmonth, Perth, and Townsville—as training stations). The training stations and the HAS method were used to train and reconstruct the validation stations at different solar activity periods, seasons, and local times. The predicted values of the validation stations were compared with the measured values, and the proposed method was analyzed and validated. The reconstruction results show the following. (1) The relative root mean square errors (RRMSEs) of HAS method prediction in different solar activity epochs were 13.67%, 7.74%, and 9.19%, respectively, which are 13.57%, 7.41%, and 6.41% higher than the prediction accuracy of the Kriging method, respectively. (2) In the four seasons, the RRMSEs of the HAS method prediction are 9.27%, 13.1%, 8.81%, and 8.09%, respectively, which are 10.83%, 11.73%, 4.25%, and 12.00% higher than the prediction accuracy of the Kriging method. (c) During the daytime and nighttime, the RRMSEs of HAS method prediction were 9.23% and 11.17%, which were 5.92% and 11.99% higher than the prediction accuracy of the Kriging method, respectively. (d) Under the validation dataset, the average predictive RRMSE of the HAS method was 10.29%, and the average predictive RRMSE of the IRI prediction model was 12.35%, with a 2.06% improvement in the predictive accuracy of the HAS method. In general, the prediction effect of the HAS method was better than that of the Kriging method, thus verifying the effectiveness and reliability of the proposed method. In summary, the proposed reconstruction method is of great significance for improving usable frequency prediction and enhancing communication performance. Full article
Show Figures

Figure 1

16 pages, 3732 KB  
Technical Note
Study of the Long-Lasting Daytime Field-Aligned Irregularities in the Low-Latitude F-Region on 13 June 2022
by Pengfei Hu, Gang Chen, Chunxiao Yan, Shaodong Zhang, Guotao Yang, Qiang Zhang, Wanlin Gong and Zhiqiu He
Remote Sens. 2024, 16(15), 2738; https://doi.org/10.3390/rs16152738 - 26 Jul 2024
Cited by 1 | Viewed by 1301
Abstract
The unusual daytime F-region Field-Aligned Irregularities (FAIs) were observed by the HCOPAR and the satellites at low latitudes on 13 June 2022. These irregularities survived from night-time to the following afternoon at 15:00 LT. During daytime, they appeared as fossil structures with low [...] Read more.
The unusual daytime F-region Field-Aligned Irregularities (FAIs) were observed by the HCOPAR and the satellites at low latitudes on 13 June 2022. These irregularities survived from night-time to the following afternoon at 15:00 LT. During daytime, they appeared as fossil structures with low Doppler velocities and narrow spectral widths. These characteristics indicated that they drifted along the magnetic field lines without apparent zonal velocity to low latitudes. Combining the observations of the ICON satellite and the Hainan Digisonde, we derived the movement trails of these daytime irregularities. We attributed their generation to the rapid ascent of the F-layer due to the fluctuation of IMF Bz during the quiet geomagnetic conditions. Subsequently, the influence of the substorm on the low-latitude ionosphere was investigated and simulated. The substorm caused the intense Joule heating that enhanced the southward neutral winds, carrying the neutral compositional disturbances to low latitudes and resulting in a negative storm effect in Southeast Asia. The negative storm formed a low-density circumstance and slowed the dissipation of the daytime FAIs. These results may provide new insights into the generation of post-midnight irregularities and their relationship with daytime fossil structures. Full article
Show Figures

Figure 1

11 pages, 5626 KB  
Technical Note
Ionospheric F Layer Radial Current in Response to Southward and Northward IMF Turnings
by Yunfang Zhong, Hui Wang and Kedeng Zhang
Remote Sens. 2024, 16(13), 2303; https://doi.org/10.3390/rs16132303 - 24 Jun 2024
Cited by 1 | Viewed by 1284
Abstract
In this work, local time variations of the response of the ionospheric F layer radial current (IRC) to southward and northward IMF turning events at low and high solar activity are investigated for the first time using Challenging Minisatellite Payload (CHAMP) observations from [...] Read more.
In this work, local time variations of the response of the ionospheric F layer radial current (IRC) to southward and northward IMF turning events at low and high solar activity are investigated for the first time using Challenging Minisatellite Payload (CHAMP) observations from 2001 to 2010. The response strength of disturbed IRC to the southward and northward IMF turnings does not show any preference for low or high solar activity. At low and high solar activity, the IRC increases in the upward (downward) direction in the daytime (nighttime) within 1.5 h after a sudden southward IMF turning. Conversely, the IRC increases in the downward (upward) direction in the daytime (nighttime) within 1.5 h after a sudden northward IMF turning. The response of zonal wind is insignificant or opposite to that of the IRC. F region electron density may only contribute to the response of the IRC in certain local time sectors. This work indicates that the enhanced convection electric field induced by southward IMF turnings and the reduced convection electric field combined with the overshielding electric field during northward IMF turnings impact the prompt penetration electric field from high latitudes to low latitudes and cause local time differences in the responses of the IRC. Full article
Show Figures

