Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = intraplantar administration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3318 KiB  
Article
Intraplantar β-Caryophyllene Alleviates Pain and Inflammation in STZ-Induced Diabetic Peripheral Neuropathy via CB2 Receptor Activation
by Amina M. Bagher
Int. J. Mol. Sci. 2025, 26(9), 4430; https://doi.org/10.3390/ijms26094430 - 7 May 2025
Cited by 1 | Viewed by 903
Abstract
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes, characterized by mechanical allodynia, neuroinflammation, and oxidative stress. Current treatments offer limited efficacy and are often associated with systemic side effects. Emerging evidence suggests that activation of cannabinoid receptor type 2 (CB2 [...] Read more.
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes, characterized by mechanical allodynia, neuroinflammation, and oxidative stress. Current treatments offer limited efficacy and are often associated with systemic side effects. Emerging evidence suggests that activation of cannabinoid receptor type 2 (CB2) may represent a promising target for managing neuropathic pain and inflammation. This study investigates the therapeutic potential of intraplantar β-Caryophyllene (BCP), a selective CB2 receptor agonist, administered as a topical intervention in a streptozotocin (STZ)-induced DPN mouse model. Hyperglycemia was induced by STZ injections, and diabetic mice received intraplantar BCP (9, 18, or 27 µg) daily for 21 days. Mechanical allodynia was assessed using von Frey filaments, and levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and oxidative stress markers (MDA, SOD, CAT) were quantified in hind paw tissues. BCP dose-dependently alleviated STZ-induced mechanical allodynia, with the 27 µg dose producing the most pronounced effect (p < 0.001). The anti-allodynic effects of BCP were mediated through CB2 receptor activation, confirmed by reversal with the CB2 antagonist AM630 (p < 0.001), while the CB1 antagonist AM251 had no significant impact. In addition, BCP significantly reduced pro-inflammatory cytokines (p < 0.01) and oxidative stress markers (p < 0.001) while restoring antioxidant enzyme activities (p < 0.05). A control group treated with a clinically available topical analgesic cream containing capsaicin 0.075% exhibited limited efficacy. These findings position topical BCP administration as a novel therapeutic strategy for DPN, offering sustained pain relief and modulation of neuroinflammatory and oxidative pathways with minimal systemic exposure. Further clinical studies are warranted to validate its potential for translation into therapeutic practice. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

23 pages, 13505 KiB  
Article
NMDA Receptors Regulate Oxidative Damage in Keratinocytes during Complex Regional Pain Syndrome in HaCaT Cells and Male Rats
by Bei Wen, He Zhu, Jijun Xu, Li Xu and Yuguang Huang
Antioxidants 2024, 13(2), 244; https://doi.org/10.3390/antiox13020244 - 18 Feb 2024
Cited by 3 | Viewed by 2471
Abstract
Complex regional pain syndrome (CRPS), a type of primary chronic pain, occurs following trauma or systemic disease and typically affects the limbs. CRPS-induced pain responses result in vascular, cutaneous, and autonomic nerve alterations, seriously impacting the quality of life of affected individuals. We [...] Read more.
Complex regional pain syndrome (CRPS), a type of primary chronic pain, occurs following trauma or systemic disease and typically affects the limbs. CRPS-induced pain responses result in vascular, cutaneous, and autonomic nerve alterations, seriously impacting the quality of life of affected individuals. We previously identified the involvement of keratinocyte N-methyl-d-asparagic acid (NMDA) receptor subunit 2 B (NR2B) in both peripheral and central sensitizations in CRPS, although the mechanisms whereby NR2B functions following activation remain unclear. Using an in vivo male rat model of chronic post-ischemia pain (CPIP) and an in vitro oxygen–glucose deprivation/reoxygenation (OGD/R) cell model, we discovered that oxidative injury occurs in rat keratinocytes and HaCaT cells, resulting in reduced cell viability, mitochondrial damage, oxidative damage of nucleotides, and increased apoptosis. In HaCaT cells, OGD/R induced increases in intracellular reactive oxygen species levels and disrupted the balance between oxidation and antioxidation by regulating a series of antioxidant genes. The activation of NMDA receptors via NMDA exacerbated these changes, whereas the inhibition of the NR2B subunit alleviated them. Co-administration of ifenprodil (an NR2B antagonist) and NMDA (an NMDA receptor agonist) during the reoxygenation stage did not result in any significant alterations. Furthermore, intraplantar injection of ifenprodil effectively reversed the altered gene expression that was observed in male CPIP rats, thereby revealing the potential mechanisms underlying the therapeutic effects of peripheral ifenprodil administration in CRPS. Collectively, our findings indicate that keratinocytes undergo oxidative injury in CRPS, with NMDA receptors playing regulatory roles. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

