Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = ion-exchange glass waveguide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 2691 KB  
Review
Heterogeneous Integration Technology Drives the Evolution of Co-Packaged Optics
by Han Gao, Wanyi Yan, Dan Zhang and Daquan Yu
Micromachines 2025, 16(9), 1037; https://doi.org/10.3390/mi16091037 - 10 Sep 2025
Cited by 1 | Viewed by 6777
Abstract
The rapid growth of artificial intelligence (AI), data centers, and high-performance computing (HPC) has increased the demand for large bandwidth, high energy efficiency, and high-density optical interconnects. Co-packaged optics (CPO) technology offers a promising solution by integrating photonic integrated circuits (PICs) directly within [...] Read more.
The rapid growth of artificial intelligence (AI), data centers, and high-performance computing (HPC) has increased the demand for large bandwidth, high energy efficiency, and high-density optical interconnects. Co-packaged optics (CPO) technology offers a promising solution by integrating photonic integrated circuits (PICs) directly within or close to electronic integrated circuit (EIC) packages. This paper explores the evolution of CPO performance from various perspectives, including fan-out wafer level packaging (FOWLP), through-silicon via (TSV)-based packaging, through-glass via (TGV)-based packaging, femtosecond laser direct writing waveguides, ion-exchange glass waveguides, and optical coupling. Micro ring resonators (MRRs) are a high-density integration solution due to their compact size, excellent energy efficiency, and compatibility with CMOS processes. However, traditional thermal tuning methods face limitations such as high static power consumption and severe thermal crosstalk. To address these issues, non-volatile neuromorphic photonics has made breakthroughs using phase-change materials (PCMs). By combining the integrated storage and computing capabilities of photonic memory with the efficient optoelectronic interconnects of CPO, this deep integration is expected to work synergistically to overcome material, integration, and architectural challenges, driving the development of a new generation of computing hardware with high energy efficiency, low latency, and large bandwidth. Full article
(This article belongs to the Special Issue Emerging Packaging and Interconnection Technology, Second Edition)
Show Figures

Figure 1

12 pages, 4497 KB  
Communication
Influence of Ion Exchange Process Parameters on Broadband Differential Interference
by Kazimierz Gut and Marek Błahut
Sensors 2023, 23(13), 6092; https://doi.org/10.3390/s23136092 - 2 Jul 2023
Cited by 2 | Viewed by 1510
Abstract
The paper presents theoretical analyses and experimental investigations of broadband differential interference in planar gradient waveguides made via K+-Na+ ion exchange in BK-7 glass. This technology, due to its large polarimetric dispersion, is especially useful for applications in differential interferometry. [...] Read more.
The paper presents theoretical analyses and experimental investigations of broadband differential interference in planar gradient waveguides made via K+-Na+ ion exchange in BK-7 glass. This technology, due to its large polarimetric dispersion, is especially useful for applications in differential interferometry. We discuss the influence of technological parameters on the operation characteristics of the structure in terms of sensor applications. The refractive index variation in the measured external surroundings affects the modal properties of TE and TM modes and the spectral distribution at the output of the differential interferometer. The optical system described in this work has been designed specifically for use in biological systems where variations in the index of refraction need to be measured. Full article
(This article belongs to the Special Issue Interferometric Fiber Sensors)
Show Figures

