Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = ion concentration polarization (ICP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1879 KiB  
Article
Chemical-Free Rapid Lysis of Blood Cells in a Microfluidic Device Utilizing Ion Concentration Polarization
by Suhyeon Kim, Seungbin Yoon, Hyoryung Nam, Hyeonsu Woo, Woonjae Choi, Geon Hwee Kim and Geunbae Lim
Appl. Sci. 2025, 15(15), 8127; https://doi.org/10.3390/app15158127 - 22 Jul 2025
Viewed by 208
Abstract
Blood is a widely used sample for diagnosing diseases such as malaria and diabetes. While diagnostic techniques have advanced, sample preparation remains labor-intensive, requiring steps like mixing and centrifugation. Microfluidic technologies have automated parts of this process, including cell lysis, yet challenges persist. [...] Read more.
Blood is a widely used sample for diagnosing diseases such as malaria and diabetes. While diagnostic techniques have advanced, sample preparation remains labor-intensive, requiring steps like mixing and centrifugation. Microfluidic technologies have automated parts of this process, including cell lysis, yet challenges persist. Electrical lysis offers a chemical-free, continuous approach, but lysing small cells like red blood cells requires high electric fields, which can damage electrodes and cause system failures. Here, we present a microfluidic device utilizing ion concentration polarization (ICP) for rapid blood cell lysis at 75 V. Fluorescence imaging confirmed the formation of an ion depletion region near the Nafion® nanochannel membrane, where the electric field was concentrated across the entire microchannel width. This phenomenon enabled the efficient trapping and lysis of blood cells under these conditions. Continuous blood injection achieved a lysis time of 0.3 s with an efficiency exceeding 99.4%. Moreover, lysed cell contents accumulated near the Nafion membrane, forming a concentrated lysate. This approach eliminates the need for high-voltage circuits or chemical reagents, offering a simple yet effective method for blood cell lysis. The proposed device is expected to advance lab-on-a-chip and point-of-care diagnostics by enabling rapid and continuous sample processing. Full article
Show Figures

Figure 1

47 pages, 2529 KiB  
Review
Microfluidic Electrochemical Desalination Systems: A Review
by Waad H. Abuwatfa, Haya Taleb, Nour AlSawaftah, Khaled Chahrour, Ghaleb A. Husseini and Naif Darwish
Water 2025, 17(11), 1601; https://doi.org/10.3390/w17111601 - 25 May 2025
Viewed by 935
Abstract
Microfluidic techniques have emerged as promising, efficient, cost-effective, and environmentally friendly desalination solutions. By utilizing fluid dynamics at the microscale, these techniques offer precise control over chemical, biological, and physical processes, presenting advantages such as reduced energy consumption, miniaturization, portability, and enhanced process [...] Read more.
Microfluidic techniques have emerged as promising, efficient, cost-effective, and environmentally friendly desalination solutions. By utilizing fluid dynamics at the microscale, these techniques offer precise control over chemical, biological, and physical processes, presenting advantages such as reduced energy consumption, miniaturization, portability, and enhanced process control. A significant challenge in scaling microfluidic desalination for macro applications is the disparity in flow rates. Current devices operate at microliters per minute, while practical applications require liters daily. Solutions involve integrating multiple units on a single chip and developing stackable chip designs. Innovative designs, such as 3D microfluidic chips, have shown promise in enhancing scalability. Fouling, particularly in seawater environments, presents another major challenge. Addressing fouling through advanced materials, including graphene and nanomaterials, is critical to improving the efficiency and longevity of devices. Advances in microfluidic device fabrication, such as photo-patterned hydrogel membranes and 3D printing, have increased device complexity and affordability. Hybrid fabrication approaches could further enhance membrane quality and efficiency. Energy consumption remains a concern, necessitating research into more energy-efficient designs and integration with renewable energy sources. This paper explores various electrochemical-based microfluidic desalination methods, including dialysis/electrodialysis, capacitive deionization (CDI)/electrochemical capacitive deionization (ECDI), ion concentration polarization (ICP), and electrochemical desalination (ECD). Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