12 pages, 2410 KiB  
Article
Diosgenin Exerts Analgesic Effects by Antagonizing the Selective Inhibition of Transient Receptor Potential Vanilloid 1 in a Mouse Model of Neuropathic Pain
by Md. Mahbubur Rahman, Hyun Jung Jo, Chul-Kyu Park and Yong Ho Kim
Int. J. Mol. Sci. 2022, 23(24), 15854; https://doi.org/10.3390/ijms232415854 - 13 Dec 2022
Cited by 10 | Viewed by 2648
Abstract
Diosgenin is a botanical steroidal saponin with immunomodulatory, anti-inflammatory, anti-oxidative, anti-thrombotic, anti-apoptotic, anti-depressant, and anti-nociceptive effects. However, the effects of diosgenin on anti-nociception are unclear. Transient receptor potential vanilloid 1 (TRPV1) plays an important role in nociception. Therefore, we investigated whether TRPV1 antagonism [...] Read more.
Diosgenin is a botanical steroidal saponin with immunomodulatory, anti-inflammatory, anti-oxidative, anti-thrombotic, anti-apoptotic, anti-depressant, and anti-nociceptive effects. However, the effects of diosgenin on anti-nociception are unclear. Transient receptor potential vanilloid 1 (TRPV1) plays an important role in nociception. Therefore, we investigated whether TRPV1 antagonism mediates the anti-nociceptive effects of diosgenin. In vivo mouse experiments were performed to examine nociception-related behavior, while in vitro experiments were performed to examine calcium currents in dorsal root ganglion (DRG) and Chinese hamster ovary (CHO) cells. The duration of capsaicin-induced licking (pain behavior) was significantly reduced following oral and intraplantar administration of diosgenin, approaching levels observed in mice treated with the TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide. Additionally, oral administration of diosgenin blocked capsaicin-induced thermal hyperalgesia. Further, diosgenin reduced capsaicin-induced Ca2+ currents in a dose-dependent manner in both DRG and CHO cells. Oral administration of diosgenin also improved thermal and mechanical hyperalgesia in the sciatic nerve constriction injury-induced chronic pain model by reducing the expression of TRPV1 and inflammatory cytokines in DRG cells. Collectively, our results suggest that diosgenin exerts analgesic effects via antagonism of TRPV1 and suppression of inflammation in the DRG in a mouse model of neuropathic pain. Full article
Show Figures

Figure 1

21 pages, 2014 KiB  
Article
Wound Healing and Anti-Inflammatory Effects of a Newly Developed Ointment Containing Jujube Leaves Extract
by Marilena-Viorica Hovaneț, Emma Adriana Ozon, Elena Moroșan, Oana Cristina Șeremet, Eliza Oprea, Elisabeta-Irina Geană, Adriana Iuliana Anghel, Carmellina Bădiceanu, Ligia Elena Duțu, Cristina Silvia Stoicescu, Eugenia Nagoda and Robert Ancuceanu
Life 2022, 12(12), 1947; https://doi.org/10.3390/life12121947 - 22 Nov 2022
Cited by 8 | Viewed by 5255
Abstract
Ziziphus jujuba Mill. (jujube) is a well-known medicinal plant with pronounced wound healing properties. The present study aimed to establish the chemical composition of the lyophilized ethanolic extract from Romanian Ziziphus jujuba leaves and to evaluate the healing and anti-inflammatory properties of a [...] Read more.
Ziziphus jujuba Mill. (jujube) is a well-known medicinal plant with pronounced wound healing properties. The present study aimed to establish the chemical composition of the lyophilized ethanolic extract from Romanian Ziziphus jujuba leaves and to evaluate the healing and anti-inflammatory properties of a newly developed lipophilic ointment containing 10% dried jujube leaves extract. The ultra-High-Performance Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry method was used, and 47 compounds were detected, among them the novel epicatechin and caffeic acid. The extract contains significant amounts of rutin (29.836 mg/g), quercetin (15.180 mg/g) and chlorogenic acid (350.96 µg/g). The lipophilic ointment has a slightly tolerable pH, between 5.41–5.42, and proved to be non-toxic in acute dermal irritation tests on New Zealand albino rabbits and after repeated administration on Wistar rats. The ointment also has a healing activity comparable to Cicatrizin (a pharmaceutical marketed product) on Wistar rats and a moderate anti-inflammatory action compared to the control group, but statistically insignificant compared to indomethacin in the rat-induced inflammation test by intraplantar administration of kaolin. The healing and anti-inflammatory properties of the tested ointment are due to phenolic acids and flavonoids content, less because of minor components as apocynin, scopoletin, and isofraxidin. Full article
(This article belongs to the Special Issue Inflammation and Natural Products)
Show Figures