Figure 1

17 pages, 8945 KB  
Article
Metallic Effects on p-Hydroxyphenyl Porphyrin Thin-Film-Based Planar Optical Waveguide Gas Sensor: Experimental and Computational Studies
by Nuerguli Kari, Marco Zannotti, Rita Giovannetti, David Řeha, Babak Minofar, Shawket Abliz and Abliz Yimit
Nanomaterials 2022, 12(6), 944; https://doi.org/10.3390/nano12060944 - 13 Mar 2022
Cited by 19 | Viewed by 4025
Abstract
Metal effects on the gas sensing behavior of metal complexes of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (THPP) thin film was investigated in terms of detecting NO2 gas by the planar optical waveguide. For this purpose, several THPP and metal complexes were synthesized with different central metal [...] Read more.
Metal effects on the gas sensing behavior of metal complexes of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (THPP) thin film was investigated in terms of detecting NO2 gas by the planar optical waveguide. For this purpose, several THPP and metal complexes were synthesized with different central metal ions: Co(II), Ni(II), Cu(II), and Zn(II). Planar optical gas sensors were fabricated with the metalloporphyrins deposited on K+ ion-exchanged soda-lime glass substrate with the spin coating method serving as host matrices for gas interaction. All of the THPP complex’s films were fully characterized by UV-Vis, IR and XPS spectroscopy, and the laser light source wavelength was selected at 520 and 670 nm. The results of the planar optical waveguide sensor show that the Zn–THPP complex exhibits the strongest response with the lowest detectable gas concentration of NO2 gas for both 520 nm and 670 nm. The Ni–THPP and Co–THPP complexes display good efficiency in the detection of NO2, while, on the other hand, Cu–THPP shows a very low interaction with NO2 gas, with only 50 ppm and 200 ppm detectable gas concentration for 520 nm and 670 nm, respectively. In addition, molecular dynamic simulations and quantum mechanical calculations were performed, proving to be coherent with the experimental results. Full article
(This article belongs to the Special Issue Nanostructured Materials for Gas Sensor Applications)
Show Figures

Graphical abstract

17 pages, 5260 KB  
Article
Sensing Behavior of Metal-Free Porphyrin and Zinc Phthalocyanine Thin Film towards Xylene-Styrene and HCl Vapors in Planar Optical Waveguide
by Nuerguli Kari, Marco Zannotti, Rita Giovannetti, Patigu Maimaiti, Patima Nizamidin, Shawket Abliz and Abliz Yimit
Nanomaterials 2021, 11(7), 1634; https://doi.org/10.3390/nano11071634 - 22 Jun 2021
Cited by 13 | Viewed by 3236
Abstract
The sensing behavior of a thin film composed of metal-free 5, 10, 15, 20-tetrakis (p-hydroxy phenyl) porphyrin and zinc phthalocyanine complex towards m-xylene, styrene, and HCl vapors in a homemade planar optical waveguide (POWG), was studied at room temperature. The thin film was [...] Read more.
The sensing behavior of a thin film composed of metal-free 5, 10, 15, 20-tetrakis (p-hydroxy phenyl) porphyrin and zinc phthalocyanine complex towards m-xylene, styrene, and HCl vapors in a homemade planar optical waveguide (POWG), was studied at room temperature. The thin film was deposited on the surface of potassium ion-exchanged glass substrate, using vacuum spin-coating method, and a semiconductor laser light (532 nm) as the guiding light. Opto-chemical changes of the film exposing with hydrochloric gas, m-xylene, and styrene vapor, were analyzed firstly with UV-Vis spectroscopy. The fabricated POWG shows good correlation between gas exposure response and absorbance change within the gas concentration range 10–1500 ppm. The limit of detection calculated from the logarithmic calibration curve was proved to be 11.47, 21.08, and 14.07 ppm, for HCl gas, m-xylene, and styrene vapors, respectively. It is interesting to find that the film can be recovered to the initial state with trimethylamine vapors after m-xylene, styrene exposures as well as HCl exposure. The gas-film interaction mechanism was discussed considering protonation and π-π stacking with planar aromatic analyte molecules. Full article
(This article belongs to the Special Issue Nanostructured Materials for Gas Sensor Applications)
Show Figures

