Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = intratumoral implantation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 13837 KiB  
Article
Cordycepin Augments the Efficacy of Anti-PD1 against Colon Cancer
by Wen-Kuei Chang, Yen-Ting Chen, Chin-Ping Lin, Chia-Jung Wang, Hui-Ru Shieh, Chih-Wen Chi, Tung-Hu Tsai and Yu-Jen Chen
Biomedicines 2024, 12(7), 1568; https://doi.org/10.3390/biomedicines12071568 - 15 Jul 2024
Cited by 1 | Viewed by 1792
Abstract
Colon cancer has a poor clinical response to anti-PD1 therapy. This study aimed to evaluate the effect of cordycepin on the efficacy of anti-PD1 treatment in colon cancer. The viability of CT26 mouse colon carcinoma cells, cell-cycle progression, morphology, and the expression of [...] Read more.
Colon cancer has a poor clinical response to anti-PD1 therapy. This study aimed to evaluate the effect of cordycepin on the efficacy of anti-PD1 treatment in colon cancer. The viability of CT26 mouse colon carcinoma cells, cell-cycle progression, morphology, and the expression of mRNA and protein were assessed. A syngeneic animal model was established by implanting CT26 cells into BALB/c mice for in vivo experiments. Multi-parameter flow cytometry was used to analyze the splenic cell lineages and tumor microenvironment (TME). The in vitro data revealed that cordycepin, but not adenosine, inhibited CT26 cell viability. The protein, but not mRNA, expression levels of A2AR and A2BR were suppressed by cordycepin but not by adenosine in CT26 cells. The combination of cordycepin, but not adenosine, with anti-PD1 exhibited a greater tumor-inhibitory effect than anti-PD1 alone as well as inhibited the expression of A2AR and A2BR in splenic macrophages. In the TME, the combination of cordycepin and anti-PD1 increased the number of CD3+ T cells and neutrophils and decreased the number of natural killer (NK) cells. Overall, cordycepin augmented the antitumor effects of anti-PD1 against mouse colon carcinoma cells and inhibited the expression of the adenosine receptors A2AR and A2BR in splenic macrophages and intratumoral NK cells. Full article
Show Figures

Figure 1

21 pages, 799 KiB  
Review
Implantation of In Situ Gelling Systems for the Delivery of Chemotherapeutic Agents
by Elena O. Bakhrushina, Iosif B. Mikhel, Liliya M. Buraya, Egor D. Moiseev, Irina M. Zubareva, Anastasia V. Belyatskaya, Grigory Y. Evzikov, Alexey P. Bondarenko, Ivan I. Krasnyuk and Ivan I. Krasnyuk
Gels 2024, 10(1), 44; https://doi.org/10.3390/gels10010044 - 5 Jan 2024
Cited by 5 | Viewed by 2348
Abstract
Implantation is a modern method of administering chemotherapeutic agents, with a highly targeted effect and better patient tolerance due to the low frequency of administration. Implants are capable of controlled release, which makes them a viable alternative to infusional chemotherapy, allowing patients to [...] Read more.
Implantation is a modern method of administering chemotherapeutic agents, with a highly targeted effect and better patient tolerance due to the low frequency of administration. Implants are capable of controlled release, which makes them a viable alternative to infusional chemotherapy, allowing patients to enjoy a better quality of life without the need for prolonged hospitalization. Compared to subcutaneous implantation, intratumoral implantation has a number of significant advantages in terms of targeting and side effects, but this area of chemotherapy is still poorly understood in terms of clinical trials. At the same time, there are more known developments of drugs in the form of implants and injections for intratumoral administration. The disadvantages of classical intratumoral implants are the need for surgical intervention to install the system and the increased risk of tumor rupture noted by some specialists. The new generation of implants are in situ implants—systems formed in the tumor due to a phase transition (sol–gel transition) under the influence of various stimuli. Among this systems some are highly selective for a certain type of malignant neoplasm. Such systems are injected and have all the advantages of intratumoral injections, but due to the phase transition occurring in situ, they form depot forms that allow the long-term release of chemotherapeutic agents. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Figure 1

