Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = intravitreal concentrations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1321 KiB  
Article
Intravitreal Povidone-Iodine Injection and Low-Dose Antibiotic Irrigation for Infectious Endophthalmitis: A Retrospective Case Series
by Yumiko Machida, Hiroyuki Nakashizuka, Hajime Onoe, Yorihisa Kitagawa, Naoya Nakagawa, Keisuke Miyata, Misato Yamakawa, Yu Wakatsuki, Koji Tanaka, Ryusaburo Mori and Hiroyuki Shimada
Pharmaceutics 2025, 17(8), 995; https://doi.org/10.3390/pharmaceutics17080995 (registering DOI) - 31 Jul 2025
Viewed by 151
Abstract
Background/Objectives: Infectious endophthalmitis is a vision-threatening complication of intraocular surgery and intravitreal injections. Standard treatment involves intravitreal antibiotics; however, concerns regarding multidrug resistance and vancomycin-associated hemorrhagic occlusive retinal vasculitis (HORV) highlight the need for alternative antimicrobial strategies. This study aimed to evaluate the [...] Read more.
Background/Objectives: Infectious endophthalmitis is a vision-threatening complication of intraocular surgery and intravitreal injections. Standard treatment involves intravitreal antibiotics; however, concerns regarding multidrug resistance and vancomycin-associated hemorrhagic occlusive retinal vasculitis (HORV) highlight the need for alternative antimicrobial strategies. This study aimed to evaluate the clinical efficacy and safety of a protocol combining intravitreal injection of 1.25% povidone-iodine (PI) with intraoperative irrigation using low concentrations of vancomycin and ceftazidime. Methods: We retrospectively analyzed 11 eyes from patients diagnosed with postoperative or injection-related endophthalmitis. Six of the eleven cases received an initial intravitreal injection of 1.25% PI, followed by pars plana vitrectomy with irrigation using balanced salt solution PLUS containing vancomycin (20 μg/mL) and ceftazidime (40 μg/mL). A second intravitreal PI injection was administered at the end of surgery in all cases. Additional PI injections were administered postoperatively based on clinical response. Clinical outcomes included best-corrected visual acuity (BCVA), microbial culture results, corneal endothelial cell density, and visual field testing. Results: All eyes achieved complete infection resolution without recurrence. The mean BCVA improved significantly from 2.18 logMAR at baseline to 0.296 logMAR at final follow-up (p < 0.001). No adverse events were observed on specular microscopy or visual field assessment. The protocol was well tolerated, and repeated PI injections showed no signs of ocular toxicity. Conclusions: This combination protocol provides a safe and effective treatment strategy for infectious endophthalmitis. It enables rapid and complete infection resolution while minimizing the risks associated with intravitreal antibiotics. These findings support further investigation of this protocol as a practical and globally accessible alternative to standard intravitreal antimicrobial therapy. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Ocular Diseases)
Show Figures