Graphical abstract

32 pages, 12424 KB  
Review
Active and Quantum Integrated Photonic Elements by Ion Exchange in Glass
by Giancarlo C. Righini and Jesús Liñares
Appl. Sci. 2021, 11(11), 5222; https://doi.org/10.3390/app11115222 - 4 Jun 2021
Cited by 17 | Viewed by 6470
Abstract
Ion exchange in glass has a long history as a simple and effective technology to produce gradient-index structures and has been largely exploited in industry and in research laboratories. In particular, ion-exchanged waveguide technology has served as an excellent platform for theoretical and [...] Read more.
Ion exchange in glass has a long history as a simple and effective technology to produce gradient-index structures and has been largely exploited in industry and in research laboratories. In particular, ion-exchanged waveguide technology has served as an excellent platform for theoretical and experimental studies on integrated optical circuits, with successful applications in optical communications, optical processing and optical sensing. It should not be forgotten that the ion-exchange process can be exploited in crystalline materials, too, and several crucial devices, such as optical modulators and frequency doublers, have been fabricated by ion exchange in lithium niobate. Here, however, we are concerned only with glass material, and a brief review is presented of the main aspects of optical waveguides and passive and active integrated optical elements, as directional couplers, waveguide gratings, integrated optical amplifiers and lasers, all fabricated by ion exchange in glass. Then, some promising research activities on ion-exchanged glass integrated photonic devices, and in particular quantum devices (quantum circuits), are analyzed. An emerging type of passive and/or reconfigurable devices for quantum cryptography or even for specific quantum processing tasks are presently gaining an increasing interest in integrated photonics; accordingly, we propose their implementation by using ion-exchanged glass waveguides, also foreseeing their integration with ion-exchanged glass lasers. Full article
(This article belongs to the Special Issue Ion-exchange in Glasses and Crystals: from Theory to Applications )
Show Figures

Figure 1

20 pages, 381 KB  
Review
Theoretical Modelling of Ion Exchange Processes in Glass: Advances and Challenges
by Xesús Prieto-Blanco and Carlos Montero-Orille
Appl. Sci. 2021, 11(11), 5070; https://doi.org/10.3390/app11115070 - 30 May 2021
Cited by 11 | Viewed by 5971
Abstract
In the last few years, some advances have been made in the theoretical modelling of ion exchange processes in glass. On the one hand, the equations that describe the evolution of the cation concentration were rewritten in a more rigorous manner. This was [...] Read more.
In the last few years, some advances have been made in the theoretical modelling of ion exchange processes in glass. On the one hand, the equations that describe the evolution of the cation concentration were rewritten in a more rigorous manner. This was made into two theoretical frameworks. In the first one, the self-diffusion coefficients were assumed to be constant, whereas, in the second one, a more realistic cation behaviour was considered by taking into account the so-called mixed ion effect. Along with these equations, the boundary conditions for the usual ion exchange processes from molten salts, silver and copper films and metallic cathodes were accordingly established. On the other hand, the modelling of some ion exchange processes that have attracted a great deal of attention in recent years, including glass poling, electro-diffusion of multivalent metals and the formation/dissolution of silver nanoparticles, has been addressed. In such processes, the usual approximations that are made in ion exchange modelling are not always valid. An overview of the progress made and the remaining challenges in the modelling of these unique processes is provided at the end of this review. Full article
(This article belongs to the Special Issue Ion-exchange in Glasses and Crystals: from Theory to Applications )
Show Figures

Figure 1

18 pages, 7491 KB  
Review
Integrated Photonics on Glass: A Review of the Ion-Exchange Technology Achievements
by Jean-Emmanuel Broquin and Seppo Honkanen
Appl. Sci. 2021, 11(10), 4472; https://doi.org/10.3390/app11104472 - 14 May 2021
Cited by 36 | Viewed by 8324
Abstract
Ion-exchange on glass is one of the major technological platforms that are available to manufacture low-cost, high performance Planar Lightwave Circuits (PLC). In this paper, the principle of ion-exchanged waveguide realization is presented. Then a review of the main achievements observed over the [...] Read more.
Ion-exchange on glass is one of the major technological platforms that are available to manufacture low-cost, high performance Planar Lightwave Circuits (PLC). In this paper, the principle of ion-exchanged waveguide realization is presented. Then a review of the main achievements observed over the last 30 years will be given. The focus is first made on devices for telecommunications (passive and active ones) before the application of ion-exchanged waveguides to sensors is addressed. Full article
(This article belongs to the Special Issue Ion-exchange in Glasses and Crystals: from Theory to Applications )
Show Figures