10 pages, 6516 KiB  
Article
CD46–ADC Reduces the Engraftment of Multiple Myeloma Patient-Derived Xenografts
by Michael J. VanWyngarden, Zachary J. Walker, Yang Su, Olivia Perez de Acha, Brett M. Stevens, Peter A. Forsberg, Tomer M. Mark, William Matsui, Bin Liu and Daniel W. Sherbenou
Cancers 2023, 15(22), 5335; https://doi.org/10.3390/cancers15225335 - 9 Nov 2023
Cited by 8 | Viewed by 2096
Abstract
An antibody–drug conjugate (ADC) targeting CD46 conjugated to monomethyl auristatin has a potent anti-myeloma effect in cell lines in vitro and in vivo, and patient samples treated ex vivo. Here, we tested if CD46–ADC may have the potential to target MM-initiating cells (MM-ICs). [...] Read more.
An antibody–drug conjugate (ADC) targeting CD46 conjugated to monomethyl auristatin has a potent anti-myeloma effect in cell lines in vitro and in vivo, and patient samples treated ex vivo. Here, we tested if CD46–ADC may have the potential to target MM-initiating cells (MM-ICs). CD46 expression was measured on primary MM cells with a stem-like phenotype. A patient-derived xenograft (PDX) model was implemented utilizing implanted fetal bone fragments to provide a humanized microenvironment. Engraftment was monitored via serum human light chain ELISA, and at sacrifice via bone marrow and bone fragment flow cytometry. We then tested MM regeneration in PDX by treating mice with CD46–ADC or the nonbinding control–ADC. MM progenitor cells from patients that exhibit high aldehyde dehydrogenase activity also have a high expression of CD46. In PDX, newly diagnosed MM patient samples engrafted significantly more compared to relapsed/refractory samples. In mice transplanted with newly diagnosed samples, CD46–ADC treatment showed significantly decreased engraftment compared to control–ADC treatment. Our data further support the targeting of CD46 in MM. To our knowledge, this is the first study to show preclinical drug efficacy in a PDX model of MM. This is an important area for future study, as patient samples but not cell lines accurately represent intratumoral heterogeneity. Full article
(This article belongs to the Special Issue Multiple Myeloma—Biology, Diagnosis, Treatment and Prognosis)
Show Figures

Figure 1

18 pages, 4749 KiB  
Article
Upregulation of the Oct3/4 Network in Basal Breast Cancer Is Associated with Its Metastatic Potential and Shows Tissue Dependent Variability
by Robin G. Rajan, Raisa I. Krutilina, Tatyana N. Ignatova, Zoran S. Pavicevich, Galina M. Dulatova, Maria A. Lane, Arindam R. Chatterjee, Robert J. Rooney, Mymoon Antony, Vivian R. Hagerty, Nickolay V. Kukekov, Khalid A. Hanafy and Frank D. Vrionis
Int. J. Mol. Sci. 2023, 24(11), 9142; https://doi.org/10.3390/ijms24119142 - 23 May 2023
Cited by 3 | Viewed by 2741
Abstract
Adaptive plasticity of Breast Cancer stem cells (BCSCs) is strongly correlated with cancer progression and resistance, leading to a poor prognosis. In this study, we report the expression profile of several pioneer transcription factors of the Oct3/4 network associated with tumor initiation and [...] Read more.
Adaptive plasticity of Breast Cancer stem cells (BCSCs) is strongly correlated with cancer progression and resistance, leading to a poor prognosis. In this study, we report the expression profile of several pioneer transcription factors of the Oct3/4 network associated with tumor initiation and metastasis. In the triple negative breast cancer cell line (MDA-MB-231) stably transfected with human Oct3/4-GFP, differentially expressed genes (DEGs) were identified using qPCR and microarray, and the resistance to paclitaxel was assessed using an MTS assay. The tumor-seeding potential in immunocompromised (NOD-SCID) mice and DEGs in the tumors were also assessed along with the intra-tumor (CD44+/CD24-) expression using flow cytometry. Unlike 2-D cultures, the Oct3/4-GFP expression was homogenous and stable in 3-D mammospheres developed from BCSCs. A total of 25 DEGs including Gata6, FoxA2, Sall4, Zic2, H2afJ, Stc1 and Bmi1 were identified in Oct3/4 activated cells coupled with a significantly increased resistance to paclitaxel. In mice, the higher Oct3/4 expression in tumors correlated with enhanced tumorigenic potential and aggressive growth, with metastatic lesions showing a >5-fold upregulation of DEGs compared to orthotopic tumors and variability in different tissues with the highest modulation in the brain. Serially re-implanting tumors in mice as a model of recurrence and metastasis highlighted the sustained upregulation of Sall4, c-Myc, Mmp1, Mmp9 and Dkk1 genes in metastatic lesions with a 2-fold higher expression of stem cell markers (CD44+/CD24-). Thus, Oct3/4 transcriptome may drive the differentiation and maintenance of BCSCs, promoting their tumorigenic potential, metastasis and resistance to drugs such as paclitaxel with tissue-specific heterogeneity. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 3041 KiB  
Article
IL18 Receptor Signaling Inhibits Intratumoral CD8+ T-Cell Migration in a Murine Pancreatic Cancer Model
by Elena Nasiri, Malte Student, Katrin Roth, Nadya Siti Utami, Magdalena Huber, Malte Buchholz, Thomas M. Gress and Christian Bauer
Cells 2023, 12(3), 456; https://doi.org/10.3390/cells12030456 - 31 Jan 2023
Cited by 10 | Viewed by 4442
Abstract
In pancreatic ductal adenocarcinoma (PDAC), the infiltration of CD8+ cytotoxic T cells (CTLs) is an important factor in determining prognosis. The migration pattern and interaction behavior of intratumoral CTLs are pivotal to tumor rejection. NLRP3-dependent proinflammatory cytokines IL-1β and IL-18 play a [...] Read more.
In pancreatic ductal adenocarcinoma (PDAC), the infiltration of CD8+ cytotoxic T cells (CTLs) is an important factor in determining prognosis. The migration pattern and interaction behavior of intratumoral CTLs are pivotal to tumor rejection. NLRP3-dependent proinflammatory cytokines IL-1β and IL-18 play a prominent role for CTL induction and differentiation. Here, we investigate the effects of T-cellular IL-1R and IL-18R signaling for intratumoral T-cell motility. Murine adenocarcinoma cell line Panc02 was stably transfected with ovalbumin (OVA) and fluorophore H2B-Cerulean to generate PancOVA H2B-Cerulean tumor cells. Dorsal skinfold chambers (DSFC) were installed on wild-type mice, and PancOVA H2B-Cerulean tumor cells were implanted into the chambers. PancOVA spheroids were formed using the Corning® Matrigel®-based 3D cell culture technique. CTLs were generated from OT-1 mice, Il1r−/− OT-1 mice, or Il18r−/− OT-1 mice and were marked with fluorophores. This was followed by the adoptive transfer of CTLs into tumor-bearing mice or the application into tumor spheroids. After visualization with multiphoton microscopy (MPM), Imaris software was used to perform T-cell tracking. Imaris analysis indicates a significantly higher accumulation of Il18r−/− CTLs in PancOVA tumors and a significant reduction in tumor volume compared to wild-type CTLs. Il18r−/− CTLs covered a longer distance (track displacement length) in comparison to wild-type (WT) CTLs, and had a higher average speed (mean track speed). The analysis of instantaneous velocity suggests a higher percentage of arrested tracks (arrests: <4 μm/min) for Il18r−/− CTLs. Our data indicate the contribution of IL-18R signaling to T-cell effector strength, warranting further investigation on phenomena such as intratumoral T-cell exhaustion. Full article
(This article belongs to the Special Issue Recent Advances in Intravital and Live Cell Imaging)
Show Figures