Graphical abstract

26 pages, 2831 KiB  
Article
Catalpol Protects Against Retinal Ischemia Through Antioxidation, Anti-Ischemia, Downregulation of β-Catenin, VEGF, and Angiopoietin-2: In Vitro and In Vivo Studies
by Howard Wen-Haur Chao, Windsor Wen-Jin Chao and Hsiao-Ming Chao
Int. J. Mol. Sci. 2025, 26(9), 4019; https://doi.org/10.3390/ijms26094019 - 24 Apr 2025
Viewed by 582
Abstract
Retinal ischemic disorders present significant threats to vision, characterized by inadequate blood supply oxygen–glucose deprivation (OGD), oxidative stress, and cellular injury, often resulting in irreversible injury. Catalpol, an iridoid glycoside derived from Rehmannia glutinosa, has demonstrated antioxidative and neuroprotective effects. This study [...] Read more.
Retinal ischemic disorders present significant threats to vision, characterized by inadequate blood supply oxygen–glucose deprivation (OGD), oxidative stress, and cellular injury, often resulting in irreversible injury. Catalpol, an iridoid glycoside derived from Rehmannia glutinosa, has demonstrated antioxidative and neuroprotective effects. This study aimed at investigating the protective effects and mechanisms of catalpol against oxidative stress or OGD in vitro and retinal ischemia in vivo, focusing on the modulation of key biomarkers of retinal ischemia, including HIF-1α, vascular endothelial growth factor (VEGF), angiopoietin-2, MCP-1, and the Wnt/β-catenin pathway. Cellular viability was assessed using retinal ganglion cell-5 (RGC-5) cells cultured in DMEM; a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed. H2O2 (1 mM)/OGD was utilized. Vehicle or different catalpol concentrations were administered 15 min before the ischemic-like insults. The Wistar rat eyes’ intraocular pressure was increased to 120 mmHg for 60 min to induce retinal ischemia. Intravitreous injections of catalpol (0.5 or 0.25 mM), Wnt inhibitor DKK1 (1 μg/4 μL), anti-VEGF Lucentis (40 μg/4 μL), or anti-VEGF Eylea (160 μg/4 μL) were administered to the rats’ eyes 15 min before or after retinal ischemia. Electroretinogram (ERG), fluorogold retrograde labeling RGC, Western blotting, ELISA, RT-PCR, and TUNEL were utilized. In vitro, both H2O2 and OGD models significantly (p < 0.001/p < 0.001; H2O2 and OGD) induced oxidative stress/ischemic-like insults, decreasing RGC-5 cell viability (from 100% to 55.14 ± 2.19%/60.84 ± 4.57%). These injuries were insignificantly (53.85 ± 1.28% at 0.25 mM)/(63.46 ± 3.30% at 0.25 mM) and significantly (p = 0.003/p = 0.012; 64.15 ± 2.41%/77.63 ± 8.59% at 0.5 mM) altered by the pre-administration of catalpol, indicating a possible antioxidative and anti-ischemic effect of 0.5 mM catalpol. In vivo, catalpol had less effect at 0.25 mM for ERG amplitude ratio (median [Q1, Q3] 14.75% [12.64%, 20.48%]) and RGC viability (mean ± SE 63.74 ± 5.13%), whereas (p < 0.05 and p < 0.05) at 0.5 mM ERG’s ratio (35.43% [24.35%, 43.08%]) and RGC’s density (74.34 ± 5.10%) blunted the ischemia-associated significant (p < 0.05 and p < 0.01) reduction in ERG b-wave amplitude (6.89% [4.24%, 10.40%]) and RGC cell viability (45.64 ± 3.02%). Catalpol 0.5 mM also significantly protected against retinal ischemia supported by the increased amplitude ratio of ERG a-wave and oscillatory potential, along with recovering a delayed a-/b-wave response time ratio. When contrasted with DKK1 or Lucentis, catalpol exhibited similar protective effects against retinal ischemia via significantly (p < 0.05) blunting the ischemia-induced overexpression of β-catenin, VEGF, or angiopoietin-2. Moreover, ischemia-associated significant increases in apoptotic cells in the inner retina, inflammatory biomarker MCP-1, and ischemic indicator HIF-1α were significantly nullified by catalpol. Catalpol demonstrated antiapoptotic, anti-inflammatory, anti-ischemic (in vivo retinal ischemia or in vitro OGD), and antioxidative (in vitro) properties, counteracting retinal ischemia via suppressing upstream Wnt/β-catenin and inhibiting downstream HIF-1α, VEGF, and angiopoietin-2, together with its decreasing TUNEL apoptotic cell number and inflammatory MCP-1 concentration. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 1117 KiB  
Article
Genetic Diagnosis of Retinoblastoma Using Aqueous Humour—Findings from an Extended Cohort
by Amy Gerrish, Chipo Mashayamombe-Wolfgarten, Edward Stone, Claudia Román-Montañana, Joseph Abbott, Helen Jenkinson, Gerard Millen, Sam Gurney, Maureen McCalla, Sarah-Jane Staveley, Anu Kainth, Maria Kirk, Claire Bowen, Susan Cavanagh, Sancha Bunstone, Megan Carney, Ajay Mohite, Samuel Clokie, M. Ashwin Reddy, Alison Foster, Stephanie Allen, Manoj Parulekar and Trevor Coleadd Show full author list remove Hide full author list
Cancers 2024, 16(8), 1565; https://doi.org/10.3390/cancers16081565 - 19 Apr 2024
Cited by 5 | Viewed by 2190
Abstract
The identification of somatic RB1 variation is crucial to confirm the heritability of retinoblastoma. We and others have previously shown that, when tumour DNA is unavailable, cell-free DNA (cfDNA) derived from aqueous humour (AH) can be used to identify somatic RB1 pathogenic variation. [...] Read more.
The identification of somatic RB1 variation is crucial to confirm the heritability of retinoblastoma. We and others have previously shown that, when tumour DNA is unavailable, cell-free DNA (cfDNA) derived from aqueous humour (AH) can be used to identify somatic RB1 pathogenic variation. Here we report RB1 pathogenic variant detection, as well as cfDNA concentration in an extended cohort of 75 AH samples from 68 patients. We show cfDNA concentration is highly variable and significantly correlated with the collection point of the AH. Cell-free DNA concentrations above 5 pg/µL enabled the detection of 93% of known or expected RB1 pathogenic variants. In AH samples collected during intravitreal chemotherapy treatment (Tx), the yield of cfDNA above 5 pg/µL and subsequent variant detection was low (≤46%). However, AH collected by an anterior chamber tap after one to three cycles of primary chemotherapy (Dx1+) enabled the detection of 75% of expected pathogenic variants. Further limiting our analysis to Dx1+ samples taken after ≤2 cycles (Dx ≤ 2) provided measurable levels of cfDNA in all cases, and a subsequent variant detection rate of 95%. Early AH sampling is therefore likely to be important in maximising cfDNA concentration and the subsequent detection of somatic RB1 pathogenic variants in retinoblastoma patients undergoing conservative treatment. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
Show Figures