Figure 1

11 pages, 3046 KB  
Technical Note
Occurrence Characteristics of Nighttime Merged EIA Based on NASA GOLD Observations from 2018 to 2023
by Kun Wu and Liying Qian
Remote Sens. 2024, 16(9), 1575; https://doi.org/10.3390/rs16091575 - 29 Apr 2024
Cited by 1 | Viewed by 1716
Abstract
The ionosphere equatorial ionization anomaly (EIA) is usually characterized by two plasma density maxima in the Earth’s equatorial region. Merged EIA (MEIA) is a unique phenomenon in the evolution of the EIA. Currently, the occurrence characteristics of MEIA are still not well understood. [...] Read more.
The ionosphere equatorial ionization anomaly (EIA) is usually characterized by two plasma density maxima in the Earth’s equatorial region. Merged EIA (MEIA) is a unique phenomenon in the evolution of the EIA. Currently, the occurrence characteristics of MEIA are still not well understood. In this study, we investigate the occurrence characteristics of nighttime MEIA using NASA Global-scale Observations of the Limb and Disk (GOLD) observations between October 2018 and the end of 2023. We found that the occurrence of nighttime MEIA exhibits solar cycle, seasonal, and local time variations. The occurrence rate of the MEIA is inversely dependent on solar activity. Occurrence of the MEIA maximizes near the equinoxes, with a primary (secondary) low occurrence rate near the June (December) solstice. In addition, occurrences of the MEIA are suppressed during the pre-reversal enhancement (PRE), resulting in relatively fewer events. Furthermore, it was found that the occurrence of the MEIA is not significantly dependent on the strength of geomagnetic activity. As far as we know, this study represents the first instance of utilizing observations from GOLD observations to investigate the characteristics of MEIA occurrences and their correlations with solar activity, season, and local time. Full article
Show Figures

Figure 1

16 pages, 14268 KB  
Article
Topside Ionospheric Structures Determined via Automatically Detected DEMETER Ion Perturbations during a Geomagnetically Quiet Period
by Mei Li, Hongzhu Yan and Yongxian Zhang
Geosciences 2024, 14(2), 33; https://doi.org/10.3390/geosciences14020033 - 28 Jan 2024
Cited by 2 | Viewed by 2019
Abstract
In this study, 117,718 ionospheric perturbations, with a space size (t) of 20–300 s but no amplitude (A) limit, were automatically globally searched via software utilizing ion density data measured by the DEMETER satellite for over 6 years. The [...] Read more.
In this study, 117,718 ionospheric perturbations, with a space size (t) of 20–300 s but no amplitude (A) limit, were automatically globally searched via software utilizing ion density data measured by the DEMETER satellite for over 6 years. The influence of geomagnetic storms on the ionosphere was first examined. The results demonstrated that storms can globally enhance positive ionospheric irregularities but rarely induce plasma variations of more than 100%. The probability of PERs with a space size falling in 200–300 s (1400–2100 km if a satellite velocity of 7 km/s is considered) occurring in a geomagnetically perturbed period shows more significance than that in a quiet period. Second, statistical work was performed on ion PERs to check their dependence on local time, and it was shown that 24.8% of the perturbations appeared during the daytime (10:30 LT) and 75.2% appeared during the nighttime (22:30 LT). Ionospheric fluctuations with an absolute amplitude of A < 10% tend to be background variations, and the percentages of positive perturbations with a small A < 20% occur at an amount of 64% during the daytime and 26.8% during the nighttime, but this number is reversed for mid–large-amplitude PERs. Large positive PERs with A > 100% mostly occurred at night and negative ones with A < −100% occurred entirely at night. There was a demarcation point in the space size of t = 120 s, and the occurrence probabilities of day PERs were always higher than that of nighttime ones before this point, while this trend was contrary after this point. Finally, distributions of PERs according to different ranges of amplitude and space scale were characterized by typical seasonal variations either in the daytime or nighttime. EIA only exists in the dayside equinox and winter, occupying two low-latitude crests with a lower Np in both hemispheres. Large WSAs appear within all periods, except for dayside summer, and are full of PERs with an enhanced amplitude, especially on winter nights. The WN-like structure is obvious during all seasons, showing large-scale space. On the other hand, several magnetically anomalous zones of planetary-scale non-dipole fields, such as the SAMA, Northern Africa anomaly, and so on, were also successfully detected by extreme negative ion perturbations during this time. Full article
Show Figures