12 pages, 6277 KiB  
Article
Enhanced Salt Removal of Fresh Water by Recovery-Reduced Ion Concentration Polarization Desalination
by Myeonghyeon Cho, Seokhee Han, Seohyun Lee, Joong Bae Kim and Bumjoo Kim
Membranes 2024, 14(3), 56; https://doi.org/10.3390/membranes14030056 - 21 Feb 2024
Viewed by 3372
Abstract
Here, we examine electromembrane systems for low-concentration desalination applicable to ultrapure water production. In addition to electrodialysis and ion concentration polarization (ICP) desalination, we propose a recovery-reduced ICP strategy for reducing the width of the desalted outlet for a higher salt removal ratio [...] Read more.
Here, we examine electromembrane systems for low-concentration desalination applicable to ultrapure water production. In addition to electrodialysis and ion concentration polarization (ICP) desalination, we propose a recovery-reduced ICP strategy for reducing the width of the desalted outlet for a higher salt removal ratio (SRR). The correlation between conductivity changes and thickness of the ion depletion zone is identified for electrodialysis, ICPH (1:1), and ICPQ (3:1) with a low-concentration feed solution (10 mM, 1 mM, 0.1 mM NaCl). Based on the experimental results, the scaling law and SRR for the electroconvection zone are summarized, and current efficiency (CE) and energy per ion removal (EPIR) depending on SRR are also discussed. As a result, the SRR of electrodialysis is mostly around 50%, but that of recovery-reduced ICP desalination is observed up to 99% under similar operating conditions. Moreover, at the same SRR, the CE of recovery-reduced ICP is similar to that of electrodialysis, but the EPIR is calculated to be lower than that of electrodialysis. Considering that forming an ion depletion zone up to half the channel width in the electromembrane system typically requires much power consumption, an ICP strategy that can adjust the width of the desalted outlet for high SRR can be preferable. Full article
Show Figures

Figure 1

18 pages, 5514 KiB  
Article
Continuous Submicron Particle Separation Via Vortex-Enhanced Ionic Concentration Polarization: A Numerical Investigation
by Rasool Dezhkam, Hoseyn A. Amiri, David J. Collins and Morteza Miansari
Micromachines 2022, 13(12), 2203; https://doi.org/10.3390/mi13122203 - 12 Dec 2022
Cited by 12 | Viewed by 2597
Abstract
Separation and isolation of suspended submicron particles is fundamental to a wide range of applications, including desalination, chemical processing, and medical diagnostics. Ion concentration polarization (ICP), an electrokinetic phenomenon in micro-nano interfaces, has gained attention due to its unique ability to manipulate molecules [...] Read more.
Separation and isolation of suspended submicron particles is fundamental to a wide range of applications, including desalination, chemical processing, and medical diagnostics. Ion concentration polarization (ICP), an electrokinetic phenomenon in micro-nano interfaces, has gained attention due to its unique ability to manipulate molecules or particles in suspension and solution. Less well understood, though, is the ability of this phenomenon to generate circulatory fluid flow, and how this enables and enhances continuous particle capture. Here, we perform a comprehensive study of a low-voltage ICP, demonstrating a new electrokinetic method for extracting submicron particles via flow-enhanced particle redirection. To do so, a 2D-FEM model solves the Poisson–Nernst–Planck equation coupled with the Navier–Stokes and continuity equations. Four distinct operational modes (Allowed, Blocked, Captured, and Dodged) were recognized as a function of the particle’s charges and sizes, resulting in the capture or release from ICP-induced vortices, with the critical particle dimensions determined by appropriately tuning inlet flow rates (200–800 [µm/s]) and applied voltages (0–2.5 [V]). It is found that vortices are generated above a non-dimensional ICP-induced velocity of U*=1, which represents an equilibrium between ICP velocity and lateral flow velocity. It was also found that in the case of multi-target separation, the surface charge of the particle, rather than a particle’s size, is the primary determinant of particle trajectory. These findings contribute to a better understanding of ICP-based particle separation and isolation, as well as laying the foundations for the rational design and optimization of ICP-based sorting systems. Full article
Show Figures

