Modeling the Effect of Ionospheric Electron Density Profile and Its Inhomogeneities on Sprite Halos
Abstract
:1. Introduction
2. Methods
2.1. The 3D QES Heating Model
2.2. Ionospheric D-Region Electron Density
3. Results and Discussion
3.1. Effect of the Vertical Profile of Electron Density
3.2. Effect of the Local Electron Density Inhomogeneities
4. Conclusions
- (1)
- For the effect of nighttime ionospheric electron density with the same sharpness parameter β = 0.5 km−1 and different height parameters h’ = 81~87 km, as the reference height h’ increases, the normalized electric field E/Ek above ~72 km penetrates to higher altitudes with increased amplitude. The corresponding sprite halos optical emissions occur at higher altitudes but with lower intensities.
- (2)
- For the effect of nighttime ionospheric electron density with the same height parameter h’ = 85 km and varying sharpness parameters β = 0.3~0.9 km−1, as the sharpness parameter β increases, the corresponding optical emissions occur at higher altitudes but with reduced intensity and a smaller vertical extent.
- (3)
- Comparison results of ionospheric electron density between daytime and nighttime show that the normalized electric field E/Ek produced by the same +CG discharge penetrates to lower altitudes and has a reduced amplitude in the daytime, which is not favorable for initiating sprite halos optical emissions.
- (4)
- The presence of local electron density inhomogeneity leads to localized enhancements of the normalized electric field E/Ek and optical emission intensities. The horizontal shifts of these inhomogeneities offer a plausible explanation for the horizontal displacement between sprites and their parent lightning discharges. Furthermore, the effects of multiple inhomogeneities provide a possible cause for the formation of sprite clusters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pasko, V.P.; Yair, Y.; Kuo, C.L. Lightning related transient luminous events at high altitude in the Earth’s atmosphere: Phenomenology, mechanisms, and effects. Space Sci. Rev. 2012, 168, 475–516. [Google Scholar] [CrossRef]
- Siingh, D.; Singh, R.P.; Kumar, S.; Dharmaraj, T.; Singh, A.K.; Singh, A.K.; Patil, M.N.; Singh, S. Lightning and middle atmospheric discharges in the atmosphere. J. Atmos. Sol. Terr. Phys. 2015, 134, 78–101. [Google Scholar] [CrossRef]
- Surkov, V.V.; Hayakawa, M. Progress in the Study of Transient Luminous and Atmospheric Events: A Review. Surv. Geophys. 2020, 41, 1101–1142. [Google Scholar] [CrossRef]
- Enell, C.F.; Arnone, E.; Adachi, T.; Chanrion, O.; Verronen, P.T.; Seppälä, A.; Neubert, T.; Ulich, T.; Turunen, E.; Takahashi, Y.; et al. Parameterisation of the chemical effect of sprites in the middle atmosphere. Ann. Geophys. 2008, 26, 13–27. [Google Scholar] [CrossRef]
- Rycroft, M.; Odzimek, A. Effects of lightning and sprites on the ionospheric potential, and threshold effects on sprite initiation, obtained using an analog model of the global atmospheric electric circuit. J. Geophys. Res. 2010, 115, A00E37. [Google Scholar] [CrossRef]
- Gordillo-Vázquez, F.J.; Pérez-Invernón, F.J. A review of the impact of transient luminous events on the atmospheric chemistry: Past, present, and future. Atmos. Res. 2021, 252, 105432. [Google Scholar] [CrossRef]
- Pasko, V.P. Dynamic Coupling of Quasi-Electrostatic Thundercloud Fields to the Mesosphere and Lower Ionosphere: Sprites and Jets. Doctoral Dissertation, Stanford University, Stanford, CA, USA, 1996. [Google Scholar]
