Topside Ionospheric Structures Determined via Automatically Detected DEMETER Ion Perturbations during a Geomagnetically Quiet Period
Abstract
:1. Introduction
2. Data and Data Processing Method
2.1. Dataset
2.2. Automatic Search for Ionospheric PERs
3. Properties of Ionospheric PERs
3.1. Effect of a Geomagnetic Storm on the Ionosphere
3.2. Local Time Discrepancy of Ionospheric PERs
3.3. Seasonal Variation in Ionospheric PERs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckersley, T.L. Studies in radio transmission. Inst. Electr. Eng.-Proc. Wirel. Sect. Inst. 1932, 71, 405–459. [Google Scholar] [CrossRef]
- Eckersley, T.L. Irregular ionic clouds in the E layer of the ionosphere. Nature 1937, 140, 846–847. [Google Scholar] [CrossRef]
- Booker, H.G.; Wells, H.W. Scattering of radio waves by the F-region of the ionosphere. J. Geophys. Res. 1938, 43, 249. [Google Scholar] [CrossRef]
- Appleton, E.V. Two anomalies in the ionosphere. Nature 1946, 157, 691. [Google Scholar] [CrossRef]
- Aarons, J. Global morphology of ionospheric scintillations. Proc. IEEE 1982, 70, 360–378. [Google Scholar] [CrossRef]
- Basu, S. VHF ionospheric Scintillationsat L = 2.8 and formation of stable auroral red arcs by magnetospheric heat conduction. J. Geophys. Res. 1974, 79, 3160. [Google Scholar] [CrossRef]
- Hargreaves, J.K. Principles of the ionosphere at middle and low latitude. In The Solar-Terrestrial Environment. An Introduction to Geospace-the Science of the Terrestrial Upper Atmosphere, Ionosphere, and Magnetosphere; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1992; pp. 208–210. [Google Scholar] [CrossRef]
- Houminer, Z.; Aarons, J. Production and dynamics of high-latitude irregularities during magnetic storms. J. Geophys. Res. 1981, 86, 9939–9944. [Google Scholar] [CrossRef]
- Krankowski, A.; Shagimuratov, I.I.; Ephishov, I.I.; Krypiak-Gregorczyk, A.; Yakimova, G. The occurrence of the mid-latitude ionospheric trough in GPS-TEC measurements. Adv. Space Res. 2009, 43, 1721–1731. [Google Scholar] [CrossRef]
- Xiong, C.; Stolle, C.; Lühr, H.; Park, J.; Fejer, B.G.; Kervalishvili, G.N. Scale analysis of the equatorial plasma irregularities derived from Swarm constellation. Earth Planets Space 2016, 68, 1–12. [Google Scholar] [CrossRef]
- Matyjaslak, B.; Przepiorka, D.; Rothkaehl, H. Seasonal Variations of Mid-Latitude Ionospheric Trough Structure Observed with DEMETER and COSMIC. Acta Geophys. 2016, 64, 2734–2747. [Google Scholar] [CrossRef]
- Xiong, C.; Park, J.; Lühr, H.; Stolle, C.; Ma, S. Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Ann. Geophys. 2010, 28, 1647–1658. [Google Scholar] [CrossRef]
- Lomidze, L.; Knudsen, D.J.; Burchill, J.; Kouznetsov, A.; Buchert, S.C. Calibration and validation of Swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Sci. 2018, 53, 15–36. [Google Scholar] [CrossRef]
- Schunk, R.W.; Nagy, A.F. Introduction. In Ionospheres: Physics, Plasma Physics, and Chemistry; Cambridge University Press: New York, NY, USA, 2009; pp. 1–10. [Google Scholar] [CrossRef]
- Li, M.; Shen, X.; Parrot, M.; Zhang, X.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.; Lu, H.; Guo, F.; et al. Primary joint statistical seismic influence on ionospheric parameters recorded by the CSES and DEMETER satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
- Li, L.; Yang, J.; Cao, J.; Lu, L.; Wu, Y.; Yang, D. Statistical backgrounds of topside ionospheric electron density and temperature and their variations during geomagnetic activity. Chin. J. Geophys. 2011, 54, 2437–2444. [Google Scholar] [CrossRef]