Graphical abstract

19 pages, 4494 KiB  
Article
Neutrophil Extracellular Traps Promote Metastases of Colorectal Cancers through Activation of ERK Signaling by Releasing Neutrophil Elastase
by Michio Okamoto, Rei Mizuno, Kenji Kawada, Yoshiro Itatani, Yoshiyuki Kiyasu, Keita Hanada, Wataru Hirata, Yasuyo Nishikawa, Hideyuki Masui, Naoko Sugimoto, Takuya Tamura, Susumu Inamoto, Yoshiharu Sakai and Kazutaka Obama
Int. J. Mol. Sci. 2023, 24(2), 1118; https://doi.org/10.3390/ijms24021118 - 6 Jan 2023
Cited by 30 | Viewed by 4459
Abstract
Neutrophil extracellular traps (NETs) play important roles in host immunity, as there is increasing evidence of their contribution to the progression of several types of cancers even though their role in colorectal cancers (CRCs) remains unclear. To investigate the clinical relevance of NETs [...] Read more.
Neutrophil extracellular traps (NETs) play important roles in host immunity, as there is increasing evidence of their contribution to the progression of several types of cancers even though their role in colorectal cancers (CRCs) remains unclear. To investigate the clinical relevance of NETs in CRCs, we examined the expression of citrullinated histone H3 using immunohistochemistry and preoperative serum myeloperoxidase–DNA complexes in CRC patients using an enzyme-linked immunosorbent assay. High expression of intratumoral or systemic NETs was found to correlate with poor relapse-free survival (RFS), for which it is an independent prognostic factor. In vitro investigations of CRC cells (HCT116, HT29) revealed that NETs did not affect their proliferation but did promote the migration of CRC cells mediated by neutrophil elastase (NE) released during NETosis to increase extracellular signal-regulated kinase (ERK) activity. In vivo experiments using nude mice (KSN/slc) revealed that NE inhibition suppressed liver metastases in CRC cells, although it did not affect the growth of subcutaneously implanted tumors. Taken together, these results suggest that NET formation correlates with poor prognoses of patients with CRC and that the inhibition of NE could be a potential therapy for CRC metastases. Full article
(This article belongs to the Special Issue Neutrophil in Cell Biology and Diseases 2.0)
Show Figures