Figure 1

23 pages, 6689 KB  
Article
Machine-Learning-Based Lithosphere-Atmosphere-Ionosphere Coupling Associated with Mw > 6 Earthquakes in America
by Munawar Shah, Rasim Shahzad, Punyawi Jamjareegulgarn, Bushra Ghaffar, José Francisco de Oliveira-Júnior, Ahmed M. Hassan and Nivin A. Ghamry
Atmosphere 2023, 14(8), 1236; https://doi.org/10.3390/atmos14081236 - 31 Jul 2023
Cited by 13 | Viewed by 3350
Abstract
The identification of atmospheric and ionospheric variations through multiple remote sensing and global navigation satellite systems (GNSSs) has contributed substantially to the development of the lithosphere-atmosphere-ionosphere coupling (LAIC) phenomenon over earthquake (EQ) epicenters. This study presents an approach for investigating the Petrolia EQ [...] Read more.
The identification of atmospheric and ionospheric variations through multiple remote sensing and global navigation satellite systems (GNSSs) has contributed substantially to the development of the lithosphere-atmosphere-ionosphere coupling (LAIC) phenomenon over earthquake (EQ) epicenters. This study presents an approach for investigating the Petrolia EQ (Mw 6.2; dated 20 December 2021) and the Monte Cristo Range EQ (Mw 6.5; dated 15 May 2020) through several parameters to observe the precursory signals of various natures. These parameters include Land Surface Temperature (LST), Air Temperature (AT), Relative Humidity (RH), Air Pressure (AP), Outgoing Longwave Radiations (OLRs), and vertical Total Electron Content (TEC), and these are used to contribute to the development of LAIC in the temporal window of 30 days before and 15 days after the main shock. We observed a sharp increase in the LST in both the daytime and nighttime of the Petrolia EQ, but only an enhancement in the daytime LST for the Monte Cristo Range EQ within 3–7 days before the main shock. Similarly, a negative peak was observed in RH along with an increment in the OLR 5–7 days prior to both impending EQs. Furthermore, the Monte Cristo Range EQ also exhibited synchronized ionospheric variation with other atmospheric parameters, but no such co-located and synchronized anomalies were observed for the Petrolia EQ. We also applied machine learning (ML) methods to confirm these abrupt variations as anomalies to further aid certain efforts in the development of the LAIC in order to forecast EQs in the future. The ML methods also make prominent the variation in the different data. Full article
(This article belongs to the Special Issue State-of-the-Art in Gravity Waves and Atmospheric-Ionospheric Physics)
Show Figures

Figure 1

24 pages, 7856 KB  
Article
Ionospheric–Thermospheric Responses to Geomagnetic Storms from Multi-Instrument Space Weather Data
by Rasim Shahzad, Munawar Shah, M. Arslan Tariq, Andres Calabia, Angela Melgarejo-Morales, Punyawi Jamjareegulgarn and Libo Liu
Remote Sens. 2023, 15(10), 2687; https://doi.org/10.3390/rs15102687 - 22 May 2023
Cited by 21 | Viewed by 6549
Abstract
We analyze vertical total electron content (vTEC) variations from the Global Navigation Satellite System (GNSS) at different latitudes in different continents of the world during the geomagnetic storms of June 2015, August 2018, and November 2021. The resulting ionospheric perturbations at the low [...] Read more.
We analyze vertical total electron content (vTEC) variations from the Global Navigation Satellite System (GNSS) at different latitudes in different continents of the world during the geomagnetic storms of June 2015, August 2018, and November 2021. The resulting ionospheric perturbations at the low and mid-latitudes are investigated in terms of the prompt penetration electric field (PPEF), the equatorial electrojet (EEJ), and the magnetic H component from INTERMAGNET stations near the equator. East and Southeast Asia, Russia, and Oceania exhibited positive vTEC disturbances, while South American stations showed negative vTEC disturbances during all the storms. We also analyzed the vTEC from the Swarm satellites and found similar results to the retrieved vTEC data during the June 2015 and August 2018 storms. Moreover, we observed that ionospheric plasma tended to increase rapidly during the local afternoon in the main phase of the storms and has the opposite behavior at nighttime. The equatorial ionization anomaly (EIA) crest expansion to higher latitudes is driven by PPEF during daytime at the main and recovery phases of the storms. The magnetic H component exhibits longitudinal behavior along with the EEJ enhancement near the magnetic equator. Full article
(This article belongs to the Special Issue Satellite Observations of the Global Ionosphere and Plasma Dynamics)
Show Figures