Figure 1

33 pages, 4718 KiB  
Article
Effects of Intra-BLA Administration of PPAR Antagonists on Formalin-Evoked Nociceptive Behaviour, Fear-Conditioned Analgesia, and Conditioned Fear in the Presence or Absence of Nociceptive Tone in Rats
by Jessica C. Gaspar, Bright N. Okine, David Dinneen, Michelle Roche and David P. Finn
Molecules 2022, 27(6), 2021; https://doi.org/10.3390/molecules27062021 - 21 Mar 2022
Cited by 6 | Viewed by 2773
Abstract
There is evidence for the involvement of peroxisome proliferator-activated receptors (PPARs) in pain, cognition, and anxiety. However, their role in pain–fear interactions is unknown. The amygdala plays a key role in pain, conditioned fear, and fear-conditioned analgesia (FCA). We investigated the effects of [...] Read more.
There is evidence for the involvement of peroxisome proliferator-activated receptors (PPARs) in pain, cognition, and anxiety. However, their role in pain–fear interactions is unknown. The amygdala plays a key role in pain, conditioned fear, and fear-conditioned analgesia (FCA). We investigated the effects of intra-basolateral amygdala (BLA) administration of PPARα, PPARβ/δ, and PPARγ antagonists on nociceptive behaviour, FCA, and conditioned fear in the presence or absence of nociceptive tone. Male Sprague-Dawley (SD) rats received footshock (FC) or no footshock (NFC) in a conditioning arena. Twenty-three and a half hours later, rats received an intraplantar injection of formalin or saline and, 15 min later, intra-BLA microinjections of vehicle, PPARα (GW6471) PPARβ/δ (GSK0660), or PPARγ (GW9662) antagonists before arena re-exposure. Pain and fear-related behaviour were assessed, and neurotransmitters/endocannabinoids measured post-mortem. Intra-BLA administration of PPARα or PPARγ antagonists potentiated freezing in the presence of nociceptive tone. Blockade of all PPAR subtypes in the BLA increased freezing and BLA dopamine levels in NFC rats in the absence of nociceptive tone. Administration of intra-BLA PPARα and PPARγ antagonists increased levels of dopamine in the BLA compared with the vehicle-treated counterparts. In conclusion, PPARα and PPARγ in the BLA play a role in the expression or extinction of conditioned fear in the presence or absence of nociceptive tone. Full article
(This article belongs to the Special Issue High Times for Cannabinoid Research)
Show Figures

Figure 1

14 pages, 2400 KiB  
Article
The Surface Amine Group of Ultrasmall Magnetic Iron Oxide Nanoparticles Produce Analgesia in the Spinal Cord and Decrease Long-Term Potentiation
by Guan-Ling Lu, Ya-Chi Lin, Ping-Ching Wu and Yen-Chin Liu
Pharmaceutics 2022, 14(2), 366; https://doi.org/10.3390/pharmaceutics14020366 - 6 Feb 2022
Cited by 1 | Viewed by 2795
Abstract
Our previous studies have revealed the ultrasmall superparamagnetic iron oxide in the amine group USPIO-101 has an analgesic effect on inflammatory pain. Here, we further investigated its effect on the spinal cord and brain via electrophysiological and molecular methods. We used a mouse [...] Read more.
Our previous studies have revealed the ultrasmall superparamagnetic iron oxide in the amine group USPIO-101 has an analgesic effect on inflammatory pain. Here, we further investigated its effect on the spinal cord and brain via electrophysiological and molecular methods. We used a mouse inflammatory pain model, induced by complete Freund’s adjuvant (CFA), and measured pain thresholds via von Frey methods. We also investigated the effects of USPIO-101 via an extracellular electrophysiological recording at the spinal dorsal horn synapses and hippocampal Schaffer collateral-CA1 synapses, respectively. The mRNA expression of pro-inflammatory cytokines was detected by quantitative real-time polymerase chain reaction (RT-qPCR). Our results showed intrathecal USPIO-101 produces similar analgesic behavior in mice with chronic inflammatory pain via intrathecal or intraplantar administration. The potentiated low-frequency stimulation-induced spinal cord long-term potentiation (LTP) at the spinal cord superficial dorsal horn synapses could decrease via USPIO-101 in mice with chronic inflammatory pain. However, the mRNA expression of cyclooxygenase-2 was enhanced with lipopolysaccharide (LPS) stimulation in microglial cells, and we also found USPIO-101 at 30 µg/mL could decrease the magnitude of hippocampal LTP. These findings revealed that intrathecal USPIO-101 presented an analgesia effect at the spinal cord level, but had neurotoxicity risk at higher doses. Full article
Show Figures