Figure 1

18 pages, 642 KiB  
Systematic Review
Engineering the Tumor Immune Microenvironment through Minimally Invasive Interventions
by Koustav Pal and Rahul A. Sheth
Cancers 2023, 15(1), 196; https://doi.org/10.3390/cancers15010196 - 29 Dec 2022
Cited by 13 | Viewed by 3665
Abstract
The tumor microenvironment (TME) is a unique landscape that poses several physical, biochemical, and immune barriers to anti-cancer therapies. The rapidly evolving field of immuno-engineering provides new opportunities to dismantle the tumor immune microenvironment by efficient tumor destruction. Systemic delivery of such treatments [...] Read more.
The tumor microenvironment (TME) is a unique landscape that poses several physical, biochemical, and immune barriers to anti-cancer therapies. The rapidly evolving field of immuno-engineering provides new opportunities to dismantle the tumor immune microenvironment by efficient tumor destruction. Systemic delivery of such treatments can often have limited local effects, leading to unwanted offsite effects such as systemic toxicity and tumor resistance. Interventional radiologists use contemporary image-guided techniques to locally deliver these therapies to modulate the immunosuppressive TME, further accelerating tumor death and invoking a better anti-tumor response. These involve local therapies such as intratumoral drug delivery, nanorobots, nanoparticles, and implantable microdevices. Physical therapies such as photodynamic therapy, electroporation, hyperthermia, hypothermia, ultrasound therapy, histotripsy, and radiotherapy are also available for local tumor destruction. While the interventional radiologist can only locally manipulate the TME, there are systemic offsite recruitments of the immune response. This is known as the abscopal effect, which leads to more significant anti-tumoral downstream effects. Local delivery of modern immunoengineering methods such as locoregional CAR-T therapy combined with immune checkpoint inhibitors efficaciously modulates the immunosuppressive TME. This review highlights the various advances and technologies available now to change the TME and revolutionize oncology from a minimally invasive viewpoint. Full article
(This article belongs to the Special Issue Engineering the Tumor Immune Microenvironment)
Show Figures

Figure 1

15 pages, 2033 KiB  
Article
Ethanol Ablation Therapy Drives Immune-Mediated Antitumor Effects in Murine Breast Cancer Models
by Corrine A. Nief, Adam M. Swartz, Erika Chelales, Lauren Y. Sheu, Brian T. Crouch, Nirmala Ramanujam and Smita K. Nair
Cancers 2022, 14(19), 4669; https://doi.org/10.3390/cancers14194669 - 25 Sep 2022
Cited by 5 | Viewed by 2889
Abstract
Ethanol ablation is a minimally invasive, cost-effective method of destroying tumor tissue through an intratumoral injection of high concentrations of cytotoxic alcohol. Ethyl-cellulose ethanol (ECE) ablation, a modified version of ethanol ablation, contains the phase-changing polysaccharide ethyl-cellulose to reduce ethanol leakage away from [...] Read more.
Ethanol ablation is a minimally invasive, cost-effective method of destroying tumor tissue through an intratumoral injection of high concentrations of cytotoxic alcohol. Ethyl-cellulose ethanol (ECE) ablation, a modified version of ethanol ablation, contains the phase-changing polysaccharide ethyl-cellulose to reduce ethanol leakage away from the tumor. Ablation produces tissue necrosis and initiates a wound healing process; however, the characteristic of the immunologic events after ECE ablation of tumors has yet to be explored. Models of triple-negative breast cancer (TNBC), which are classically immunosuppressive and difficult to treat clinically, were used to characterize the immunophenotypic changes after ECE ablation. In poorly invasive TNBC rodent models, the injury to the tumor induced by ECE increased tumor infiltrating lymphocytes (TILs) and reduced tumor growth. In a metastatic TNBC model (4T1), TILs did not increase after ECE ablation, though lung metastases were reduced. 4T1 tumors secrete high levels of granulocytic colony stimulating factor (G-CSF), which induces a suppressive milieu of granulocytic myeloid-derived suppressor cells (gMDSCs) aiding in the formation of metastases and suppression of antitumor immunity. We found that a single intratumoral injection of ECE normalized tumor-induced myeloid changes: reducing serum G-CSF and gMDSC populations. ECE also dampened the suppressive strength of gMDSC on CD4 and CD8 cell proliferation, which are crucial for anti-tumor immunity. To demonstrate the utility of these findings, ECE ablation was administered before checkpoint inhibitor (CPI) therapy in the 4T1 model and was found to significantly increase survival compared to a control of saline and CPI. Sixty days after tumor implant no primary tumors or metastatic lung lesions were found in 6/10 mice treated with CPI plus ECE, compared to 1/10 with ECE alone and 0/10 with CPI and saline. Full article
(This article belongs to the Special Issue Metastatic Breast Cancers)
Show Figures