- Pasko, V.P.; Inan, U.S.; Bell, T.F.; Taranenko, Y.N. Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res. Space Phys. 1997, 102, 4529–4561. [Google Scholar] [CrossRef]
- Barrington-Leigh, C.P.; Inan, U.S.; Stanley, M. Identification of sprites and elves with intensified video and broadband array photometry. J. Geophys. Res. Space Phys. 2001, 106, 1741–1750. [Google Scholar] [CrossRef]
- Gerken, E.A.; Inan, U.S. A survey of streamer and diffuse glow dynamics observed in sprites using telescopic imagery. J. Geophys. Res. 2002, 107, 1344. [Google Scholar] [CrossRef]
- Frey, H.U.; Mende, S.B.; Cummer, S.A.; Li, J.; Adachi, T.; Fukunishi, H.; Takahashi, Y.; Chen, A.B.; Hsu, R.-R.; Su, H.-T.; et al. Halos generated by negative cloud-to-ground lightning. Geophys. Res. Lett. 2007, 34, L18801. [Google Scholar] [CrossRef]
- Wescott, E.M.; Stenbaek-Nielsen, H.C.; Sentman, D.D.; Heavner, M.J.; Moudry, D.R.; Sabbas, F.T.S. Triangulation of sprites, associated halos and their possible relation to causative lightning and micro-meteors. J. Geophys. Res. 2001, 106, 10467–10477. [Google Scholar] [CrossRef]
- Hu, W.; Cummer, S.A.; Lyons, W.A.; Nelson, T.E. Lightning charge moment changes for the initiation of sprites. Geophys. Res. Lett. 2002, 29, 120. [Google Scholar] [CrossRef]
- Hayakawa, M.; Nakamura, T.; Hobara, Y.; Williams, E. Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. J. Geophys. Res. 2004, 109, A01312. [Google Scholar] [CrossRef]
- Li, J.; Cummer, S.; Lu, G.; Zigoneanu, L. Charge moment change and lightning-driven electric fields associated with negative sprites and halos. J. Geophys. Res. 2012, 117, A09310. [Google Scholar] [CrossRef]
- Lu, G.; Cummer, S.A.; Chen, A.B.; Lyu, F.; Huang, S.; Hsu, R.R.; Su, H. Analysis of lightning strokes associated with sprites observed by ISUAL in the vicinity of North America. Terr. Atmos. Ocean. Sci. 2017, 28, 583–595. [Google Scholar] [CrossRef]
- Qin, J.Q.; Celestin, S.; Pasko, V.P. Minimum charge moment change in positive and negative cloud to ground lightning discharges producing sprites. Geophys. Res. Lett. 2012, 39, L22801. [Google Scholar] [CrossRef]
- Wait, J.R.; Spies, K.P. Characteristics of the Earth-Ionosphere Waveguide for VLF Radio Waves; NBS Tech. Note 300; National Bureau of Standards: Boulder, CO, USA, 1964. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote300.pdf (accessed on 2 February 2022).
- Thomson, N.R. Experimental daytime VLF ionospheric parameters. J. Atmos. Sol. Terr. Phys. 1993, 55, 173–184. [Google Scholar] [CrossRef]
- Han, F.; Cummer, S.A. Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales. J. Geophys. Res. Atmos. 2010, 115, A09323. [Google Scholar] [CrossRef]
- Han, F.; Cummer, S.A.; Li, J.; Lu, G. Daytime ionospheric D region sharpness derived from VLF radio atmospherics. J. Geophys. Res. 2011, 116, A05314. [Google Scholar] [CrossRef]
- Lay, E.H.; Shao, X.M.; Jacobson, A.R. D region electron profiles observed with substantial spatial and temporal change near thunderstorms. J. Geophys. Res. Space Phys. 2014, 119, 4916–4928. [Google Scholar] [CrossRef]
- Fadnavis, S.; Siingh, D.; Singh, R.P. Mesospheric inversion layer and sprites. J. Geophys. Res. 2009, 114, D23307. [Google Scholar] [CrossRef]
- Singh, A.K.; Siingh, D.; Singh, R.P.; Mishra, S. Electrodynamical coupling of Earth’s atmosphere and ionosphere: An overview. Int. J. Geophys. 2011, 2011, 971302. [Google Scholar] [CrossRef]