Graphical abstract

21 pages, 6515 KB  
Article
Climatology of TEC Longitudinal Difference in Middle Latitudes of East Asia
by Xingxin Sun, Yuqiang Zhang, Jian Feng, Zhensen Wu, Na Xu, Tong Xu, Zhongxin Deng, Yi Liu, Fubin Zhang, Yufeng Zhou, Chen Zhou and Zhengyu Zhao
Remote Sens. 2022, 14(21), 5412; https://doi.org/10.3390/rs14215412 - 28 Oct 2022
Viewed by 2021
Abstract
In this paper, a statistical analysis of the diurnal, seasonal and solar cycle variation in the TEC longitudinal difference in midlatitudes of East Asia is presented using CODE GIMs data in 2015–2019. Moreover, the empirical neutral wind model HWM-14 and geomagnetic field model [...] Read more.
In this paper, a statistical analysis of the diurnal, seasonal and solar cycle variation in the TEC longitudinal difference in midlatitudes of East Asia is presented using CODE GIMs data in 2015–2019. Moreover, the empirical neutral wind model HWM-14 and geomagnetic field model IGRF-2020 were employed to analyze the influence of geomagnetic configuration-neutral wind mechanism on the TEC longitudinal difference, and the F2 layer peak electron density (NmF2) data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) were also used to study the role of local electron density in the TEC longitudinal difference. For the high solar activity year, the results show that east-west TEC longitudinal difference index Re/w is negative in the noon and positive at evening-night. Moreover, the longitudinal difference of daytime TEC is most evident in summer, less in autumn and least in spring and winter, while the nighttime difference is most obvious in equinox, followed by summer and winter during nighttime. The model simulation shows that the TEC longitude difference around noon is mainly caused by the zonal wind-declination mechanism, and a 4-h time delay seems to be an optimal result for the vertical drift velocity to cause the longitudinal TEC difference during pre-noon hours. At night, the uplifting electron flux, which is a product of local electron density and vertical drift velocity, shows a good correlation with Re/w, indicating that the local electron density is also an important factor affecting the TEC longitudinal difference during the nighttime. Moreover, there was about a 3-h time delay between the TEC longitudinal variations and the uplifting electron flux at night. For the low solar activity years, the western TEC is greater than eastern TEC during most of the year except in the summer nighttime. The TEC diurnal variation in the east and west suggested that the nighttime Re/w should be related to other physical process, such as the midlatitude summer nighttime anomaly (MSNA) in the east and the ionospheric nighttime enhancement (INE). The current study provides evidence for the longitudinal difference of NmF2 in East Asian midlatitudes and geomagnetic configuration-neutral wind mechanism proposed in previous studies and finds some new features which need further studying to improve our current understanding of ionospheric longitudinal difference in the low solar activity years. The results provide new insight into TEC longitudinal variations at midlatitudes, and they can contribute to understanding the ionosphere-thermosphere coupling system. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

18 pages, 4169 KB  
Article
The Ionospheric Responses from Satellite Observations within Middle Latitudes to the Strong Magnetic Storm on 25–26 August 2018
by Xuemin Zhang, Lei Dong and Lei Nie
Atmosphere 2022, 13(8), 1271; https://doi.org/10.3390/atmos13081271 - 11 Aug 2022
Cited by 3 | Viewed by 2629
Abstract
The multi observations from the China Seismo-Electromagnetic Satellite (CSES) were presented and analyzed during the biggest magnetic storm on 25–26 August in the quiet solar activity year of 2018, together with the Swarm satellite and GNSS TEC (Global Navigation Satellite System, Total Electron [...] Read more.
The multi observations from the China Seismo-Electromagnetic Satellite (CSES) were presented and analyzed during the biggest magnetic storm on 25–26 August in the quiet solar activity year of 2018, together with the Swarm satellite and GNSS TEC (Global Navigation Satellite System, Total Electron Content). The whole tempo-spatial evolutional process was demonstrated in electromagnetic fields and in-situ plasma parameters within the whole magnetic storm time period of three phases, the main phase with quick decrease in SYM-H, the quick recovery phase, and the slow recovery phase. Strong correlations were revealed in time and space between electric fields and electron density. During the main phase, the penetrated electric field was the major factor to induce the injection of electric fields to low latitudes even to the equator and contribute to constructing the double peaks of Ne at altitudes above 500 km of CSES in daytime. In the quick recovery phase, Ne depletion was found in low middle and low latitudes in the daytime, associated with a quick decrease in solar wind dynamic pressure, but in the nightside Ne maintained or increased. Due to the high solar wind speed following the quick recovery phase, it controlled the enhancements in an electric field below 1125 Hz at medium and low latitudes in daytime and produced similar structures in a 225 Hz electric field with the mid-latitude trough of Ne in local nighttime and maintained their equator-ward movements in this time period. Ne/TEC showed typical local time-dependence in this magnetic storm, which illustrated that although the electron density in the ionosphere was mainly caused by this solar activity event, local background environments must also not be ignored for their final evolutional modes. Full article
Show Figures