Figure 1

12 pages, 4015 KB  
Article
A Potassium Ion-Exchanged Glass Optical Waveguide Sensor Locally Coated with a Crystal Violet-SiO2 Gel Film for Real-Time Detection of Organophosphorus Pesticides Simulant
by Bin Du, Zhaoyang Tong, Xihui Mu, Jianjie Xu, Shuai Liu, Zhiwei Liu, Wei Cao and Zhi-Mei Qi
Sensors 2019, 19(19), 4219; https://doi.org/10.3390/s19194219 - 28 Sep 2019
Cited by 13 | Viewed by 3063
Abstract
An optical waveguide (OWG) sensor was developed for real-time detection of diethyl chlorophosphate (DCP) vapor, which is a typical simulant for organophosphorus pesticides and chemical weapon agents. Silica gel, crystal violet (CV), and potassium ion-exchange (PIE) OWG were used to fabricate the sensor’s [...] Read more.
An optical waveguide (OWG) sensor was developed for real-time detection of diethyl chlorophosphate (DCP) vapor, which is a typical simulant for organophosphorus pesticides and chemical weapon agents. Silica gel, crystal violet (CV), and potassium ion-exchange (PIE) OWG were used to fabricate the sensor’s device. In the real-time detection of the DCP vapor, the volume fraction of DCP vapor was recorded to be as low as 1.68 × 10−9. Moreover, the detection mechanism of CV-SiO2 gel film coated the PIE OWG sensor for DCP, which was evaluated by absorption spectra. These results demonstrated that the change of output light intensity of the OWG sensor significantly increased with the augment of the DCP concentration. Repeatability as well as selectivity of the sensors were tested using 0.042 × 10−6 and 26.32 × 10−6 volume fraction of the DCP vapor. No clear interference with the DCP detection was observed in the presence of other common solvents (e.g., acetone, methanol, dichloromethane, dimethylsulfoxide, and tetrahydrofuran), benzene series (e.g., benzene, toluene, chlorobenzene, and aniline), phosphorus-containing reagents (e.g., dimethyl methylphosphonate and trimethyl phosphate), acid, and basic gas (e.g., acetic acid and 25% ammonium hydroxide), which demonstrates that the OWG sensor could provide real-time, fast, and accurate measurement results for the detection of DCP. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 3167 KB  
Article
Stresses Produced in the BK7 Glass by the K+–Na+ Ion Exchange: Real-Time Process Control Method
by Roman Rogoziński
Appl. Sci. 2019, 9(12), 2548; https://doi.org/10.3390/app9122548 - 21 Jun 2019
Cited by 4 | Viewed by 3425
Abstract
The paper presents the results of tests on stresses produced by the K+↔Na+ ion exchange method in BK7 glass. Diffusion ion exchange processes were carried out in glass plates with a surface area of a few cm2. The [...] Read more.
The paper presents the results of tests on stresses produced by the K+↔Na+ ion exchange method in BK7 glass. Diffusion ion exchange processes were carried out in glass plates with a surface area of a few cm2. The duration of these processes ranged from several hours to several hundred hours; process temperatures from 370 to 402 degree Celsius were used. The area of the glass in which the ion exchange took place shows refractive changes which are also accompanied by stresses. The planar waveguides produced in this way were tested by optical methods (for wavelength λ = 677 nm) and the refractive index profiles for the Transverse Electric (TE) and Transverse Magnetic (TM) polarization states were determined. On the basis of elasto-optic constants, the resulting stresses were determined. The temperature characteristics of diffusion coefficients of exchanged ions were also determined. Based on them a numerical simulation of real-time diffusion processes was possible, which allowed to predict the stresses arising in the glass. A good agreement between these predictions and the results of measurements was obtained. Full article
(This article belongs to the Special Issue Chemical Strengthening of Glass)
Show Figures

Figure 1

Back to TopTop