Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = intracellular adhesion molecule 1 (ICAM-1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2238 KiB  
Article
The Phosphodiesterase 4 Inhibitor Roflumilast Protects Microvascular Endothelial Cells from Irradiation-Induced Dysfunctions
by Nathalie Guitard, Florent Raffin and François-Xavier Boittin
Cells 2025, 14(13), 1017; https://doi.org/10.3390/cells14131017 - 3 Jul 2025
Viewed by 381
Abstract
In endothelial cells, high-dose irradiation induces numerous dysfunctions including alteration in junctional proteins such as VE-Cadherin, apoptosis and enhanced adhesiveness linked to overexpression of adhesion molecules like Intercellular Adhesion Molecule 1 (ICAM-1). Such endothelial dysfunctions can lead to altered tissue perfusion, development of [...] Read more.
In endothelial cells, high-dose irradiation induces numerous dysfunctions including alteration in junctional proteins such as VE-Cadherin, apoptosis and enhanced adhesiveness linked to overexpression of adhesion molecules like Intercellular Adhesion Molecule 1 (ICAM-1). Such endothelial dysfunctions can lead to altered tissue perfusion, development of tissue inflammation through increased endothelial permeability, and ultimately organ damage. As intracellular cyclic AMP (cAMP) levels are known to control intercellular junctions or apoptosis in the endothelium, we investigated here the effect of the Phosphodiesterase 4 inhibitor Roflumilast, a drug increasing cAMP levels, on irradiation-induced endothelial dysfunctions in human pulmonary microvascular endothelial cells (HPMECs). Using continuous impedance measurements in confluent endothelial cell monolayers, Roflumilast was found to rapidly reinforce the endothelial barrier and to prevent irradiation-induced barrier disruption. In accordance, irradiation-induced alteration in membrane VE-Cadherin-composed adherens junctions was prevented by Roflumilast treatment after irradiation, which was correlated with its protective effect of the actin cytoskeleton. Post-irradiation treatment with Roflumilast also protected HPMECs from irradiation-induced late apoptosis, but was without effect on irradiation-induced ICAM-1 overexpression. Overall, our results indicate that the beneficial effects of Roflumilast after irradiation are linked to the strengthening/protection of the endothelial barrier and reduced apoptosis, suggesting that this medicine may be useful for the treatment of endothelial damages after exposure to a high dose of radiation. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

14 pages, 3146 KiB  
Article
A High Performing Biomarker Signature for Detecting Early-Stage Pancreatic Ductal Adenocarcinoma in High-Risk Individuals
by Norma A. Palma, Aimee L. Lucas, Bryson W. Katona, Alcibiade Athanasiou, Natasha M. Kureshi, Lisa Ford, Thomas Keller, Stephen Weber, Ralph Schiess, Thomas King, Diane M. Simeone and Randall Brand
Cancers 2025, 17(11), 1866; https://doi.org/10.3390/cancers17111866 - 2 Jun 2025
Viewed by 1357
Abstract
Background/Objectives: Early detection of pancreatic cancer can improve patient survival, and blood-based biomarkers to aid in this are a significant need. The goal of this study was to develop and evaluate the performance of a 4- to 6-plex biomarker signature for detection of [...] Read more.
Background/Objectives: Early detection of pancreatic cancer can improve patient survival, and blood-based biomarkers to aid in this are a significant need. The goal of this study was to develop and evaluate the performance of a 4- to 6-plex biomarker signature for detection of early-stage pancreatic ductal adenocarcinoma (PDAC) that performs well in high-risk controls. Methods: Enzyme-linked immunosorbent assays were used to measure 10 previously identified serum protein biomarker candidates in Stage I and II PDAC cases (n = 128), high-risk controls (n = 465), and normal-risk controls (n = 30). Various combinations of biomarker candidates (models) were trained using machine learning and tested for robustness in differentiating cases from controls on the full cohort and in clinically relevant sub-types including those with diabetes, those ≥65 years of age, and low producers of carbohydrate antigen 19-9 (CA 19-9). Results: At 98% specificity, the top performing model, which was comprised of tissue inhibitor of metalloproteinase 1 (TIMP1), intracellular adhesion molecule 1 (ICAM1), thrombospondin 1 (THBS1), cathepsin D (CTSD), and CA 19-9, achieved 85% sensitivity in the full cohort and sensitivities of 91% in diabetics, 90% in ≥65 years of age, and 60% in low CA 19-9 producers. This model demonstrated significantly higher sensitivity in detecting PDAC in the full cohort and all sub-populations compared to CA 19-9 alone (p < 0.001). Conclusions: Our findings demonstrate the feasibility of a blood-based assay for detecting early-stage PDAC in high-risk individuals and key sub-populations, representing an important step towards improving diagnostic success for early-stage disease. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