Figure 1

12 pages, 2314 KiB  
Article
Development of a Resveratrol Nanoformulation for the Treatment of Diabetic Retinopathy
by Juliana Gonzalez-Perez, A. M. Lopera-Echavarría, Said Arevalo-Alquichire, Pedronel Araque-Marín and Martha E. Londoño
Materials 2024, 17(6), 1420; https://doi.org/10.3390/ma17061420 - 20 Mar 2024
Cited by 8 | Viewed by 2390
Abstract
Diabetic retinopathy (RD) is a microvascular disease that can cause the formation of fragile neovessels, increasing the risk of hemorrhages and leading to vision loss. Current therapies are based on the intravitreal injection of anti-VEGF (vascular endothelial growth factor), which is invasive and [...] Read more.
Diabetic retinopathy (RD) is a microvascular disease that can cause the formation of fragile neovessels, increasing the risk of hemorrhages and leading to vision loss. Current therapies are based on the intravitreal injection of anti-VEGF (vascular endothelial growth factor), which is invasive and can cause secondary effects. The development of new treatments that complement the current therapies is necessary to improve the patient’s outcomes. Nanostructured formulations offer several advantages regarding drug delivery and penetration. In this research, a resveratrol nanosuspension (RSV-NS) was prepared and characterized using dynamic light scattering, field emission scanning electron microscopy, and infrared spectroscopy. The RSV-NS had an average particle size of 304.0 ± 81.21 nm with a PDI of 0.225 ± 0.036, and a spherical-like morphology and uniform particle distribution. Cell viability, proliferation, and migration were tested on endothelial cells (HMRECs). RSV-NS in a concentration of less than 18.75 µM did not have a cytotoxic effect on HMRECs. Likewise, proliferation and migration were significantly reduced compared to the unstimulated control at 37.5 µM. The RSV-NS did not present cytotoxic effects but decreased cell proliferation and migration, indicating that it could provide an important contribution to future medical implementations and could have a high potential to treat this disease. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications)
Show Figures

Graphical abstract

16 pages, 3571 KiB  
Article
Useful Role of a New Generation of Dexamethasone, Vitamin E and Human Serum Albumin Microparticles in the Prevention of Excitotoxicity Injury in Retinal Ocular Diseases
by Javier Rodríguez Villanueva, Pedro de la Villa, Rocío Herrero-Vanrell, Irene Bravo-Osuna and Manuel Guzmán-Navarro
Pharmaceutics 2024, 16(3), 406; https://doi.org/10.3390/pharmaceutics16030406 - 15 Mar 2024
Cited by 3 | Viewed by 1698
Abstract
Excitotoxicity has been linked to the pathogenesis of several serious degenerative ocular diseases. Long-term overactivation of the NMDA receptor by glutamate in retinal ganglion cells (RGCs) results in degeneration, apoptosis and loss of function leading to blindness. NMDA receptor antagonists have been proposed [...] Read more.
Excitotoxicity has been linked to the pathogenesis of several serious degenerative ocular diseases. Long-term overactivation of the NMDA receptor by glutamate in retinal ganglion cells (RGCs) results in degeneration, apoptosis and loss of function leading to blindness. NMDA receptor antagonists have been proposed as a pharmacological blockage of glutamate excitotoxicity. However, an inhibition of the pathway activated by glutamate receptors has intolerable side effects. An interesting pharmacological alternative would be the use of antiapoptotic compounds as RGCs’ neuroprotective active substances. Several mechanisms have been proposed to explain neuroprotection, including anti-inflammatory and scavenging activities. Here, the role of dexamethasone in neuroprotection was studied. For this purpose, original controlled release systems composed of microparticles containing dexamethasone with or without vitamin E and human serum albumin (HSA) were designed. The particles were prepared by the solid-in-oil-in-water (S/O/W) emulsion–evaporation technique. After properly characterization of the particles, they were intravitreally injected into an rat model of acute ocular excitotoxicity injury. The functionality of the retina was determined by electroretinography and RGCs were counted after cell immunohistochemistry. These microparticulate systems showed the ability to maintain normal electroretinal activity and promoted significant protection of RGCs. Through this proof of concept, we demonstrated that dexamethasone could be a useful anti-inflammatory agent to avoid the progression of degenerative ocular diseases. Furthermore, when administered in controlled release systems that provide low concentrations during prolonged periods of time, not only can the patient’s comfort be increased but the cytotoxicity of the drugs can also be avoided. Full article
Show Figures