- Zhong, J.; Lei, J.; Yue, X.; Luan, X.; Dou, X. Middle-latitudinal band structure observed in the nighttime ionosphere. J. Geophys. Res. Space Phys. 2019, 124, e2018JA026059. [Google Scholar] [CrossRef]
- Ren, Z.; Wan, W.; Liu, L.; Zhao, B.; Wei, Y.; Yue, X.; Heelis, R. Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Li, Q.; Hao, Y.; Zhang, D.; Xiao, Z. Nighttime enhancements in the midlatitude ionosphere and their relation to the plasmasphere. J. Geophys. Res. Space Phys. 2018, 123, 7686–7696. [Google Scholar] [CrossRef]
- Li, L.; Cao, J.; Yang, J.; Berthelier, J.; Lebreton, J.-P. Semiannual and solar activity variations of daytime plasma observed by demeter in the ionosphere-plasmasphere transition region. J. Geophys. Res. Space Phys. 2016, 120, e2015JA021102. [Google Scholar] [CrossRef]
- Zhang, Y.; Paxton, L.; Kil, H. Nightside midlatitude ionospheric arcs: TIMED/GUVI observations. J. Geophys. Res. Space Phys. 2013, 118, 3584–3591. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, X. The spatial distribution of hydrogen ions at topside ionosphere in local daytime. Terr. Atmos. Ocean. Sci. 2017, 28, 1009–1017. [Google Scholar] [CrossRef]
- Li, L.; Zhou, S.; Cao, J.; Yang, J.; Berthelier, J. Large-scale depletion of nighttime oxygen ions at the low and middle latitudes in the winter hemisphere. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030688. [Google Scholar] [CrossRef]
- Kuai, J.; Li, Q.; Zhong, J.; Zhou, X.; Liu, L.; Yoshikawa, A.; Hu, L.; Xie, H.; Huang, C.; Yu, X.; et al. The ionosphere at middle and low latitudes under geomagnetic quiet time of December 2019. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028964. [Google Scholar] [CrossRef]
- Parrot, M. Statistical analysis of the ion density measured by the satellite DEMETER in relation with the seismic activity. Earthq. Sci. 2011, 24, 513–521. [Google Scholar] [CrossRef]
- Stangl, G.; Boudjada, M.Y. Investigation of TEC and VLF space measurements associated to L’Aquila (Italy) earthquakes. Nat. Hazards Earth Syst. Sci. 2011, 11, 1019–1024. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Zhang, X.; Shen, X. Indications of Ground-based Electromagnetic Observations to A Possible Lithosphere-Atmosphere-Ionosphere Electromagnetic Coupling before the 12 May 2008 Wenchuan MS 8.0 Earthquake. Atmosphere 2019, 10, 355. [Google Scholar] [CrossRef]
- Hayakawa, M. VLF/LF Radio Sounding of Ionospheric Perturbations Associated with Earthquakes. Sensors 2007, 7, 1141–1158. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Boyarchuk, K.A.; Hegai, V.V.; Kim, V.P.; Lomonosov, A.M. Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling. Adv. Space Res. 2000, 26, 1209–1218. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A. (Eds.) Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Terrapub: Tokyo, Japan, 2002. [Google Scholar]
- Parrot, M.; Li, M. Statistical analysis of the ionospheric density recorded by the DEMETER satellite during seismic activity. In Pre-Earthquake Processes: A Multi-Disciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; Geophysical Monograph Series 234; AGU and John Wiley & Sons Inc.: Hoboken, NJ, USA, 2018; pp. 319–328. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Legen, A.D.; Gaivoronskaya, T.V.; Depuev, V.K. Main phenomenological features of ionospheric precursors of strong earthquakes. J. Atmos. Sol.-Terr. Phys. 2003, 65, 1337–1347. [Google Scholar] [CrossRef]
- Dobrovolsky, I.R.; Zubkov, S.I.; Myachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Chen, Y.I.; Chuo, Y.J.; Liu, J.Y.; Pulinets, S.A. Statistical study of ionospheric precursors of strong Earthquakes at Taiwan area. In Proceedings of the XXVIth General Assembly of The International Union of Radio Science, Toronto, ON, Canada, 13–21 August 1999. [Google Scholar]