Figure 1

12 pages, 3876 KB  
Article
Statistical Research on Seismo-Ionospheric Ion Density Enhancements Observed via DEMETER
by Lin Zheng, Rui Yan, Michel Parrot, Keying Zhu, Zeren Zhima, Dapeng Liu, Song Xu, Fangxian Lv and Xuhui Shen
Atmosphere 2022, 13(8), 1252; https://doi.org/10.3390/atmos13081252 - 7 Aug 2022
Cited by 7 | Viewed by 3017
Abstract
In this paper, in order to investigate the correlation between seismic activity and ionospheric density variation, nighttime ion density (Ni) data from IAP onboard the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite from 2005 to 2010 are used to carry [...] Read more.
In this paper, in order to investigate the correlation between seismic activity and ionospheric density variation, nighttime ion density (Ni) data from IAP onboard the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite from 2005 to 2010 are used to carry out statistical analysis. Only data with kp ≤ 3 are selected to avoid density perturbations due to magnetic activity. The aftershocks are also carefully removed. The earthquake-related data were further strictly screened, and the apparent position of anomalies were normalized using Dobrovolsky’s radius. Real and pseudorandom earthquakes are compared and analyzed. The statistical results show that the postseismic effect is obvious; the Ni enhancements are more focused 3–5 days, 9–10 days, and 13–14 days before the earthquake; as the magnitude of earthquake increases, the apparent range and intensity of the ion density enhancements is also increased; and for medium–strong earthquakes, the position of disturbance will exceed Dobrovolsky’s radius. Full article
(This article belongs to the Special Issue Lithosphere-Atmosphere Coupling during Natural Hazard )
Show Figures

Figure 1

10 pages, 1773 KB  
Article
Comparison of Ionospheric Response to Two Types of Electron Concentration Disturbances
by Artur F. Yakovets, Galina I. Gordiyenko, Olga N. Kryakunova and Yurii G. Litvinov
Atmosphere 2022, 13(4), 602; https://doi.org/10.3390/atmos13040602 - 9 Apr 2022
Viewed by 1848
Abstract
Based on the data of vertical sounding of the ionosphere in Almaty in 2000–2008, the paper deals with the response of the F2-layer to the passage of large-scale traveling ionospheric disturbances (LSTIDs) and the formation of the nighttime enhancements in the electron [...] Read more.
Based on the data of vertical sounding of the ionosphere in Almaty in 2000–2008, the paper deals with the response of the F2-layer to the passage of large-scale traveling ionospheric disturbances (LSTIDs) and the formation of the nighttime enhancements in the electron concentration of the F2-layer. For these two types of perturbations, we compared behavior in the time of the following layer parameters: the height of maximum of the layer (hmF), the height of the bottom of the layer (hbotF), the half-thickness of the layer (Δh = hmF − hbotF), the electron concentration at fixed heights and at the maximum of the layer (NmF), the height profiles of the nighttime enhancement peak-to-peak value of the F2-layer (A), and the height hAm corresponding to the maximum enhancement amplitude. The parameters hmF, hbotF and Δh demonstrate similar dependences associated with the temporal expansion and upward rise of the ionospheric layer and its lowering, accompanied by layer compression, giving an NmF peak at the moment of maximum compression. The common features of the profiles of two types of disturbances are found: the height hAm is always below hmF, there is a good correlation between hAm and hmF, and the difference between hAm and hmF increases linearly with hmF. Full article
(This article belongs to the Special Issue State-of-the-Art in Gravity Waves and Atmospheric-Ionospheric Physics)
Show Figures

Figure 1

Back to TopTop