Figure 1

13 pages, 3757 KiB  
Article
The Peripheral Role of CCL2 in the Anti-Nociceptive Effect of Sigma-1 Receptor Antagonist BD1047 on Inflammatory Hyperalgesia in Rats
by Sungkun Chun, Jun-Ho Lee, Seo-Yeon Yoon and Young-Bae Kwon
Int. J. Mol. Sci. 2021, 22(21), 11730; https://doi.org/10.3390/ijms222111730 - 29 Oct 2021
Cited by 3 | Viewed by 2784
Abstract
Our recent study demonstrated that the CC-chemokine ligand 2 (CCL2) present in primary afferent fibers (PAFs) plays an important role in the microglia-dependent neuronal activation associated with zymosan-induced inflammatory pain. The present study was aimed to evaluate whether BD1047 (a prototypical sigma-1 receptor [...] Read more.
Our recent study demonstrated that the CC-chemokine ligand 2 (CCL2) present in primary afferent fibers (PAFs) plays an important role in the microglia-dependent neuronal activation associated with zymosan-induced inflammatory pain. The present study was aimed to evaluate whether BD1047 (a prototypical sigma-1 receptor (Sig-1R) antagonist) is capable of modifying elevated levels of inflammation-evoked CCL2 as a peripheral antinociceptive mechanism. In DRG primary culture, zymosan dose-dependently increased CCL2 release from isolectin B4 (IB4)-positive DRG neurons, a process that was inhibited by co-culture with BD1047. Single treatment of BD1047 before intraplantar injection of zymosan in rats significantly reduced thermal hyperalgesia and mechanical hyperalgesia, as well as CCL2 expression in DRG neurons and microglia activation in the spinal dorsal horn. In the Complete Freund’s adjuvant (CFA)-induced inflammation model, repeated administration of BD1047 dramatically attenuated thermal hyperalgesia and mechanical hyperalgesia, and significantly diminished CCL2 immunoreactivity and microglia activation. Notably, CFA-induced inflammation significantly increased Sig-1R immunoreactivity in DRG neurons, which was co-localized with CCL2 and IB4, respectively. Taken together, our results suggest that BD1047′s anti-nociceptive property was substantially mediated by the inhibition of CCL2 release in unmyelinated PAFs and that this may, in turn, have attenuated the spinal microglia activation that is associated with inflammatory pain. Full article
(This article belongs to the Special Issue Neuro-Plastic Mechanisms of Pain and Addiction)
Show Figures