17 pages, 1973 KiB  
Article
Angiotensin II Exposure In Vitro Reduces High Salt-Induced Reactive Oxygen Species Production and Modulates Cell Adhesion Molecules’ Expression in Human Aortic Endothelial Cell Line
by Nikolina Kolobarić, Nataša Kozina, Zrinka Mihaljević and Ines Drenjančević
Biomedicines 2024, 12(12), 2741; https://doi.org/10.3390/biomedicines12122741 - 29 Nov 2024
Cited by 1 | Viewed by 1129
Abstract
Background/Objectives: Increased sodium chloride (NaCl) intake led to leukocyte activation and impaired vasodilatation via increased oxidative stress in human/animal models. Interestingly, subpressor doses of angiotensin II (AngII) restored endothelium-dependent vascular reactivity, which was impaired in a high-salt (HS) diet in animal models. [...] Read more.
Background/Objectives: Increased sodium chloride (NaCl) intake led to leukocyte activation and impaired vasodilatation via increased oxidative stress in human/animal models. Interestingly, subpressor doses of angiotensin II (AngII) restored endothelium-dependent vascular reactivity, which was impaired in a high-salt (HS) diet in animal models. Therefore, the present study aimed to assess the effects of AngII exposure following high salt (HS) loading on endothelial cells’ (ECs’) viability, activation, and reactive oxygen species (ROS) production. Methods: The fifth passage of human aortic endothelial cells (HAECs) was cultured for 24, 48, and 72 h with NaCl, namely, the control (270 mOsmol/kg), HS320 (320 mOsmol/kg), and HS350 (350 mOsmol/kg). AngII was administered at the half-time of the NaCl incubation (10−4–10−7 mol/L). Results: The cell viability was significantly reduced after 24 h in the HS350 group and in all groups after longer incubation. AngII partly preserved the viability in the HAECs with shorter exposure and lower concentrations of NaCl. Intracellular hydrogen peroxide (H2O2) and peroxynitrite (ONOO) significantly increased in the HS320 group following AngII exposure compared to the control, while it decreased in the HS350 group compared to the HS control. A significant decrease in superoxide anion (O2.−) formation was observed following AngII exposure at 10−5, 10−6, and 10−7 mol/L for both HS groups. There was a significant decrease in intracellular adhesion molecule 1 (ICAM-1) and endoglin expression in both groups following treatment with 10−4 and 10−5 mol/L of AngII. Conclusions: The results demonstrated that AngII significantly reduced ROS production at HS350 concentrations and modulated the viability, proliferation, and activation states in ECs. Full article
(This article belongs to the Special Issue Renin-Angiotensin System in Cardiovascular Biology)
Show Figures

Graphical abstract

18 pages, 2595 KiB  
Article
Carbon Nanodots Inhibit Tumor Necrosis Factor-α-Induced Endothelial Inflammation through Scavenging Hydrogen Peroxide and Upregulating Antioxidant Gene Expression in EA.hy926 Endothelial Cells
by Jessica Chavez, Ajmal Khan, Kenna R. Watson, Safeera Khan, Yaru Si, Alexandra Y. Deng, Grant Koher, Mmesoma S. Anike, Xianwen Yi and Zhenquan Jia
Antioxidants 2024, 13(2), 224; https://doi.org/10.3390/antiox13020224 - 10 Feb 2024
Cited by 4 | Viewed by 2521
Abstract
Carbon nanodots (CNDs) are a new type of nanomaterial with a size of less than 10 nanometers and excellent biocompatibility, widely used in fields such as biological imaging, transmission, diagnosis, and drug delivery. However, its potential and mechanism to mediate endothelial inflammation have [...] Read more.
Carbon nanodots (CNDs) are a new type of nanomaterial with a size of less than 10 nanometers and excellent biocompatibility, widely used in fields such as biological imaging, transmission, diagnosis, and drug delivery. However, its potential and mechanism to mediate endothelial inflammation have yet to be explored. Here, we report that the uptake of CNDs by EA.hy926 endothelial cells is both time and dose dependent. The concentration of CNDs used in this experiment was found to not affect cell viability. TNF-α is a known biomarker of vascular inflammation. Cells treated with CNDs for 24 h significantly inhibited TNF-α (0.5 ng/mL)-induced expression of intracellular adhesion molecule 1 (ICAM-1) and interleukin 8 (IL-8). ICAM-1 and IL-8 are two key molecules responsible for the activation and the firm adhesion of monocytes to activated endothelial cells for the initiation of atherosclerosis. ROS, such as hydrogen peroxide, play an important role in TNF-α-induced inflammation. Interestingly, we found that CNDs effectively scavenged H2O2 in a dose-dependent manner. CNDs treatment also increased the activity of the antioxidant enzyme NQO1 in EA.hy926 endothelial cells indicating the antioxidant properties of CNDs. These results suggest that the anti-inflammatory effects of CNDs may be due to the direct H2O2 scavenging properties of CNDs and the indirect upregulation of antioxidant enzyme NQO1 activity in endothelial cells. In conclusion, CND can inhibit TNF-α-induced endothelial inflammation, possibly due to its direct scavenging of H2O2 and the indirect upregulation of antioxidant enzyme NQO1 activity in endothelial cells. Full article
(This article belongs to the Special Issue Nanoantioxidants Volume II)
Show Figures