Figure 1

10 pages, 1676 KiB  
Article
Nucleic Acid Detection with Ion Concentration Polarization Microfluidic Chip for Reduced Cycle Numbers of Polymerase Chain Reaction
by Chengzhuang Yu, Shijie Dai, Shanshan Li, Junwei Li, Hezhi Hu, Jiyu Meng, Chunyang Wei and Jie Jayne Wu
Micromachines 2022, 13(9), 1394; https://doi.org/10.3390/mi13091394 - 26 Aug 2022
Cited by 3 | Viewed by 2775
Abstract
Nucleic acid detection is widely used in disease diagnosis, food safety, environmental monitoring and many other research fields. The continuous development of rapid and sensitive new methods to detective nucleic acid is very important for practical application. In this study, we developed a [...] Read more.
Nucleic acid detection is widely used in disease diagnosis, food safety, environmental monitoring and many other research fields. The continuous development of rapid and sensitive new methods to detective nucleic acid is very important for practical application. In this study, we developed a rapid nucleic-acid detection method using polymerase chain reaction (PCR) combined with electrokinetic preconcentration based on ion concentration polarization (ICP). Using a Nafion film, the proposed ICP microfluidic chip is utilized to enrich the nucleic acid molecules amplified by PCR thermal cycles. To demonstrate the capability of the microfluidic device and the hybrid nucleic-acid detection method, we present an animal-derived component detection experiment for meat product identification applications. With the reduced cycle numbers of 24 cycles, the detection can be completed in about 35 min. The experimental results show that this work can provide a microfluidic device and straightforward method for rapid detection of nucleic acids with reduced cycle numbers. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Biology and Biomedicine 2022)
Show Figures

Figure 1

21 pages, 7721 KiB  
Article
Asymmetric Electrokinetic Energy Conversion in Slip Conical Nanopores
by Chih-Chang Chang
Nanomaterials 2022, 12(7), 1100; https://doi.org/10.3390/nano12071100 - 27 Mar 2022
Cited by 9 | Viewed by 2752
Abstract
Ion current rectification (ICR) phenomena in asymmetric nanofluidic structures, such as conical-shaped nanopores and funnel-shaped nanochannels, have been widely investigated in recent decades. To date, the effect of asymmetric nanofluidic structures on electrokinetic power generation driven by the streaming current/potential has not been [...] Read more.
Ion current rectification (ICR) phenomena in asymmetric nanofluidic structures, such as conical-shaped nanopores and funnel-shaped nanochannels, have been widely investigated in recent decades. To date, the effect of asymmetric nanofluidic structures on electrokinetic power generation driven by the streaming current/potential has not been explored. Accordingly, this study employed a numerical model based on the Poisson equation, Nernst–Planck equation, and Navier–Stokes equation to investigate the electrokinetic energy conversion (EKEC) in a conical nanopore while considering hydrodynamic slippage. The results indicated that the asymmetric characteristics of streaming current (short-circuit current), streaming potential (open-circuit voltage), maximum power generation, maximum conversion efficiency, and flow rate were observed in conical nanopores under the forward pressure bias (tip-to-base direction) and reverse pressure bias (base-to-tip direction) once the nonequilibrium ion concentration polarization (ICP) became considerable. The rectification behaviors in the streaming current, maximum power, and maximum conversion efficiency were all shown to be opposite to those of the well-known ICR in conical nanopores. In other words, the reverse pressure bias revealed a higher EKEC performance than the forward pressure bias. It was concluded that the asymmetric behavior in EKEC is attributed to the asymmetric electrical resistance resulting from asymmetric ion depletion and ion enrichment. Particularly, it was found that the decrease in electrical resistance (i.e., the change in electrical resistance dominated by the ion enrichment) observed in the reverse pressure bias enhanced the maximum power and maximum conversion efficiency. The asymmetric EKEC characteristics became more significant with increasing slip length, surface charge density, cone angle, and pressure bias, especially at lower salt concentrations. The present findings provide useful information for the future development of EKEC in engineered membranes with asymmetric nanopores. Full article
(This article belongs to the Special Issue Advances in Micro/Nanofluidic Power)
Show Figures