Figure 1

13 pages, 1719 KiB  
Article
Inhibition of Spinal TRPV1 Reduces NMDA Receptor 2B Phosphorylation and Produces Anti-Nociceptive Effects in Mice with Inflammatory Pain
by Suk-Yun Kang, Su Yeon Seo, Se Kyun Bang, Seong Jin Cho, Kwang-Ho Choi and Yeonhee Ryu
Int. J. Mol. Sci. 2021, 22(20), 11177; https://doi.org/10.3390/ijms222011177 - 16 Oct 2021
Cited by 21 | Viewed by 3359
Abstract
Transient receptor potential vanilloid 1 (TRPV1) has been implicated in peripheral inflammation and is a mediator of the inflammatory response to various noxious stimuli. However, the interaction between TRPV1 and N-methyl-D-aspartate (NMDA) receptors in the regulation of inflammatory pain remains poorly understood. [...] Read more.
Transient receptor potential vanilloid 1 (TRPV1) has been implicated in peripheral inflammation and is a mediator of the inflammatory response to various noxious stimuli. However, the interaction between TRPV1 and N-methyl-D-aspartate (NMDA) receptors in the regulation of inflammatory pain remains poorly understood. This study aimed to investigate the analgesic effects of intrathecal administration of capsazepine, a TRPV1 antagonist, on carrageenan-induced inflammatory pain in mice and to identify its interactions with NMDA receptors. Inflammatory pain was induced by intraplantar injection of 2% carrageenan in male ICR mice. To investigate the analgesic effects of capsazepine, pain-related behaviors were evaluated using von Frey filaments and a thermal stimulator placed on the hind paw. TRPV1 expression and NMDA receptor phosphorylation in the spinal cord and glutamate concentration in the spinal cord and serum were measured. Intrathecal treatment with capsazepine significantly attenuated carrageenan-induced mechanical allodynia and thermal hyperalgesia. Moreover, carrageenan-enhanced glutamate and phosphorylation of NMDA receptor subunit 2B in the spinal cord were suppressed by capsazepine administration. These results indicate that TRPV1 and NMDA receptors in the spinal cord are associated with inflammatory pain transmission, and inhibition of TRPV1 may reduce inflammatory pain via NMDA receptors. Full article
(This article belongs to the Special Issue Neuro-Plastic Mechanisms of Pain and Addiction)
Show Figures

Figure 1

15 pages, 4610 KiB  
Article
Effect of Ultra-Micronized-Palmitoylethanolamide and Acetyl-l-Carnitine on Experimental Model of Inflammatory Pain
by Alessio Ardizzone, Roberta Fusco, Giovanna Casili, Marika Lanza, Daniela Impellizzeri, Emanuela Esposito and Salvatore Cuzzocrea
Int. J. Mol. Sci. 2021, 22(4), 1967; https://doi.org/10.3390/ijms22041967 - 17 Feb 2021
Cited by 23 | Viewed by 5419
Abstract
Palmitoylethanolamide (PEA), a fatty acid amide, has been widely investigated for its analgesic and anti-inflammatory properties. The ultra-micronized formulation of PEA (um-PEA), that has an enhanced rate of dissolution, is extensively used. Acetyl-l-carnitine (LAC), employed for the treatment of neuropathic pain [...] Read more.
Palmitoylethanolamide (PEA), a fatty acid amide, has been widely investigated for its analgesic and anti-inflammatory properties. The ultra-micronized formulation of PEA (um-PEA), that has an enhanced rate of dissolution, is extensively used. Acetyl-l-carnitine (LAC), employed for the treatment of neuropathic pain in humans, is able to cause analgesia by up-regulating type-2 metabotropic glutamate (mGlu2) receptors. In the present study, we tested different associations of um-PEA, LAC and non-micronized PEA (non-m-PEA) in a rat model of carrageenan (CAR)-induced paw edema. Intraplantar injection of CAR into the hind paw of animals caused edema, thermal hyperalgesia, accumulation of infiltrating inflammatory cells and augmented myeloperoxidase (MPO) activity. All these parameters were decreased in a significantly manner by oral administration of a compound constituted by a mixture of um-PEA and LAC in relation 1:1 (5 mg/kg), but not with the association of single compounds administered one after the other. These findings showed the superior anti-inflammatory and anti-nociceptive action displayed by oral administration of um-PEA and LAC versus LAC plus, separate but consecutive, um-PEA in the rat paw CAR model of inflammatory pain. Full article
(This article belongs to the Special Issue Palmitoylethanolamide)
Show Figures