Graphical abstract

18 pages, 3440 KiB  
Article
Methodological Considerations in Development of UV Imaging for Characterization of Intra-Tumoral Injectables Using cAMP as a Model Substance
by Frederik Bock, Johan Peter Bøtker, Susan Weng Larsen, Xujin Lu and Jesper Østergaard
Int. J. Mol. Sci. 2022, 23(7), 3599; https://doi.org/10.3390/ijms23073599 - 25 Mar 2022
Cited by 3 | Viewed by 2563
Abstract
A UV imaging release-testing setup comprising an agarose gel as a model for tumorous tissue was developed. The setup was optimized with respect to agarose concentration (0.5% (w/v)), injection procedure, and temperature control. A repeatable injection protocol was established [...] Read more.
A UV imaging release-testing setup comprising an agarose gel as a model for tumorous tissue was developed. The setup was optimized with respect to agarose concentration (0.5% (w/v)), injection procedure, and temperature control. A repeatable injection protocol was established allowing injection into cavities with well-defined geometries. The effective resolution of the SDi2 UV imaging system is 30–80 µm. The linear range of the imaging system is less than that of typical spectrophotometers. Consequently, non-linear cAMP calibration curves were applied for quantification at 280 nm. The degree of deviation from Beer’s law was affected by the background absorbance of the gel matrix. MATLAB scripts provided hitherto missing flexibility with respect to definition and utilization of quantification zones, contour lines facilitating visualization, and automated, continuous data analysis. Various release patterns were observed for an aqueous solution and in situ forming Pluronic F127 hydrogel and PLGA implants containing cAMP as a model for STING ligands. The UV imaging and MATLAB data analysis setup constituted a significant technical development in terms of visualizing behavior for injectable formulations intended for intra-tumoral delivery, and, thereby, a step toward establishment of a bio-predictive in vitro release-testing method. Full article
(This article belongs to the Special Issue Challenges, Opportunities, and Innovation in Local Drug Delivery)
Show Figures

Graphical abstract

21 pages, 4346 KiB  
Article
Systematic Roadmap for Cancer Drug Screening Using Zebrafish Embryo Xenograft Cancer Models: Melanoma Cell Line as a Case Study
by Patricia Letrado, Holly Mole, María Montoya, Irene Palacios, Jorge Barriuso, Adam Hurlstone, Roberto Díez-Martínez and Julen Oyarzabal
Cancers 2021, 13(15), 3705; https://doi.org/10.3390/cancers13153705 - 23 Jul 2021
Cited by 4 | Viewed by 3971
Abstract
Zebrafish embryo tumor transplant models are widely utilized in cancer research. Compared with traditional murine models, the small size and transparency of zebrafish embryos combined with large clutch sizes that increase statistical power and cheap husbandry make them a cost-effective and versatile tool [...] Read more.
Zebrafish embryo tumor transplant models are widely utilized in cancer research. Compared with traditional murine models, the small size and transparency of zebrafish embryos combined with large clutch sizes that increase statistical power and cheap husbandry make them a cost-effective and versatile tool for in vivo drug discovery. However, the lack of a comprehensive analysis of key factors impacting the successful use of these models impedes the establishment of basic guidelines for systematic screening campaigns. Thus, we explored the following crucial factors: (i) user-independent inclusion criteria, focusing on sample homogeneity; (ii) metric definition for data analysis; (iii) tumor engraftment criteria; (iv) image analysis versus quantification of human cancer cells using qPCR (RNA and gDNA); (v) tumor implantation sites; (vi) compound distribution (intratumoral administration versus alternative inoculation sites); and (vii) efficacy (intratumoral microinjection versus compound solution in media). Based on these analyses and corresponding assessments, we propose the first roadmap for systematic drug discovery screening in zebrafish xenograft cancer models using a melanoma cell line as a case study. This study aims to help the wider cancer research community to consider the adoption of this versatile model for cancer drug screening projects. Full article
Show Figures