Figure 1

13 pages, 4171 KiB  
Article
Numerical Simulation of Continuous Extraction of Li+ from High Mg2+/Li+ Ratio Brines Based on Free Flow Ion Concentration Polarization Microfluidic System
by Dongxiang Zhang, Xianglei Zhang, Leilei Xing and Zirui Li
Membranes 2021, 11(9), 697; https://doi.org/10.3390/membranes11090697 - 10 Sep 2021
Cited by 8 | Viewed by 3567
Abstract
Ion concentration polarization (ICP) is a promising mechanism for concentrating and/or separating charged molecules. This work simulates the extraction of Li+ ions in a diluted high Mg2+/Li+ ratio salt lake brines based on free flow ICP focusing (FF-ICPF). The [...] Read more.
Ion concentration polarization (ICP) is a promising mechanism for concentrating and/or separating charged molecules. This work simulates the extraction of Li+ ions in a diluted high Mg2+/Li+ ratio salt lake brines based on free flow ICP focusing (FF-ICPF). The model solution of diluted brine continuously flows through the system with Li+ slightly concentrated and Mg2+ significantly removed by ICP driven by external pressure and perpendicular electric field. In a typical case, our results showed that this system could focus Li+ concentration by ~1.28 times while decreasing the Mg2+/Li+ ratio by about 85% (from 40 to 5.85). Although Li+ and Mg2+ ions are not separated as an end product, which is preferably required by the lithium industry, this method is capable of decreasing the Mg2+/Li+ ratio significantly and has great potential as a preprocessing technology for lithium extraction from salt lake brines. Full article
(This article belongs to the Special Issue Numerical Modelling in Membrane Processes)
Show Figures

Figure 1

12 pages, 4434 KiB  
Article
Simulation and Experimental Study of Ion Concentration Polarization Induced Electroconvective Vortex and Particle Movement
by Junghyo Yoon, Youngkyu Cho, Jaehoon Kim, Hyunho Kim, Kyuhwan Na, Jeong Hoon Lee and Seok Chung
Micromachines 2021, 12(8), 903; https://doi.org/10.3390/mi12080903 - 29 Jul 2021
Cited by 3 | Viewed by 4220
Abstract
Ion concentration polarization (ICP) has been widely applied in microfluidic systems in pre-concentration, particle separation, and desalination applications. General ICP microfluidic systems have three components (i.e., source, ion-exchange, and buffer), which allow selective ion transport. Recently developed trials to eliminate one of the [...] Read more.
Ion concentration polarization (ICP) has been widely applied in microfluidic systems in pre-concentration, particle separation, and desalination applications. General ICP microfluidic systems have three components (i.e., source, ion-exchange, and buffer), which allow selective ion transport. Recently developed trials to eliminate one of the three components to simplify the system have suffered from decreased performance by the accumulation of unwanted ions. In this paper, we presented a new ICP microfluidic system with only an ion-exchange membrane-coated channel. Numerical investigation on hydrodynamic flow and electric fields with a series of coupled governing equations enabled a strong correlation to experimental investigations on electroconvective vortices and the trajectory of charged particles. This study has significant implications for the development and optimization of ICP microfluidic and electrochemical systems for biomarker concentration and separation to improve sensing reliability and detection limits in analytic chemistry. Full article
(This article belongs to the Special Issue State-of-the-Art Nanofluidics)
Show Figures

Figure 1

14 pages, 3266 KiB  
Article
Rapid Prototyping of a Nanoparticle Concentrator Using a Hydrogel Molding Method
by Hirotada Hirama, Ryutaro Otahara, Katsuo Mogi, Masanori Hayase, Toru Torii and Harutaka Mekaru
Polymers 2021, 13(7), 1069; https://doi.org/10.3390/polym13071069 - 29 Mar 2021
Cited by 4 | Viewed by 2571
Abstract
Nanoparticle (NP) concentration is crucial for liquid biopsies and analysis, and various NP concentrators (NPCs) have been developed. Methods using ion concentration polarization (ICP), an electrochemical phenomenon based on NPCs consisting of microchannels, have attracted attention because samples can be non-invasively concentrated using [...] Read more.
Nanoparticle (NP) concentration is crucial for liquid biopsies and analysis, and various NP concentrators (NPCs) have been developed. Methods using ion concentration polarization (ICP), an electrochemical phenomenon based on NPCs consisting of microchannels, have attracted attention because samples can be non-invasively concentrated using devices with simple structures. The fabrication of such NPCs is limited by the need for lithography, requiring special equipment and time. To overcome this, we reported a rapid prototyping method for NPCs by extending the previously developed hydrogel molding method, a microchannel fabrication method using hydrogel as a mold. With this, we fabricated NPCs with both straight and branched channels, typical NPC configurations. The generation of ICP was verified, and an NP concentration test was performed using dispersions of negatively and positively charged NPs. In the straight-channel NPC, negatively and positively charged NPs were concentrated >50-fold and >25-fold the original concentration, respectively. To our knowledge, this is the first report of NP concentration via ICP in a straight-channel NPC. Using a branched-channel NPC, maximum concentration rates of 2.0-fold and 1.7-fold were obtained with negatively and positively charged NPs, respectively, similar to those obtained with NPCs fabricated through conventional lithography. This rapid prototyping method is expected to promote the development of NPCs for liquid biopsy and analysis. Full article
Show Figures