Figure 1

15 pages, 2246 KiB  
Article
Subcutaneous ω-Conotoxins Alleviate Mechanical Pain in Rodent Models of Acute Peripheral Neuropathy
by Md. Mahadhi Hasan, Hana Starobova, Alexander Mueller, Irina Vetter and Richard J. Lewis
Mar. Drugs 2021, 19(2), 106; https://doi.org/10.3390/md19020106 - 11 Feb 2021
Cited by 19 | Viewed by 3870
Abstract
The peripheral effects of ω-conotoxins, selective blockers of N-type voltage-gated calcium channels (CaV2.2), have not been characterised across different clinically relevant pain models. This study examines the effects of locally administered ω-conotoxin MVIIA, GVIA, and CVIF on mechanical and thermal paw [...] Read more.
The peripheral effects of ω-conotoxins, selective blockers of N-type voltage-gated calcium channels (CaV2.2), have not been characterised across different clinically relevant pain models. This study examines the effects of locally administered ω-conotoxin MVIIA, GVIA, and CVIF on mechanical and thermal paw withdrawal threshold (PWT) in postsurgical pain (PSP), cisplatin-induced neuropathy (CisIPN), and oxaliplatin-induced neuropathy (OIPN) rodent models. Intraplantar injection of 300, 100 and 30 nM MVIIA significantly (p < 0.0001, p < 0.0001, and p < 0.05, respectively) alleviated mechanical allodynia of mice in PSP model compared to vehicle control group. Similarly, intraplantar injection of 300, 100, and 30 nM MVIIA (p < 0.0001, p < 0.01, and p < 0.05, respectively), and 300 nM and 100 nM GVIA (p < 0.0001 and p < 0.05, respectively) significantly increased mechanical thresholds of mice in OIPN model. The ED50 of GVIA and MVIIA in OIPN was found to be 1.8 pmol/paw and 0.8 pmol/paw, respectively. However, none of the ω-conotoxins were effective in a mouse model of CisIPN. The intraplantar administration of 300 nM GVIA, MVIIA, and CVIF did not cause any locomotor side effects. The intraplantar administration of MVIIA can alleviate incision-induced mechanical allodynia, and GVIA and MVIIA effectively reduce OIPN associated mechanical pain, without locomotor side effects, in rodent models. In contrast, CVIF was inactive in these pain models, suggesting it is unable to block a subset of N-type voltage-gated calcium channels associated with nociceptors in the skin. Full article
(This article belongs to the Special Issue Cone Snail Venom Peptides, from Treasure Hunt to Drug Leads)
Show Figures

Figure 1

13 pages, 1749 KiB  
Article
Nociceptive Sensitization by Activation of Protease-Activated Receptor 2 in a Rat Model of Incisional Pain
by Kanta Kido, Norika Katagiri, Hiromasa Kawana, Shigekazu Sugino, Masanori Yamauchi and Eiji Masaki
Brain Sci. 2021, 11(2), 144; https://doi.org/10.3390/brainsci11020144 - 22 Jan 2021
Cited by 6 | Viewed by 2639
Abstract
Postoperative pain and consequent inflammatory responses after tissue incision adversely affects many surgical patients due to complicated mechanisms. In this study, we examined whether activation of protease-activated receptor 2 (PAR-2), which is stimulated by tryptase from mast cells, elicits nociception and whether the [...] Read more.
Postoperative pain and consequent inflammatory responses after tissue incision adversely affects many surgical patients due to complicated mechanisms. In this study, we examined whether activation of protease-activated receptor 2 (PAR-2), which is stimulated by tryptase from mast cells, elicits nociception and whether the PAR-2 antagonist could reduce incisional nociceptive responses in vivo and in vitro. The effects of a selective PAR-2 antagonist, N3-methylbutyryl-N-6-aminohexanoyl-piperazine (ENMD-1068), pretreatment on pain behaviors were assessed after plantar incision in rats. The effects of a PAR-2 agonist, SLIGRL-NH2, on nociception was assessed after the injection into the hind paw. Furthermore, the responses of C-mechanosensitive nociceptors to the PAR-2 agonist were observed using an in vitro skin–nerve preparation as well. Intraplantar injection of SLIGRL-NH2 elicited spontaneous nociceptive behavior and hyperalgesia. Local administration of ENMD-1068 suppressed guarding behaviors, mechanical and heat hyperalgesia only within the first few hours after incision. SLIGRL-NH2 caused ongoing activity in 47% of C-mechanonociceptors in vitro. This study suggests that PAR-2 may support early nociception after incision by direct or indirect sensitization of C-fibers in rats. Moreover, PAR-2 may play a regulatory role in the early period of postoperative pain together with other co-factors to that contribute to postoperative pain. Full article
Show Figures