Figure 1

19 pages, 3491 KiB  
Article
Inhibition of the PI3K/mTOR Pathway in Breast Cancer to Enhance Response to Immune Checkpoint Inhibitors in Breast Cancer
by Chi Yan, Jinming Yang, Nabil Saleh, Sheau-Chiann Chen, Gregory D. Ayers, Vandana G. Abramson, Ingrid A. Mayer and Ann Richmond
Int. J. Mol. Sci. 2021, 22(10), 5207; https://doi.org/10.3390/ijms22105207 - 14 May 2021
Cited by 39 | Viewed by 4797
Abstract
Objectives: Inhibition of the PI3K/mTOR pathway suppresses breast cancer (BC) growth, enhances anti-tumor immune responses, and works synergistically with immune checkpoint inhibitors (ICI). The objective here was to identify a subclass of PI3K inhibitors that, when combined with paclitaxel, is effective in enhancing [...] Read more.
Objectives: Inhibition of the PI3K/mTOR pathway suppresses breast cancer (BC) growth, enhances anti-tumor immune responses, and works synergistically with immune checkpoint inhibitors (ICI). The objective here was to identify a subclass of PI3K inhibitors that, when combined with paclitaxel, is effective in enhancing response to ICI. Methods: C57BL/6 mice were orthotopically implanted with syngeneic luminal/triple-negative-like PyMT cells exhibiting high endogenous PI3K activity. Tumor growth in response to treatment with anti-PD-1 + anti-CTLA-4 (ICI), paclitaxel (PTX), and either the PI3Kα-specific inhibitor alpelisib, the pan-PI3K inhibitor copanlisib, or the broad spectrum PI3K/mTOR inhibitor gedatolisib was evaluated in reference to monotherapy or combinations of these therapies. Effects of these therapeutics on intratumoral immune populations were determined by multicolor FACS. Results: Treatment with alpelisib + PTX inhibited PyMT tumor growth and increased tumor-infiltrating granulocytes but did not significantly affect the number of tumor-infiltrating CD8+ T cells and did not synergize with ICI. Copanlisib + PTX + ICI significantly inhibited PyMT growth and increased activation of intratumoral CD8+ T cells as compared to ICI alone, yet did not inhibit tumor growth more than ICI alone. In contrast, gedatolisib + ICI resulted in significantly greater inhibition of tumor growth compared to ICI alone and induced durable dendritic-cell, CD8+ T-cell, and NK-cell responses. Adding PTX to this regimen yielded complete regression in 60% of tumors. Conclusion: PI3K/mTOR inhibition plus PTX heightens response to ICI and may provide a viable therapeutic approach for treatment of metastatic BC. Full article
(This article belongs to the Special Issue Immune Responses in Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

11 pages, 2021 KiB  
Article
Non-Invasive Measurement of Drug and 2-HG Signals Using 19F and 1H MR Spectroscopy in Brain Tumors Treated with the Mutant IDH1 Inhibitor BAY1436032
by Katharina J. Wenger, Christian Richter, Michael C. Burger, Hans Urban, Stefan Kaulfuss, Patrick N. Harter, Sridhar Sreeramulu, Harald Schwalbe, Joachim P. Steinbach, Elke Hattingen, Oliver Bähr and Ulrich Pilatus
Cancers 2020, 12(11), 3175; https://doi.org/10.3390/cancers12113175 - 29 Oct 2020
Cited by 11 | Viewed by 3028
Abstract
Background: BAY1436032 is a fluorine-containing inhibitor of the R132X-mutant isocitrate dehydrogenase (mIDH1). It inhibits the mIDH1-mediated production of 2-hydroxyglutarate (2-HG) in glioma cells. We investigated brain penetration of BAY1436032 and its effects using 1H/19F-Magnetic Resonance Spectroscopy (MRS). Methods: 19F-Nuclear [...] Read more.
Background: BAY1436032 is a fluorine-containing inhibitor of the R132X-mutant isocitrate dehydrogenase (mIDH1). It inhibits the mIDH1-mediated production of 2-hydroxyglutarate (2-HG) in glioma cells. We investigated brain penetration of BAY1436032 and its effects using 1H/19F-Magnetic Resonance Spectroscopy (MRS). Methods: 19F-Nuclear Magnetic Resonance (NMR) Spectroscopy was conducted on serum samples from patients treated with BAY1436032 (NCT02746081 trial) in order to analyze 19F spectroscopic signal patterns and concentration-time dynamics of protein-bound inhibitor to facilitate their identification in vivo MRS experiments. Hereafter, 30 mice were implanted with three glioma cell lines (LNT-229, LNT-229 IDH1-R132H, GL261). Mice bearing the IDH-mutated glioma cells received 5 days of treatment with BAY1436032 between baseline and follow-up 1H/19F-MRS scan. All other animals underwent a single scan after BAY1436032 administration. Mouse brains were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Results: Evaluation of 1H-MRS data showed a decrease in 2-HG/total creatinine (tCr) ratios from the baseline to post-treatment scans in the mIDH1 murine model. Whole brain concentration of BAY1436032, as determined by 19F-MRS, was similar to total brain tissue concentration determined by Liquid Chromatography with tandem mass spectrometry (LC-MS/MS), with a signal loss due to protein binding. Intratumoral drug concentration, as determined by LC-MS/MS, was not statistically different in models with or without R132X-mutant IDH1 expression. Conclusions: Non-invasive monitoring of mIDH1 inhibition by BAY1436032 in mIDH1 gliomas is feasible. Full article
(This article belongs to the Special Issue Targeted Cancer Therapy)
Show Figures