Graphical abstract

15 pages, 3964 KiB  
Article
Controllable pH Manipulations in Micro/Nanofluidic Device Using Nanoscale Electrokinetics
by Jae Suk Park, Jeewhan Oh and Sung Jae Kim
Micromachines 2020, 11(4), 400; https://doi.org/10.3390/mi11040400 - 10 Apr 2020
Cited by 7 | Viewed by 3596
Abstract
Recently introduced nanoscale electrokinetic phenomenon called ion concentration polarization (ICP) has been suffered from serious pH changes to the sample fluid. A number of studies have focused on the origin of pH changes and strategies for regulating it. Instead of avoiding pH changes, [...] Read more.
Recently introduced nanoscale electrokinetic phenomenon called ion concentration polarization (ICP) has been suffered from serious pH changes to the sample fluid. A number of studies have focused on the origin of pH changes and strategies for regulating it. Instead of avoiding pH changes, in this work, we tried to demonstrate new ways to utilize this inevitable pH change. First, one can obtain a well-defined pH gradient in proton-received microchannel by applying a fixed electric current through a proton exchange membrane. Furthermore, one can tune the pH gradient on demand by adjusting the proton mass transportation (i.e., adjusting electric current). Secondly, we demonstrated that the occurrence of ICP can be examined by sensing a surrounding pH of electrolyte solution. When pH > threshold pH, patterned pH-responsive hydrogel inside a straight microchannel acted as a nanojunction to block the microchannel, while it did as a microjunction when pH < threshold pH. In case of forming a nanojunction, electrical current significantly dropped compared to the case of a microjunction. The strategies that presented in this work would be a basis for useful engineering applications such as a localized pH stimulation to biomolecules using tunable pH gradient generation and portable pH sensor with pH-sensitive hydrogel. Full article
(This article belongs to the Special Issue Electrokinetics in Micro-/nanofluidic Devices)
Show Figures

Figure 1

11 pages, 3377 KiB  
Article
Direct Numerical Simulation of Seawater Desalination Based on Ion Concentration Polarization
by Jie Li, Dilin Chen, Jian Ye, Lai Zhang, Teng Zhou and Yi Zhou
Micromachines 2019, 10(9), 562; https://doi.org/10.3390/mi10090562 - 25 Aug 2019
Cited by 12 | Viewed by 4407
Abstract
The problem of water shortage needs to be solved urgently. The membrane-embedded microchannel structure based on the ion concentration polarization (ICP) desalination effect is a potential portable desalination device with low energy consumption and high efficiency. The electroosmotic flow in the microchannel of [...] Read more.
The problem of water shortage needs to be solved urgently. The membrane-embedded microchannel structure based on the ion concentration polarization (ICP) desalination effect is a potential portable desalination device with low energy consumption and high efficiency. The electroosmotic flow in the microchannel of the cation exchange membrane and the desalination effect of the system are numerically analyzed. The results show that when the horizontal electric field intensity is 2 kV/m and the transmembrane voltage is 400 mV, the desalting efficiency reaches 97.3%. When the electric field strength increases to 20 kV/m, the desalination efficiency is reduced by 2%. In terms of fluid motion, under the action of the transmembrane voltage, two reverse eddy currents are formed on the surface of the membrane due to the opposite electric field and pressure difference on both sides of the membrane, forming a pumping effect. The electromotive force in the channel exhibits significant pressure-flow characteristics with a slip boundary at a speed approximately six times that of a non-membrane microchannel. Full article
(This article belongs to the Special Issue Micro/Nano-Chip Electrokinetics, Volume III)
Show Figures