Figure 1

15 pages, 5235 KiB  
Article
Protective Effect of Antioxidants in Nitric Oxide/COX-2 Interaction during Inflammatory Pain: The Role of Nitration
by Sara Ilari, Concetta Dagostino, Valentina Malafoglia, Filomena Lauro, Luigino Antonio Giancotti, Antonella Spila, Stefania Proietti, Domenica Ventrice, Milena Rizzo, Micaela Gliozzi, Ernesto Palma, Fiorella Guadagni, Daniela Salvemini, Vincenzo Mollace and Carolina Muscoli
Antioxidants 2020, 9(12), 1284; https://doi.org/10.3390/antiox9121284 - 16 Dec 2020
Cited by 27 | Viewed by 4406
Abstract
In clinical practice, inflammatory pain is an important, unresolved health problem, despite the utilization of non-steroidal anti-inflammatory drugs (NSAIDs). In the last decade, different studies have proven that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved in the development and [...] Read more.
In clinical practice, inflammatory pain is an important, unresolved health problem, despite the utilization of non-steroidal anti-inflammatory drugs (NSAIDs). In the last decade, different studies have proven that reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved in the development and maintenance of inflammatory pain and hyperalgesia via the post-translation modification of key proteins, such as manganese superoxide dismutase (MnSOD). It is well-known that inducible cyclooxygenase 2 (COX-2) plays a crucial role at the beginning of the inflammatory response by converting arachidonic acid into proinflammatory prostaglandin PGE2 and then producing other proinflammatory chemokines and cytokines. Here, we investigated the impact of oxidative stress on COX-2 and prostaglandin (PG) pathways in paw exudates, and we studied how this mechanism can be reversed by using antioxidants during hyperalgesia in a well-characterized model of inflammatory pain in rats. Our results reveal that during the inflammatory state, induced by intraplantar administration of carrageenan, the increase of PGE2 levels released in the paw exudates were associated with COX-2 nitration. Moreover, we showed that the inhibition of ROS with Mn (III) tetrakis (4-benzoic acid) porphyrin(MnTBAP) antioxidant prevented COX-2 nitration, restored the PGE2 levels, and blocked the development of thermal hyperalgesia. Full article
(This article belongs to the Special Issue Antioxidants and Chronic Inflammation)
Show Figures

Figure 1

15 pages, 2239 KiB  
Article
Pharmacological Blockade of PPAR Isoforms Increases Conditioned Fear Responding in the Presence of Nociceptive Tone
by Jessica C. Gaspar, Bright N. Okine, Alvaro Llorente-Berzal, Michelle Roche and David P. Finn
Molecules 2020, 25(4), 1007; https://doi.org/10.3390/molecules25041007 - 24 Feb 2020
Cited by 11 | Viewed by 4135
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with three isoforms (PPARα, PPARβ/δ, PPARγ) and can regulate pain, anxiety, and cognition. However, their role in conditioned fear and pain-fear interactions has not yet been investigated. Here, we investigated the effects of systemically administered PPAR [...] Read more.
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors with three isoforms (PPARα, PPARβ/δ, PPARγ) and can regulate pain, anxiety, and cognition. However, their role in conditioned fear and pain-fear interactions has not yet been investigated. Here, we investigated the effects of systemically administered PPAR antagonists on formalin-evoked nociceptive behaviour, fear-conditioned analgesia (FCA), and conditioned fear in the presence of nociceptive tone in rats. Twenty-three and a half hours following fear conditioning to context, male Sprague-Dawley rats received an intraplantar injection of formalin and intraperitoneal administration of vehicle, PPARα (GW6471), PPARβ/δ (GSK0660) or PPARγ (GW9662) antagonists, and 30 min later were re-exposed to the conditioning arena for 15 min. The PPAR antagonists did not alter nociceptive behaviour or fear-conditioned analgesia. The PPARα and PPARβ/δ antagonists prolonged context-induced freezing in the presence of nociceptive tone without affecting its initial expression. The PPARγ antagonist potentiated freezing over the entire trial. In conclusion, pharmacological blockade of PPARα and PPARβ/δ in the presence of formalin-evoked nociceptive tone, impaired short-term, within-trial fear-extinction in rats without affecting pain response, while blockade of PPARγ potentiated conditioned fear responding. These results suggest that endogenous signalling through these three PPAR isoforms may reduce the expression of conditioned fear in the presence of nociceptive tone. Full article
(This article belongs to the Special Issue Role of Cannabinoids in Inflammation)
Show Figures