- Píša, D.; Němec, F.; Parrot, M.; Santolík, O. Attenuation of electromagnetic waves at the frequency ~1.7 kHz in the upper ionosphere observed by the DEMETER satellite in the vicinity of earthquakes. Ann. Geophys. 2012, 55, 157–163. [Google Scholar] [CrossRef]
- Píša, D.; Němec, F.; Santolík, O.; Parrot, M.; Rycroft, M. Additional attenuation of natural VLF electromagnetic waves observed by the DEMETER spacecraft resulting from preseismic activity. J. Geophys. Res. Space Phys. 2013, 118, 5286–5295. [Google Scholar] [CrossRef]
- Němec, F.; Santolík, O.; Parrot, M.; Berthelier, J.J. Spacecraft observations of electromagnetic perturbations connected with Seismic Activity. Geophys. Res. Lett. 2008, 35, L05109. [Google Scholar] [CrossRef]
- Němec, F.; Santolík, O.; Parrot, M. Decrease of intensity of ELF/VLF Waves observed in the upper ionosphere close to earthquakes: A statistical study. J. Geophys. Res. Space Phys. 2009, 114, A04303. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, X.; Zhang, X.; Wang, Z.; Zhou, C.; Zhang, Y. Using a spatial analysis method to study the Seismo-Ionospheric Disturbances of Electron Density Observed by China Seismo-Electromagnetic Satellite. Front. Earth Sci. 2022, 10, 811658. [Google Scholar] [CrossRef]
- Korsunova, L.P.; Khegai, V.V. Analysis of seismo-ionospheric disturbances at the chain of Japanese stations for vertical sounding of the ionosphere. Geomagn. Aeron. 2008, 48, 392–399. [Google Scholar] [CrossRef]
- Ippolito, A.; Perrone, L.; Santis, A.D.; Sabbagh, D. Ionosonde data analysis in relation with the 2016 central italian earthquakes. Geosciences 2020, 10, 354. [Google Scholar] [CrossRef]
- Li, M.; Parrot, M. “Real time analysis” of the ion density measured by the satellite DEMETER in relation with the seismic activity. Nat. Hazards Earth Syst. Sci. 2012, 12, 2957–2963. [Google Scholar] [CrossRef]
- Li, M.; Parrot, M. Statistical analysis of an ionospheric parameter as a base for earthquake prediction. J. Geophys. Res. Space Phys. 2013, 118, 3731–3739. [Google Scholar] [CrossRef]
- Li, M.; Jiang, X.; Li, J.; Zhang, Y.; Shen, X. Temporal-spatial characteristics of seismo-ionospheric influence observed by the CSES satellite. Adv. Space Res. 2024, 73, 607–623. [Google Scholar] [CrossRef]
- Parrot, M.; Berthelier, J.J.; Lebreton, J.P.; Sauvaud, J.A.; Santolík, O.; Blecki, J. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth 2006, 31, 486–495. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Gou, X.; Li, L.; Zhang, Y.; Zhou, B.; Feng, Y.; Cheng, B.; Raita, T.; Liu, J.; Zhima, Z.; Shen, X. Ionospheric Pc1 waves during a storm recovery phase observed by the China Seismo-Electromagnetic Satellite. Ann. Geophys. 2020, 38, 775–787. [Google Scholar] [CrossRef]
- Wan, X.; Zhong, J.; Xiong, C.; Wang, H.; Liu, Y.; Li, Q.; Kuai, J.; Weng, L.; Cui, J. Persistent occurrence of strip-like plasma density bulges at conjugate lower-mid latitudes during the September 8–9, 2017 geomagnetic storm. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029020. [Google Scholar] [CrossRef]
- Prölss, G.W. Ionospheric F-Region Storms; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Xiong, C.; Lühr, H.; Yamazaki, Y. An opposite response of the low-latitude ionosphere at Asian and American sectors during storm recovery phases: Drivers from below or above. J. Geophys. Res. Space Phys. 2019, 124, 6266–6280. [Google Scholar] [CrossRef]