Figure 1

13 pages, 914 KiB  
Review
Ranibizumab Port Delivery System in Neovascular Age-Related Macular Degeneration: Where Do We Stand? Overview of Pharmacokinetics, Clinical Results, and Future Directions
by Matteo Mario Carlà, Maria Cristina Savastano, Francesco Boselli, Federico Giannuzzi and Stanislao Rizzo
Pharmaceutics 2024, 16(3), 314; https://doi.org/10.3390/pharmaceutics16030314 - 23 Feb 2024
Cited by 4 | Viewed by 2728
Abstract
The ranibizumab (RBZ) port delivery system (PDS) is a device designed to continuously deliver RBZ in the vitreous chamber for the treatment of neovascular age-related macular degeneration (nAMD). It is implanted during a surgical procedure and can provide sustained release of the medication [...] Read more.
The ranibizumab (RBZ) port delivery system (PDS) is a device designed to continuously deliver RBZ in the vitreous chamber for the treatment of neovascular age-related macular degeneration (nAMD). It is implanted during a surgical procedure and can provide sustained release of the medication for several months. This review, updated to January 2024, focuses on past clinical studies as well as current and forthcoming trials looking into a PDS with RBZ. In the phase 2 LADDER trial, the mean time to first refill of a PDS with RBZ 100 mg/mL was 15.8 months, with the pharmacokinetic (PK) profile showing a sustained concentration of RBZ in the blood and aqueous humor. More recently, a PDS with RBZ (100 mg/mL) refilled every 24 weeks was shown to be non-inferior to a monthly intravitreal injection (IVI) with RBZ (0.5 mg) over 40 and 92 weeks in the phase 3 ARCHWAY trial. The refill every 24 weeks allowed for a RBZ vitreous exposure within the concentration range of monthly intravitreal injections (IVIs), and the expected half-life (106 days) was comparable with the in vitro results. Nonetheless, vitreous hemorrhage and endophthalmitis were more common side effects in PDS patients. In conclusion, a PDS continuously delivering RBZ has a clinical effectiveness level comparable with IVI treatment. However, a greater frequency of unfavorable occurrences highlights the need for procedure optimization for a wider adoption. Ongoing trials and possible future approaches need to be addressed. Full article
(This article belongs to the Special Issue Controlled-Release Systems for Ophthalmic Applications)
Show Figures

Figure 1

14 pages, 610 KiB  
Article
Vitreous Levels of Vascular Endothelial Growth Factor and Platelet-Derived Growth Factor in Patients with Proliferative Diabetic Retinopathy: A Clinical Correlation
by Rami Al-Dwairi, Tamam El-Elimat, Abdelwahab Aleshawi, Ahmed H. Al Sharie, Balqis M. Abu Mousa, Seren Al Beiruti, Ahmad Alkazaleh and Hasan Mohidat
Biomolecules 2023, 13(11), 1630; https://doi.org/10.3390/biom13111630 - 8 Nov 2023
Cited by 6 | Viewed by 2254
Abstract
Background: The global epidemic status of diabetic retinopathy (DR) and its burden presents an ongoing challenge to health-care systems. It is of great interest to investigate potential prognostic biomarkers of DR. Such markers could aid in detecting early stages of DR, predicting [...] Read more.
Background: The global epidemic status of diabetic retinopathy (DR) and its burden presents an ongoing challenge to health-care systems. It is of great interest to investigate potential prognostic biomarkers of DR. Such markers could aid in detecting early stages of DR, predicting DR progression and its response to therapeutics. Herein, we investigate the prognostic value of intravitreal concentrations of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) in a DR cohort. Materials and methods: Vitreous sample acquisition was conducted at King Abdullah University Hospital (KAUH) between December 2020 and June 2022. Samples were obtained from any patient scheduled to undergo a pars plana vitrectomy (PPV) for any indication. Included patients were categorized into a DR group or a corresponding non-diabetic (ND) control group. Demographics, clinicopathological variables, standardized laboratory tests results, and optical coherence tomography (OCT) data were obtained for each included individual. Intravitreal concentrations of VEGF and PDGF were assessed using commercial enzyme-linked immunosorbent assay (ELISA). Results: A total of 80 eyes from 80 patients (DR group: n = 42 and ND control group: n = 38) were included in the analysis. The vitreous VEGF levels were significantly higher in the DR group compared to the ND control group (DR group 5744.06 ± 761.5 pg/mL versus ND control group 817.94 ± 403.1 pg/mL, p = 0.0001). In addition, the vitreous PDGF levels were also significantly higher in the DR group than those in the ND control group (DR group 4031.51 ± 410.2 pg/mL versus ND control group 2691.46 ± 821.0 pg/mL, p = 0.001). Bassline differences between test groups and clinical factors impacting VEGF and PDGF concentrations were investigated as well. Multiple regression analysis indicated PDGF as the sole independent risk factor affecting best-corrected visual acuity (BCVA) at the last follow-up visit: the higher the PDGF vitreous levels, the worst the BCVA. Conclusions: Vitreous concentrations of VEGF and PDGF are correlated with DR severity and may exhibit a possible prognostic potential value in DR. Further clinical and experimental data are warranted to confirm the observed findings and to help incorporate them into daily practice. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