- Kosar, B.C.; Liu, N.; Rassoul, H.K. Luminosity and propagation characteristics of sprite streamers initiated from small ionospheric disturbances at subbreakdown conditions. J. Geophys. Res. 2012, 117, A08328. [Google Scholar] [CrossRef]
- Stanley, M.; Brook, M.; Krehbiel, P.; Cummer, S.A. Detection of daytime sprites via a unique sprite ELF signature. Geophys. Res. Lett. 2000, 27, 871–874. [Google Scholar] [CrossRef]
- Tonev, P.T.; Velinov, P.I.Y. Modelling the influence of conductivity profiles on red sprite formation and structure. Adv. Space Res. 2004, 34, 1792–1797. [Google Scholar] [CrossRef]
- Cummer, S.A.; Lyons, W.A. Implications of lightning charge moment changes for sprite initiation. J. Geophys. Res. 2005, 110, A04304. [Google Scholar] [CrossRef]
- Pasko, V.P.; Stenbaek-Nielsen, H.C. Diffuse and streamer regions of sprites. Geophys. Res. Lett. 2002, 29, 1440. [Google Scholar] [CrossRef]
- Stenbaek-Nielsen, H.C.; Haaland, R.; McHarg, M.G.; Hensley, B.A.; Kanmae, T. Sprite initiation altitude measured by triangulation. J. Geophys. Res. 2010, 115, A00E12. [Google Scholar] [CrossRef]
- Lay, E.H.; Rodger, C.J.; Holzworth, R.H.; Cho, M.; Thomas, J.N. Temporal–spatial modeling of electron density enhancement due to successive lightning strokes. J. Geophys. Res. 2010, 115, A00E59. [Google Scholar] [CrossRef]
- Qin, J.; Celestin, S.; Pasko, V.P. On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity. J. Geophys. Res. 2011, 116, A06305. [Google Scholar] [CrossRef]
- Qin, J.; Celestin, S.; Pasko, V.P. Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions. J. Geophys. Res. Space Phys. 2013, 118, 2623–2638. [Google Scholar] [CrossRef]
- Marshall, R.A.; Yue, J.; Lyons, W.A. Numerical simulation of an elve modulated by a gravity wave. Geophys. Res. Lett. 2015, 42, 6120–6127. [Google Scholar] [CrossRef]
- Zhang, J.B.; Zhang, Q.L.; Guo, X.F.; Hou, W.H.; Gao, H.Y. Simulated impacts of atmospheric gravity waves on the initiation and optical emissions of sprite halos in the mesosphere. Sci. China Earth Sci. 2019, 62, 631–642. [Google Scholar] [CrossRef]
- Wang, C.; Wen, Y.; Zhang, J.; Zhang, Q.; Qiu, J. The Modulation Effect on the ELVEs and Sprite Halos by Concentric Gravity Waves Based on the Electromagnetic Pulse Coupled Model. Atmosphere 2021, 12, 617. [Google Scholar] [CrossRef]
- Newsome, R.T.; Inan, U.S. Free-running ground-based photometric array imaging of transient luminous events. J. Geophys. Res. 2010, 115, A00E41. [Google Scholar] [CrossRef]
- Luque, A.; Ebert, U. Sprites in varying air density: Charge conservation, glowing negative trails and changing velocity. Geophys. Res. Lett. 2010, 37, L06806. [Google Scholar] [CrossRef]
- Liu, N.; Dwyer, J.; Stenbaek-Nielsen, H.C.; McHarg, M.G. Sprite streamer initiation from natural mesospheric structures. Nat. Commun. 2015, 6, 7540. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.Q.; Pasko, V.P.; McHarg, M.G.; Stenbaek-Nielsen, H.C. Plasma irregularities in the D-region ionosphere in association with sprite streamer initiation. Nat. Commun. 2014, 5, 536–538. [Google Scholar] [CrossRef] [PubMed]
- Dejnakarintra, M.; Park, C.G. Lightning-induced electric fields in the ionosphere. J. Geophys. Res. Atmos. 1974, 79, 1903–1910. [Google Scholar] [CrossRef]
- Hegerberg, R.; Reid, I.D. Electron drift velocities in air. Aust. J. Phys. 1980, 33, 227–238. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, SIA 15-1–SIA 15-16. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Milikh, G.; Gurevich, A.; Drobot, A.; Shanny, R. Ionization rates for atmospheric and ionospheric breakdown. J. Geophys. Res. Space Phys. 1993, 98, 17593–17596. [Google Scholar] [CrossRef]