- Yan, R.; Zhima, Z.; Xiong, C.; Shen, X.; Huang, J.; Guan, Y.; Zhu, X.; Liu, C. Comparison of electron density and temperature from the CSES satellite with other space-borne and ground-based observations. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027747. [Google Scholar] [CrossRef]
- Lloyd, H. On earth-currents, and their connexion with the diurnal changes of the horizontal magnetic needle. Trans. R. Ir. Acad. 1861, 24, 115–141. [Google Scholar]
- Liang, P.H. F2 ionization and geomagnetic latitudes. Nature 1947, 160, 642–643. [Google Scholar] [CrossRef]
- He, M.; Liu, L.; Wan, W.; Lei, J.; Zhao, B. Longitudinal modulation of the O/N2 column density retrieved from TIMED/GUVI measurement. Geophys. Res. Lett. 2010, 37, L20108. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I.; Shagimuratov, I. Observations of the Weddell Sea Anomaly in the ground-based and space-borne TEC measurements. J. Atmos. Sol.-Terr. Phys. 2017, 161, 105–117. [Google Scholar] [CrossRef]
- Horvath, I.; Lovell, B.C. Investigating the relationships among the South Atlantic magnetic Anomaly, southern nighttime midlatitude trough, and nighttime Weddell Sea Anomaly during southern summer. J. Geophys. Res. 2009, 114, A02306. [Google Scholar] [CrossRef]
- Xu, W.; Bai, C. Role of the African magnetic anomaly in controlling the magnetic configuration and its secular variation. Chin. J. Geophys 2009, 52, 1985–1992. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, C.; Wan, X.; Lai, Y.; Wang, Y.; Yu, X.; Ou, M. Instability mechanisms for the F-region plasma irregularities inside the midlatitude ionospheric trough: Swarm observations. Space Weather 2021, 19, e2021SW002785. [Google Scholar] [CrossRef]
- Kikuchi, T.; Luhr, H.; Kitamura, T.; Saka, O.; Schlegel, K. Direct penetration of the polar electric field to the equator during a DP 2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. J. Geophys. Res. 1996, 101, 17161–17173. [Google Scholar] [CrossRef]
- Nishida, A. Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations. J. Geophys. Res. 1968, 73, 5549–5559. [Google Scholar] [CrossRef]
- Hocke, K.; Schlegel, K. A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995. Ann. De Geophys. 1996, 14, 917–940. [Google Scholar] [CrossRef]
- Richmond, A.D.; Matsushita, S. Thermospheric response to a magnetic substorm. J. Geophys. Res. 1975, 80, 2839–2850. [Google Scholar] [CrossRef]
- Duncan, R.A. The equatorial F-region of the ionosphere. J. Atmos. Terr. Phys. 1960, 18, 89–100. [Google Scholar] [CrossRef]
- Xiong, C.; Rang, X.Y.; Huang, Y.Y.; Jiang, G.Y.; Hu, K.; Luo, W.H. Latitudinal four-peak structure of the nighttime F region ionosphere: Possible contribution of the neutral wind. Rev. Geophys. Planet. Phys. 2024, 55, 94–108. [Google Scholar] [CrossRef]
- Chen, C.H.; Huba, J.D.; Saito, A.; Lin, C.H.; Liu, J.Y. Theoretical study of the ionospheric Weddell sea anomaly using SAMI2. J. Geophys. Res. 2011, 116, A04305. [Google Scholar] [CrossRef]
- Luan, X.; Wang, W.; Burns, A.; Solomon, S.C.; Lei, J. Midlatitude nighttime enhancement in F region electron density from global COSMIC measurements under solar minimum winter condition. J. Geophys. Res. Sp. Phys. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Lin, C.H.; Liu, C.H.; Liu, J.Y.; Chen, C.H.; Burns, A.G.; Wang, W. Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC. J. Geophys. Res. 2010, 115, A03308. [Google Scholar] [CrossRef]
- Kelley, M.C. The Earth’ Ionosphere, Plasma Physics and Electrodynamics; Academic Press: Cambridge, MA, USA, 1989. [Google Scholar]
- Anderson, P.C.; Heelis, R.A.; Hanson, W.B. The ionospheric signatures of rapid subauroral ion drifts. J. Geophys. Res. 1991, 96, 5785–5792. [Google Scholar] [CrossRef]