11 pages, 1324 KiB  
Article
Proteome Analysis of Bevacizumab Intervention in Experimental Central Retinal Vein Occlusion
by Lasse Jørgensen Cehofski, Anders Kruse, Mads Odgaard Mæng, Benedict Kjaergaard, Jakob Grauslund, Bent Honoré and Henrik Vorum
J. Pers. Med. 2023, 13(11), 1580; https://doi.org/10.3390/jpm13111580 - 7 Nov 2023
Viewed by 1597
Abstract
Bevacizumab is a frequently used inhibitor of vascular endothelial growth factor (VEGF) in the management of macular edema in central retinal vein occlusion (CRVO). Studying retinal protein changes in bevacizumab intervention may provide insights into mechanisms of action. In nine Danish Landrace pigs, [...] Read more.
Bevacizumab is a frequently used inhibitor of vascular endothelial growth factor (VEGF) in the management of macular edema in central retinal vein occlusion (CRVO). Studying retinal protein changes in bevacizumab intervention may provide insights into mechanisms of action. In nine Danish Landrace pigs, experimental CRVO was induced in both eyes with argon laser. The right eyes received an intravitreal injection of 0.05 mL bevacizumab (n = 9), while the left control eyes received 0.05 mL saline water (NaCl). Retinal samples were collected 15 days after induced CRVO. Label-free quantification nano-liquid chromatography–tandem mass spectrometry identified 59 proteins that were regulated following bevacizumab treatment. Following bevacizumab intervention, altered levels of bevacizumab components, including the Ig gamma-1 chain C region and the Ig kappa chain C region, were observed. Changes in other significantly regulated proteins ranged between 0.58–1.73, including for the NADH-ubiquinone oxidoreductase chain (fold change = 1.73), protein-transport protein Sec24B (fold change = 1.71), glycerol kinase (fold change = 1.61), guanine-nucleotide-binding protein G(T) subunit-gamma-T1 (fold change = 0.67), and prefoldin subunit 6 (fold change = 0.58). A high retinal concentration of bevacizumab was achieved within 15 days. Changes in the additional proteins were limited, suggesting a narrow mechanism of action. Full article
(This article belongs to the Special Issue Diagnostics and Therapeutics in Ophthalmology)
Show Figures