Graphical abstract

22 pages, 2886 KiB  
Review
Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications
by Francis Boateng and Wilfred Ngwa
Int. J. Mol. Sci. 2020, 21(1), 273; https://doi.org/10.3390/ijms21010273 - 31 Dec 2019
Cited by 98 | Viewed by 8908
Abstract
Nanoparticle-based radiosensitization of cancerous cells is evolving as a favorable modality for enhancing radiotherapeutic ratio, and as an effective tool for increasing the outcome of concomitant chemoradiotherapy. Nevertheless, delivery of sufficient concentrations of nanoparticles (NPs) or nanoparticle-based radiosensitizers (NBRs) to the targeted tumor [...] Read more.
Nanoparticle-based radiosensitization of cancerous cells is evolving as a favorable modality for enhancing radiotherapeutic ratio, and as an effective tool for increasing the outcome of concomitant chemoradiotherapy. Nevertheless, delivery of sufficient concentrations of nanoparticles (NPs) or nanoparticle-based radiosensitizers (NBRs) to the targeted tumor without or with limited systemic side effects on healthy tissues/organs remains a challenge that many investigators continue to explore. With current systemic intravenous delivery of a drug, even targeted nanoparticles with great prospect of reaching targeted distant tumor sites, only a portion of the administered NPs/drug dosage can reach the tumor, despite the enhanced permeability and retention (EPR) effect. The rest of the targeted NPs/drug remain in systemic circulation, resulting in systemic toxicity, which can decrease the general health of patients. However, the dose from ionizing radiation is generally delivered across normal tissues to the tumor cells (especially external beam radiotherapy), which limits dose escalation, making radiotherapy (RT) somewhat unsafe for some diseased sites despite the emerging development in RT equipment and technologies. Since radiation cannot discriminate healthy tissue from diseased tissue, the radiation doses delivered across healthy tissues (even with nanoparticles delivered via systemic administration) are likely to increase injury to normal tissues by accelerating DNA damage, thereby creating free radicals that can result in secondary tumors. As a result, other delivery routes, such as inhalation of nanoparticles (for lung cancers), localized delivery via intratumoral injection, and implants loaded with nanoparticles for local radiosensitization, have been studied. Herein, we review the current NP delivery techniques; precise systemic delivery (injection/infusion and inhalation), and localized delivery (intratumoral injection and local implants) of NBRs/NPs. The current challenges, opportunities, and future prospects for delivery of nanoparticle-based radiosensitizers are also discussed. Full article
(This article belongs to the Special Issue Nanoparticle-Based Radiosensitization)
Show Figures

Figure 1

20 pages, 31509 KiB  
Article
Insonation of Systemically Delivered Cisplatin-Loaded Microbubbles Significantly Attenuates Nephrotoxicity of Chemotherapy in Experimental Models of Head and Neck Cancer
by Hang-Kang Chen, Shu-Mei Zhang, Junn-Liang Chang, Hsin-Chien Chen, Yi-Chun Lin, Cheng-Ping Shih, Huey-Kang Sytwu, Mei-Cho Fang, Yuan-Yung Lin, Chao-Yin Kuo, Ai-Ho Liao, Yueng-Hsiang Chu and Chih-Hung Wang
Cancers 2018, 10(9), 311; https://doi.org/10.3390/cancers10090311 - 5 Sep 2018
Cited by 20 | Viewed by 4205
Abstract
The use of cisplatin (CDDP), the most common chemotherapy drug for head and neck cancer, is limited by its undesirable side effects, especially nephrotoxicity. We investigated ultrasound microbubbles (USMB) as a tool to increase the local intra-tumoral CDDP level while decreasing systemic CDDP [...] Read more.
The use of cisplatin (CDDP), the most common chemotherapy drug for head and neck cancer, is limited by its undesirable side effects, especially nephrotoxicity. We investigated ultrasound microbubbles (USMB) as a tool to increase the local intra-tumoral CDDP level while decreasing systemic CDDP cytotoxicity. We allowed CDDP to interact with human serum albumin and then sonicated the resulting CDDP‒albumin complex to generate CDDP-loaded MBs (CDDP-MBs). We then established a head-and-neck tumor-bearing mouse model by implanting FaDu-fLuc/GFP cells into severe combined immunodeficiency mice and used IVIS® bioluminescence imaging to determine the tumor xenograft formation and size. Twice weekly (until Day 33), we administered CDDP only, CDDP + MBs + US, CDDP-MBs, or CDDP-MBs + US intravenously by tail-vein injection. The US treatment was administered at the tumor site immediately after injection. The in vivo systemic distribution of CDDP indicated that the kidney was the most vulnerable organ, followed by the liver, and then the inner ear. However, CDDP uptake into the kidney and liver was significantly decreased in both the CDDP-MBs and CDDP-MBs + US groups, suggesting that MB binding significantly reduced the systemic toxicity of CDDP. The CDDP-MBs + US treatment reduced the tumor size as effectively as conventional CDDP-only chemotherapy. Therefore, the combination of CDDP-MBs with ultrasound is effective and significantly attenuates CDDP-associated nephrotoxicity, indicating a promising clinical potential for this approach. Full article
Show Figures