Figure 1

25 pages, 3077 KiB  
Article
Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents
by Bronwyn M. Kivell, Kelly F. Paton, Nitin Kumar, Aashish S. Morani, Aimee Culverhouse, Amy Shepherd, Susan A. Welsh, Andrew Biggerstaff, Rachel S. Crowley and Thomas E. Prisinzano
Molecules 2018, 23(10), 2602; https://doi.org/10.3390/molecules23102602 - 11 Oct 2018
Cited by 36 | Viewed by 6303
Abstract
The acute activation of kappa opioid receptors (KOPr) produces antinociceptive and anti-cocaine effects, however, their side-effects have limited further clinical development. Mesyl Sal B is a potent and selective KOPr analogue of Salvinorin A (Sal A), a psychoactive natural product isolated from the [...] Read more.
The acute activation of kappa opioid receptors (KOPr) produces antinociceptive and anti-cocaine effects, however, their side-effects have limited further clinical development. Mesyl Sal B is a potent and selective KOPr analogue of Salvinorin A (Sal A), a psychoactive natural product isolated from the plant Salvia divinorum. We assessed the antinociceptive, anti-cocaine, and side-effects of Mesyl Sal B. The anti-cocaine effects are evaluated in cocaine-induced hyperactivity and behavioral sensitization to cocaine in male Sprague Dawley rats. Mesyl Sal B was assessed for anhedonia (conditioned taste aversion), aversion (conditioned place aversion), pro-depressive effects (forced swim test), anxiety (elevated plus maze) and learning and memory deficits (novel object recognition). In male B6.SJL mice, the antinociceptive effects were evaluated in warm-water (50 °C) tail withdrawal and intraplantar formaldehyde (2%) assays and the sedative effects measured with the rotarod performance task. Mesyl Sal B (0.3 mg/kg) attenuated cocaine-induced hyperactivity and behavioral sensitization to cocaine without modulating sucrose self-administration and without producing aversion, sedation, anxiety, or learning and memory impairment in rats. However, increased immobility was observed in the forced swim test indicating pro-depressive effects. Mesyl Sal B was not as potent as Sal A at reducing pain in the antinociceptive assays. In conclusion, Mesyl Sal B possesses anti-cocaine effects, is longer acting in vivo and has fewer side-effects when compared to Sal A, however, the antinociceptive effects are limited. Full article
(This article belongs to the Special Issue Psychoactive Natural Products)
Show Figures

Figure 1

19 pages, 2777 KiB  
Article
Peripheral 5-HT3 Receptors Are Involved in the Antinociceptive Effect of Bunodosine 391
by Wilson Alves Ferreira Junior, Andre Junqueira Zaharenko, Kohei Kazuma, Gisele Picolo, Vanessa Pacciari Gutierrez, Jose Carlos De Freitas, Katsuhiro Konno and Yara Cury
Toxins 2018, 10(1), 12; https://doi.org/10.3390/toxins10010012 - 27 Dec 2017
Cited by 10 | Viewed by 4330
Abstract
Bunodosine 391 (BDS 391), a low molecular weight compound isolated from the sea anemone Bunodosoma cangicum, increases the nociceptive threshold and inhibits inflammatory hyperalgesia. Serotonin receptors are involved in those effects. In this study, we have expanded the characterization of the antinociceptive [...] Read more.
Bunodosine 391 (BDS 391), a low molecular weight compound isolated from the sea anemone Bunodosoma cangicum, increases the nociceptive threshold and inhibits inflammatory hyperalgesia. Serotonin receptors are involved in those effects. In this study, we have expanded the characterization of the antinociceptive effect of BDS 391 demonstrating that, in rats: (a) the compound inhibits (1.2–12 ng/paw) overt pain, in the formalin test, and mechanical hyperalgesia (0.6–6.0 ng/paw) detected in a model of neuropathic pain; (b) intraplantar administration of ondansetron, a selective 5-HT3 receptor antagonist, blocks the effect of BDS 391, whereas ketanserin, a 5-HT2 receptor antagonist, partially reversed this effect, indicating the involvement of peripheral 5-HT2 and 5-HT3 receptors in BDS 391 antinociception; and (c) in binding assay studies, BDS 391 was not able to displace the selective 5-HT receptor antagonists, suggesting that this compound does not directly bind to these receptors. The effect of biguanide, a selective 5-HT3 receptor agonist, was also evaluated. The agonist inhibited the formalin’s nociceptive response, supporting an antinociceptive role for 5-HT3 receptors. Our study is the first one to show that a non-peptidic low molecular weight compound obtained from a sea anemone is able to induce antinociception and that activation of peripheral 5-HT3 receptors contributes to this effect. Full article
(This article belongs to the Special Issue Animal Venoms and Pain)
Show Figures

Figure 1

Back to TopTop