Figure 1

10 pages, 3154 KiB  
Article
The Effect of Anti-Autotaxin Aptamers on the Development of Proliferative Vitreoretinopathy
by Hirotsugu Hanazaki, Harumasa Yokota, Satoru Yamagami, Yoshikazu Nakamura and Taiji Nagaoka
Int. J. Mol. Sci. 2023, 24(21), 15926; https://doi.org/10.3390/ijms242115926 - 3 Nov 2023
Cited by 2 | Viewed by 1689
Abstract
This study investigated the effect of anti-autotaxin (ATX) aptamers on the development of proliferative vitreoretinopathy (PVR) in both in vivo and in vitro PVR swine models. For the in vitro study, primary retinal pigment epithelial (RPE) cells were obtained from porcine eyes and [...] Read more.
This study investigated the effect of anti-autotaxin (ATX) aptamers on the development of proliferative vitreoretinopathy (PVR) in both in vivo and in vitro PVR swine models. For the in vitro study, primary retinal pigment epithelial (RPE) cells were obtained from porcine eyes and cultured for cell proliferation and migration assays. For the in vivo study, a swine PVR model was established by inducing retinal detachment and injecting cultured RPE cells (2.0 × 106). Concurrently, 1 week after RPE cell injection, the anti-ATX aptamer, RBM-006 (10 mg/mL, 0.1 mL), was injected twice into the vitreous cavity. Post-injection effects of the anti-ATX aptamer on PVR development in the in vivo swine PVR model were investigated. For the in vitro evaluation, the cultured RPE cell proliferation and migration were significantly reduced at anti-ATX aptamer concentrations of 0.5–0.05 mg and at only 0.5 mg, respectively. Intravitreal administration of the anti-ATX aptamer also prevented tractional retinal detachment caused by PVR in the in vivo PVR model. We observed that the anti-ATX aptamer, RBM-006, inhibited PVR-related RPE cell proliferation and migration in vitro and inhibited the progression of PVR in the in vivo model, suggesting that the anti-ATX aptamer may be effective in preventing PVR. Full article
Show Figures

Figure 1

19 pages, 3214 KiB  
Article
Systemic Dendrimer-Peptide Therapies for Wet Age-Related Macular Degeneration
by Tony Wu, Chang Liu and Rangaramanujam M. Kannan
Pharmaceutics 2023, 15(10), 2428; https://doi.org/10.3390/pharmaceutics15102428 - 5 Oct 2023
Cited by 6 | Viewed by 1992
Abstract
Wet age-related macular degeneration (AMD) is an end-stage event in a complex pathogenesis of macular degeneration, involving the abnormal growth of blood vessels at the retinal pigment epithelium driven by vascular endothelial growth factor (VEGF). Current therapies seek to interrupt VEGF signaling to [...] Read more.
Wet age-related macular degeneration (AMD) is an end-stage event in a complex pathogenesis of macular degeneration, involving the abnormal growth of blood vessels at the retinal pigment epithelium driven by vascular endothelial growth factor (VEGF). Current therapies seek to interrupt VEGF signaling to halt the progress of neovascularization, but a significant patient population is not responsive. New treatment modalities such as integrin-binding peptides (risuteganib/Luminate/ALG-1001) are being explored to address this clinical need but these treatments necessitate the use of intravitreal injections (IVT), which carries risks of complications and restricts its availability in less-developed countries. Successful systemic delivery of peptide-based therapeutics must overcome obstacles such as degradation by proteinases in circulation and off-target binding. In this work, we present a novel dendrimer-integrin-binding peptide (D-ALG) synthesized with a noncleavable, “clickable” linker. In vitro, D-ALG protected the peptide payload from enzymatic degradation for up to 1.5 h (~90% of the compound remained intact) in a high concentration of proteinase (2 mg/mL) whereas ~90% of free ALG-1001 was degraded in the same period. Further, dendrimer conjugation preserved the antiangiogenic activity of ALG-1001 in vitro with significant reductions in endothelial vessel network formation compared to untreated controls. In vivo, direct intravitreal injections of ALG-1001 and D-ALG produced reductions in the CNV lesion area but in systemically dosed animals, only D-ALG produced significant reductions of CNV lesion area at 14 days. Imaging data suggested that the difference in efficacy may be due to more D-ALG remaining in the target area than ALG-1001 after administration. The results presented here offer a clinically relevant route for peptide therapeutics by addressing the major obstacles that these therapies face in delivery. Full article
Show Figures