- Ishida, T.; Ogawa, Y.; Kadokura, A.; Hiraki, Y.; Haggstrom, I. Seasonal variation and solar activity dependence of the quiet-time ionospheric trough. J. Geophys. Res. Sp. Phys. 2014, 119, 6774–6783. [Google Scholar] [CrossRef]
PER1 | PER2 | |
---|---|---|
Date (y m d) | 8 November 2006 | 8 November 2006 |
Time (h m s ms) | 12 41 3 797 | 12 46 0 527 |
Orbit | 12545_1 | 12545_1 |
Latitude (°) | −28.5122 | −10.5681 |
Longitude (°) | 148.210 | 144.081 |
BkgdIon (cm−3) | 4649.35 | 8378.52 |
Amplitude (cm−3) | 6738.61 | 14,763.6 |
Trend | Increase | Increase |
Percent (%) | 44.9 | 76.2 |
Time_width (m s ms) | 1 37 433 | 4 56 113 |
Extension (km) | 669 | 2036 |
Kp > 4 | Kp ≤ 2 | |||
---|---|---|---|---|
A/% | n | p | n | p |
≥100 | 510 | 12.0 | 12,014 | 13.8 |
90–100 | 100 | 2.3 | 1543 | 1.8 |
80–90 | 112 | 2.6 | 1872 | 2.2 |
70–80 | 131 | 3.1 | 2292 | 2.6 |
60–70 | 151 | 3.5 | 2915 | 3.3 |
50–60 | 211 | 4.9 | 3623 | 4.2 |
40–50 | 281 | 6.6 | 4850 | 5.6 |
30–40 | 388 | 9.1 | 6890 | 7.9 |
20–30 | 479 | 11.2 | 9379 | 10.8 |
10–20 | 684 | 16.0 | 13,881 | 15.9 |
0–10 | 776 | 18.3 | 17,529 | 20.1 |
−100–0 | 436 | 10.3 | 10,111 | 11.6 |
<−100 | 4 | 0.1 | 158 | 0.2 |
Kp > 4 | Kp ≤ 2 | |||
---|---|---|---|---|
t/s | n | p | n | p |
20–40 | 773 | 18.1 | 16,045 | 18.4 |
40–60 | 469 | 11.0 | 9121 | 10.5 |
60–80 | 646 | 15.2 | 13,553 | 15.6 |
80–100 | 536 | 12.6 | 12,594 | 14.5 |
100–120 | 482 | 11.3 | 10,200 | 11.7 |
120–140 | 287 | 6.7 | 6098 | 7.0 |
140–160 | 263 | 6.2 | 5439 | 6.2 |
160–180 | 164 | 3.8 | 3255 | 3.7 |
180–200 | 158 | 3.7 | 2994 | 3.5 |
200–300 | 485 | 11.4 | 7758 | 8.9 |
Daytime | Nighttime | |||
---|---|---|---|---|
A/% | n | p | n | p |
≥100 | 249 | 0.9 | 15,650 | 17.7 |
90–100 | 73 | 0.2 | 2054 | 2.4 |
80–90 | 116 | 0.4 | 2486 | 2.8 |
70–80 | 148 | 0.6 | 3011 | 3.4 |
60–70 | 332 | 1.1 | 3716 | 4.2 |
50–60 | 451 | 1.5 | 4562 | 5.2 |
40–50 | 844 | 2.9 | 5868 | 6.6 |
30–40 | 1699 | 5.8 | 7718 | 8.7 |
20–30 | 3104 | 10.6 | 9651 | 10.9 |
10–20 | 6712 | 23.0 | 12,179 | 13.8 |
0–10 | 11,983 | 41.0 | 11,541 | 13.0 |
−100–0 | 3515 | 12.0 | 9860 | 11.1 |
<−100 | 0 | 0.0 | 196 | 0.2 |
Daytime | Nighttime | |||
---|---|---|---|---|
t/s | n | p | n | p |
20–40 | 5521 | 18.9 | 15,731 | 17.8 |
40–60 | 2580 | 8.8 | 9714 | 11.0 |
60–80 | 3599 | 12.3 | 14,535 | 16.4 |
80–100 | 3342 | 11.4 | 13,478 | 15.2 |
100–120 | 3127 | 10.7 | 10,501 | 11.9 |
120–140 | 2150 | 7.4 | 6130 | 6.9 |
140–160 | 2058 | 7.0 | 5302 | 6.0 |
160–180 | 1419 | 4.9 | 3130 | 3.5 |
180–200 | 1373 | 4.7 | 2830 | 3.2 |
200–300 | 4057 | 13.9 | 7141 | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yan, H.; Zhang, Y. Topside Ionospheric Structures Determined via Automatically Detected DEMETER Ion Perturbations during a Geomagnetically Quiet Period. Geosciences 2024, 14, 33. https://doi.org/10.3390/geosciences14020033
Li M, Yan H, Zhang Y. Topside Ionospheric Structures Determined via Automatically Detected DEMETER Ion Perturbations during a Geomagnetically Quiet Period. Geosciences. 2024; 14(2):33. https://doi.org/10.3390/geosciences14020033
Chicago/Turabian StyleLi, Mei, Hongzhu Yan, and Yongxian Zhang. 2024. "Topside Ionospheric Structures Determined via Automatically Detected DEMETER Ion Perturbations during a Geomagnetically Quiet Period" Geosciences 14, no. 2: 33. https://doi.org/10.3390/geosciences14020033
APA StyleLi, M., Yan, H., & Zhang, Y. (2024). Topside Ionospheric Structures Determined via Automatically Detected DEMETER Ion Perturbations during a Geomagnetically Quiet Period. Geosciences, 14(2), 33. https://doi.org/10.3390/geosciences14020033