- Gordillo-Vázquez, F.J. Air plasma kinetics under the influence of sprites. J. Phys. D Appl. Phys. 2008, 41, 234016. [Google Scholar] [CrossRef]
- Sentman, D.D.; Stenbaek-Nielsen, H.C.; McHarg, M.G.; Morrill, J.S. Plasma chemistry of sprite streamers. J. Geophys. Res. Atmos. 2008, 113, D11112. [Google Scholar] [CrossRef]
- Liu, N. Multiple ion species fluid modeling of sprite halos and the role of electron detachment of O− in their dynamics. J. Geophys. Res. 2012, 117, A03308. [Google Scholar] [CrossRef]
- Sipler, D.P.; Biondi, M.A. Measurements of O(1D) quenching rates in the F region. J. Geophys. Res. Space Phys. 1972, 77, 6202–6212. [Google Scholar] [CrossRef]
- Taranenko, Y.N.; Inan, U.S.; Bell, T.F. Interaction with the lower ionosphere of electromagnetic pulses from lightning: Heating, attachment, and ionization. Geophys. Res. Lett. 1993, 20, 1539–1542. [Google Scholar] [CrossRef]
- Taranenko, Y.N.; Inan, U.S.; Bell, T.F. Interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions. Geophys. Res. Lett. 1993, 20, 2675–2678. [Google Scholar] [CrossRef]
- Valence-Jones, A. Aurora; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1974; p. 119. [Google Scholar]
- Sechrist, J.C. Comparisons of techniques for measurement of D-region electron densities. Radio Sci. 1974, 9, 137–149. [Google Scholar] [CrossRef]
- Moudry, D.; Stenbaek-Nielsen, H.; Sentman, D.; Wescott, E. Imaging of elves, halos, and sprite initiation at 1 ms time resolution. J. Atmos. Sol.-Terr. Phys. 2003, 65, 509–518. [Google Scholar] [CrossRef]
- Yang, J.; Lu, G.; Lee, L.-J.; Feng, G. Long-delayed bright dancing sprite with large horizontal displacement from its parent flash. J. Atmos. Sol.-Terr. Phys. 2015, 129, 1–5. [Google Scholar] [CrossRef]
- Lu, G.; Cummer, S.A.; Tian, Y.; Zhang, H.; Lyu, F.; Wang, T.; Stanley, M.A.; Yang, J.; Lyons, W.A. Sprite produced by consecutive impulse charge transfers following a negative stroke: Observation and simulation. J. Geophys. Res. Atmos. 2016, 121, 4082–4092. [Google Scholar] [CrossRef]
- Sato, M.; Mihara, M.; Adachi, T.; Ushio, T.; Morimoto, T.; Kikuchi, M.; Kikuchi, H.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; et al. Horizontal distributions of sprites derived from the JEM-GLIMS nadir observations. J. Geophys. Res. Atmos. 2016, 121, 3171–3194. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Niu, J.; Xie, Z.; Wang, Y.; Li, X.; Zhang, Q. Modeling the Effect of Ionospheric Electron Density Profile and Its Inhomogeneities on Sprite Halos. Atmosphere 2024, 15, 1169. https://doi.org/10.3390/atmos15101169
Zhang J, Niu J, Xie Z, Wang Y, Li X, Zhang Q. Modeling the Effect of Ionospheric Electron Density Profile and Its Inhomogeneities on Sprite Halos. Atmosphere. 2024; 15(10):1169. https://doi.org/10.3390/atmos15101169
Chicago/Turabian StyleZhang, Jinbo, Jiawei Niu, Zhibin Xie, Yajun Wang, Xiaolong Li, and Qilin Zhang. 2024. "Modeling the Effect of Ionospheric Electron Density Profile and Its Inhomogeneities on Sprite Halos" Atmosphere 15, no. 10: 1169. https://doi.org/10.3390/atmos15101169
APA StyleZhang, J., Niu, J., Xie, Z., Wang, Y., Li, X., & Zhang, Q. (2024). Modeling the Effect of Ionospheric Electron Density Profile and Its Inhomogeneities on Sprite Halos. Atmosphere, 15(10), 1169. https://doi.org/10.3390/atmos15101169