Figure 1

14 pages, 2545 KiB  
Article
Trefoil Family Factor Peptide 1—A New Biomarker in Liquid Biopsies of Retinoblastoma under Therapy
by Maike Anna Busch, André Haase, Emily Alefeld, Eva Biewald, Leyla Jabbarli and Nicole Dünker
Cancers 2023, 15(19), 4828; https://doi.org/10.3390/cancers15194828 - 2 Oct 2023
Cited by 5 | Viewed by 2016
Abstract
Effective management of retinoblastoma (RB), the most prevalent childhood eye cancer, depends on reliable monitoring and diagnosis. A promising candidate in this context is the secreted trefoil family factor peptide 1 (TFF1), recently discovered as a promising new biomarker in patients with a [...] Read more.
Effective management of retinoblastoma (RB), the most prevalent childhood eye cancer, depends on reliable monitoring and diagnosis. A promising candidate in this context is the secreted trefoil family factor peptide 1 (TFF1), recently discovered as a promising new biomarker in patients with a more advanced subtype of retinoblastoma. The present study investigated TFF1 expression within aqueous humor (AH) of enucleated eyes and compared TFF1 levels in AH and corresponding blood serum samples from RB patients undergoing intravitreal chemotherapy (IVC). TFF1 was consistently detectable in AH, confirming its potential as a biomarker. Crucially, our data confirmed that TFF1-secreting cells within the tumor mass originate from RB tumor cells, not from surrounding stromal cells. IVC-therapy-responsive patients exhibited remarkably reduced TFF1 levels post-therapy. By contrast, RB patients’ blood serum displayed low-to-undetectable levels of TFF1 even after sample concentration and no therapy-dependent changes were observed. Our findings suggest that compared with blood serum, AH represents the more reliable source of TFF1 if used for liquid biopsy RB marker analysis in RB patients. Thus, analysis of TFF1 in AH of RB patients potentially provides a minimally invasive tool for monitoring RB therapy efficacy, suggesting its importance for effective treatment regimens. Full article
(This article belongs to the Special Issue Current Progress and Research Trends in Ocular Oncology)
Show Figures

Graphical abstract

73 pages, 3632 KiB  
Review
Suprachoroidal Injection: A Novel Approach for Targeted Drug Delivery
by Kevin Y. Wu, Jamie K. Fujioka, Tara Gholamian, Marian Zaharia and Simon D. Tran
Pharmaceuticals 2023, 16(9), 1241; https://doi.org/10.3390/ph16091241 - 1 Sep 2023
Cited by 24 | Viewed by 7589
Abstract
Treating posterior segment and retinal diseases poses challenges due to the complex structures in the eye that act as robust barriers, limiting medication delivery and bioavailability. This necessitates frequent dosing, typically via eye drops or intravitreal injections, to manage diseases, often leading to [...] Read more.
Treating posterior segment and retinal diseases poses challenges due to the complex structures in the eye that act as robust barriers, limiting medication delivery and bioavailability. This necessitates frequent dosing, typically via eye drops or intravitreal injections, to manage diseases, often leading to side effects with long-term use. Suprachoroidal injection is a novel approach for targeted drug delivery to the posterior segment. The suprachoroidal space is the region between the sclera and the choroid and provides a potential route for minimally invasive medication delivery. Through a more targeted delivery to the posterior segment, this method offers advantages over other routes of administration, such as higher drug concentrations, increased bioavailability, and prolonged duration of action. Additionally, this approach minimizes the risk of corticosteroid-related adverse events such as cataracts and intraocular pressure elevation via compartmentalization. This review focuses on preclinical and clinical studies published between 2019 and 2023, highlighting the potential of suprachoroidal injection in treating a variety of posterior segment diseases. However, to fully harness its potential, more research is needed to address current challenges and limitations, such as the need for technological advancements, refinement of injection techniques, and consideration of cost and accessibility factors. Future studies exploring its use in conjunction with biotech products, gene therapies, and cell-based therapies can lead to personalized treatments that can revolutionize the field of ophthalmology. Full article
(This article belongs to the Topic New Challenges in Ocular Drug Delivery)
Show Figures

Figure 1

11 pages, 1103 KiB  
Article
Pharmacokinetic and Pharmacodynamic Rationale for Extending VEGF Inhibition Increasing Intravitreal Aflibercept Dose
by Daniele Veritti, Valentina Sarao, Francesco Di Bin and Paolo Lanzetta
Pharmaceutics 2023, 15(5), 1416; https://doi.org/10.3390/pharmaceutics15051416 - 6 May 2023
Cited by 12 | Viewed by 3416
Abstract
Background: The effects of various dosages and treatment regimens on intravitreal aflibercept concentrations and the proportion of free vascular endothelial growth factor (VEGF) to total VEGF were evaluated using a drug and disease assessment model. The 8 mg dosage received specific attention. Methods: [...] Read more.
Background: The effects of various dosages and treatment regimens on intravitreal aflibercept concentrations and the proportion of free vascular endothelial growth factor (VEGF) to total VEGF were evaluated using a drug and disease assessment model. The 8 mg dosage received specific attention. Methods: A time-dependent mathematical model was developed and implemented using Wolfram Mathematica software v12.0. This model was used to obtain drug concentrations after multiple doses of different aflibercept dosages (0.5 mg, 2 mg, and 8 mg) and to estimate the time-dependent intravitreal free VEGF percentage levels. A series of fixed treatment regimens were modeled and evaluated as potential clinical applications. Results: The simulation results indicate that 8 mg aflibercept administered at a range of treatment intervals (between 12 and 15 weeks) would allow for the proportion of free VEGF to remain below threshold levels. Our analysis indicates that these protocols maintain the ratio of free VEGF below 0.001%. Conclusions: Fixed q12–q15 (every 12–15 weeks) 8 mg aflibercept regimens can produce adequate intravitreal VEGF inhibition. Full article
(This article belongs to the Special Issue Advances in Pharmacokinetics, Pharmacodynamics and Drug Interactions)
Show Figures