Figure 1

12 pages, 2311 KiB  
Article
Rapid Detection and Trapping of Extracellular Vesicles by Electrokinetic Concentration for Liquid Biopsy on Chip
by Lucia S. Cheung, Sarah Sahloul, Ajymurat Orozaliev and Yong-Ak Song
Micromachines 2018, 9(6), 306; https://doi.org/10.3390/mi9060306 - 19 Jun 2018
Cited by 27 | Viewed by 12614
Abstract
Exosomes have gained immense importance since their proteomic and genetic contents could potentially be used for disease diagnostics, monitoring of cancer progression, metastasis, and drug efficacy. However, establishing the clinical utility of exosomes has been restricted due to small sizes and high sample [...] Read more.
Exosomes have gained immense importance since their proteomic and genetic contents could potentially be used for disease diagnostics, monitoring of cancer progression, metastasis, and drug efficacy. However, establishing the clinical utility of exosomes has been restricted due to small sizes and high sample loss from extensive sample preparation. Sample loss is particularly critical for body fluids limited in volume and difficult to access, e.g., cerebrospinal fluid. We present a microfluidic technique that locally enhances the concentration of extracellular vesicles extracted from MDA-MB-231 human breast cancer cell lines by using an ion concentration polarization (ICP)-based electrokinetic concentrator. Our design incorporates a trapping mechanism near the conductive polymer membrane; therefore, we can preconcentrate and capture extracellular vesicles simultaneously. Compared with standard fluorescence detection, our method increased the limit of detection (LOD) of extracellular vesicles by two orders of magnitude in 30 min. Our concentrator increased the extracellular vesicle concentration for 5.0 × 107 particles/1 mL (LOD), 5.0 × 108 particles/1 mL, and 5.0 × 109 particles/1 mL by ~100-fold each within 30 min using 45 V. This study demonstrates an alternative platform to simultaneously preconcentrate and capture extracellular vesicles that can be incorporated as part of a liquid biopsy-on-a-chip system for the detection of exosomal biomarkers and analysis of their contents for early cancer diagnosis. Full article
Show Figures

Graphical abstract

12 pages, 3316 KiB  
Article
Microfluidic Paper-Based Sample Concentration Using Ion Concentration Polarization with Smartphone Detection
by Xue Li, Yanan Niu, Yunyi Chen, Di Wu, Long Yi and Xianbo Qiu
Micromachines 2016, 7(11), 199; https://doi.org/10.3390/mi7110199 - 4 Nov 2016
Cited by 22 | Viewed by 7588
Abstract
A simple method for microfluidic paper-based sample concentration using ion concentration polarization (ICP) with smartphone detection is developed. The concise and low-cost microfluidic paper-based ICP analytical device, which consists of a black backing layer, a nitrocellulose membrane, and two absorbent pads, is fabricated [...] Read more.
A simple method for microfluidic paper-based sample concentration using ion concentration polarization (ICP) with smartphone detection is developed. The concise and low-cost microfluidic paper-based ICP analytical device, which consists of a black backing layer, a nitrocellulose membrane, and two absorbent pads, is fabricated with the simple lamination method which is widely used for lateral flow strips. Sample concentration on the nitrocellulose membrane is monitored in real time by a smartphone whose camera is used to collect the fluorescence images from the ICP device. A custom image processing algorithm running on the smartphone is used to track the concentrated sample and obtain its fluorescence signal intensity for quantitative analysis. Two different methods for Nafion coating are evaluated and their performances are compared. The characteristics of the ICP analytical device especially with intentionally adjusted physical properties are fully evaluated to optimize its performance as well as to extend its potential applications. Experimental results show that significant concentration enhancement with fluorescence dye sample is obtained with the developed ICP device when a fast depletion of fluorescent dye is observed. The platform based on the simply laminated ICP device with smartphone detection is desired for point-of-care testing in settings with poor resources. Full article
(This article belongs to the Special Issue Micro/Nano-Chip Electrokinetics)
Show Figures

Graphical abstract

Back to TopTop