Figure 1

24 pages, 9674 KiB  
Article
Intratumoral Delivery of Doxorubicin on Folate-Conjugated Graphene Oxide by In-Situ Forming Thermo-Sensitive Hydrogel for Breast Cancer Therapy
by Yi Teng Fong, Chih-Hao Chen and Jyh-Ping Chen
Nanomaterials 2017, 7(11), 388; https://doi.org/10.3390/nano7110388 - 14 Nov 2017
Cited by 113 | Viewed by 8416
Abstract
By taking advantage of the pH-sensitive drug release property of graphene oxide (GO) after intracellular uptake, we prepared folic acid (FA)-conjugated GO (GOFA) for targeted delivery of the chemotherapeutic drug doxorubicin (DOX). GOFA-DOX was further encapsulated in an injectable in-situ forming thermo-sensitive hyaluronic [...] Read more.
By taking advantage of the pH-sensitive drug release property of graphene oxide (GO) after intracellular uptake, we prepared folic acid (FA)-conjugated GO (GOFA) for targeted delivery of the chemotherapeutic drug doxorubicin (DOX). GOFA-DOX was further encapsulated in an injectable in-situ forming thermo-sensitive hyaluronic acid-chitosan-g-poly(N-isopropylacrylamide) (HACPN) hydrogel for intratumoral delivery of DOX. As the degradation time of HACPN could be extended up to 3 weeks, intratumoral delivery of GOFA-DOX/HACPN could provide controlled and targeted delivery of DOX through slow degradation HACPN and subsequent cellular uptake of released GOFA-DOX by tumor cells through interactions of GOFA with folate receptors on the tumor cell’s surface. GOFA nano-carrier and HACPN hydrogel were first characterized for the physico-chemical properties. The drug loading experiments indicated the best preparation condition of GOFA-DOX was by reacting 0.1 mg GOFA with 2 mg DOX. GOFA-DOX showed pH-responsive drug release with ~5 times more DOX released at pH 5.5 than at pH 7.4 while only limited DOX was released from GOFA-DOX/HACPN at pH 7.4. Intracellular uptake of GOFA by endocytosis and release of DOX from GOFA-DOX in vitro could be confirmed from transmission electron microscopic and confocal laser scanning microscopic analysis with MCF-7 breast cancer cells. The targeting effect of FA was revealed when intracellular uptake of GOFA was blocked by excess FA. This resulted in enhanced in vitro cytotoxicity as revealed from the lower half maximal inhibitory concentration (IC50) value of GOFA-DOX (7.3 μg/mL) compared with that of DOX (32.5 μg/mL) and GO-DOX (10 μg/mL). The flow cytometry analysis indicated higher apoptosis rates for cells treated with GOFA-DOX (30%) compared with DOX (8%) and GO-DOX (11%). Animal studies were carried out with subcutaneously implanted MCF-7 cells in BALB/c nude mice and subject to intratumoral administration of drugs. The relative tumor volumes of control (saline) and GOFA-DOX/HACPN groups at day 21 were 2.17 and 1.79 times that at day 0 with no significant difference. In comparison, the relative tumor volumes of treatment groups at the same time were significantly different at 1.02, 0.67 and 0.48 times for DOX, GOFA-DOX and GOFA-DOX/HACPN groups, respectively. The anti-tumor efficacy was also supported by images from an in vivo imaging system (IVIS) using MCF-7 cells transfected with luciferase (MCF-7/Luc). Furthermore, tissue biopsy examination and blood analysis indicated that intratumoral delivery of DOX using GOFA-DOX/HACPN did not elicit acute toxicity. Taken together, GOFA-DOX/HACPN could be deemed as a safe and efficient intratumoral drug delivery system for breast cancer therapy. Full article
(This article belongs to the Special Issue Nanocolloids for Nanomedicine and Drug Delivery)
Show Figures

Graphical abstract

Back to TopTop