Figure 1

17 pages, 2432 KiB  
Article
Peptide Nanofiber System for Sustained Delivery of Anti-VEGF Proteins to the Eye Vitreous
by Seher Yaylaci, Erdem Dinç, Bahri Aydın, Ayse B. Tekinay and Mustafa O. Guler
Pharmaceutics 2023, 15(4), 1264; https://doi.org/10.3390/pharmaceutics15041264 - 18 Apr 2023
Cited by 11 | Viewed by 2917
Abstract
Ranibizumab is a recombinant VEGF-A antibody used to treat the wet form of age-related macular degeneration. It is intravitreally administered to ocular compartments, and the treatment requires frequent injections, which may cause complications and patient discomfort. To reduce the number of injections, alternative [...] Read more.
Ranibizumab is a recombinant VEGF-A antibody used to treat the wet form of age-related macular degeneration. It is intravitreally administered to ocular compartments, and the treatment requires frequent injections, which may cause complications and patient discomfort. To reduce the number of injections, alternative treatment strategies based on relatively non-invasive ranibizumab delivery are desired for more effective and sustained release in the eye vitreous than the current clinical practice. Here, we present self-assembled hydrogels composed of peptide amphiphile molecules for the sustained release of ranibizumab, enabling local high-dose treatment. Peptide amphiphile molecules self-assemble into biodegradable supramolecular filaments in the presence of electrolytes without the need for a curing agent and enable ease of use due to their injectable nature—a feature provided by shear thinning properties. In this study, the release profile of ranibizumab was evaluated by using different peptide-based hydrogels at varying concentrations for improved treatment of the wet form of age-related macular degeneration. We observed that the slow release of ranibizumab from the hydrogel system follows extended- and sustainable release patterns without any dose dumping. Moreover, the released drug was biologically functional and effective in blocking the angiogenesis of human endothelial cells in a dose-dependent manner. In addition, an in vivo study shows that the drug released from the hydrogel nanofiber system can stay in the rabbit eye’s posterior chamber for longer than a control group that received only a drug injection. The tunable physiochemical characteristics, injectable nature, and biodegradable and biocompatible features of the peptide-based hydrogel nanofiber show that this delivery system has promising potential for intravitreal anti-VEGF drug delivery in clinics to treat the wet form age-related macular degeneration. Full article
Show Figures

Figure 1

18 pages, 989 KiB  
Review
Ocular Delivery of Therapeutic Agents by Cell-Penetrating Peptides
by Nguyễn Thị Thanh Nhàn, Daniel E. Maidana and Kaori H. Yamada
Cells 2023, 12(7), 1071; https://doi.org/10.3390/cells12071071 - 1 Apr 2023
Cited by 24 | Viewed by 6648
Abstract
Cell-penetrating peptides (CPPs) are short peptides with the ability to translocate through the cell membrane to facilitate their cellular uptake. CPPs can be used as drug-delivery systems for molecules that are difficult to uptake. Ocular drug delivery is challenging due to the structural [...] Read more.
Cell-penetrating peptides (CPPs) are short peptides with the ability to translocate through the cell membrane to facilitate their cellular uptake. CPPs can be used as drug-delivery systems for molecules that are difficult to uptake. Ocular drug delivery is challenging due to the structural and physiological complexity of the eye. CPPs may be tailored to overcome this challenge, facilitating cellular uptake and delivery to the targeted area. Retinal diseases occur at the posterior pole of the eye; thus, intravitreal injections are needed to deliver drugs at an effective concentration in situ. However, frequent injections have risks of causing vision-threatening complications. Recent investigations have focused on developing long-acting drugs and drug delivery systems to reduce the frequency of injections. In fact, conjugation with CPP could deliver FDA-approved drugs to the back of the eye, as seen by topical application in animal models. This review summarizes recent advances in CPPs, protein/peptide-based drugs for eye diseases, and the use of CPPs for drug delivery based on systematic searches in PubMed and clinical trials. We highlight targeted therapies and explore the potential of CPPs and peptide-based drugs for eye diseases. Full article
Show Figures

Figure 1

Back to TopTop