Figure 1

11 pages, 1213 KiB  
Article
Are Selected Cytokines and Epstein–Barr Virus DNA Load Predictors of Hepatological Complications of Epstein–Barr Virus Infection in Children?
by Justyna Moppert, Krzysztof Domagalski, Sylwia Wrotek and Małgorzata Pawłowska
J. Clin. Med. 2023, 12(19), 6158; https://doi.org/10.3390/jcm12196158 - 24 Sep 2023
Viewed by 1644
Abstract
The aim of the study was to evaluate tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), soluble intracellular adhesion molecules 1 (s-ICAM-1) and Epstein–Barr virus (EBV) DNA load levels as predictors of hepatological complications of EBV infection in children. The study group consisted of 54 [...] Read more.
The aim of the study was to evaluate tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), soluble intracellular adhesion molecules 1 (s-ICAM-1) and Epstein–Barr virus (EBV) DNA load levels as predictors of hepatological complications of EBV infection in children. The study group consisted of 54 children aged one to eighteen years, who were hospitalised from 1 December 2018 to 31 December 2020 in the Department of Paediatrics, Infectious Diseases and Hepatology and who had hepatological complications in the course of serologically and molecularly confirmed EBV infection. It was shown that IL-6, TNF-α, and s-ICAM-1 concentrations were the highest in patients with hepatitis and biliary pole damage. Higher EBV DNA viremia positively correlated with increased C-reactive protein (CRP) and TNF-α levels and increased leukocyte, lymphocyte, and monocyte counts. Increases in lymphocyte counts and TNF-α concentrations were observed along with increases in gamma-glutamyl transpeptidase (GGTP) activity. Increased concentrations of IL-6, TNF-α, and s-ICAM-1 may indicate the risk of hepatitis with concomitant biliary pole damage during EBV infection. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

14 pages, 1357 KiB  
Article
Persistent Endothelial Lung Damage and Impaired Diffusion Capacity in Long COVID
by Andreas T. Asimakos, Alice G. Vassiliou, Chrysi Keskinidou, Stavroula Spetsioti, Archontoula Antonoglou, Charikleia S. Vrettou, Panagiotis Mourelatos, Aristidis Diamantopoulos, Maria Pratikaki, Nikolaos Athanasiou, Edison Jahaj, Parisis Gallos, Anastasia Kotanidou, Ioanna Dimopoulou, Stylianos E. Orfanos and Paraskevi Katsaounou
J. Pers. Med. 2023, 13(9), 1351; https://doi.org/10.3390/jpm13091351 - 31 Aug 2023
Cited by 7 | Viewed by 1935
Abstract
Since the beginning of the pandemic, both COVID-19-associated coagulopathy biomarkers and a plethora of endothelial biomarkers have been proposed and tested as prognostic tools of severity and mortality prediction. As the pandemic is gradually being controlled, attention is now focusing on the long-term [...] Read more.
Since the beginning of the pandemic, both COVID-19-associated coagulopathy biomarkers and a plethora of endothelial biomarkers have been proposed and tested as prognostic tools of severity and mortality prediction. As the pandemic is gradually being controlled, attention is now focusing on the long-term sequelae of COVID-19. In the present study, we investigated the role of endothelial activation/dysfunction in long COVID syndrome. This observational study included 68 consecutive long COVID patients and a healthy age and sex-matched control group. In both groups, we measured 13 endothelial biomarkers. Moreover, in the long COVID patients, we evaluated fatigue and dyspnea severity, lung diffusion capacity (DLCO), and the 6-min walk (6MWT) test as measures of functional capacity. Our results showed that markers of endothelial activation/dysfunction were higher in long COVID patients, and that soluble intracellular adhesion molecule 1 (sICAM-1) and soluble vascular adhesion molecule 1 (sVCAM-1) negatively correlated with lung diffusion and functional capacity (sICAM-1 vs. DLCO, r = −0.306, p = 0.018; vs. 6MWT, r = −0.263, p = 0.044; and sVCAM-1 vs. DLCO, r= −0.346, p = 0.008; vs. 6MWT, r = −0.504, p < 0.0001). In conclusion, evaluating endothelial biomarkers alongside clinical tests might yield more specific insights into the pathophysiological mechanisms of long COVID manifestations. Full article
(This article belongs to the Special Issue Personalized Medicine for Post COVID and Long COVID)
Show Figures

Figure 1

17 pages, 2735 KiB  
Article
Targeted Proteomic Analysis of Patients with Ascending Thoracic Aortic Aneurysm
by Aphrodite Daskalopoulou, Sotiria G. Giotaki, Konstantina Toli, Angeliki Minia, Vaia Pliaka, Leonidas G. Alexopoulos, Gerasimos Deftereos, Konstantinos Iliodromitis, Dimitrios Dimitroulis, Gerasimos Siasos, Christos Verikokos and Dimitrios Iliopoulos
Biomedicines 2023, 11(5), 1273; https://doi.org/10.3390/biomedicines11051273 - 25 Apr 2023
Cited by 5 | Viewed by 2462
Abstract
Background: There is a need for clinical markers to aid in the detection of individuals at risk of harboring an ascending thoracic aneurysm (ATAA) or developing one in the future. Objectives: To our knowledge, ATAA remains without a specific biomarker. This study aims [...] Read more.
Background: There is a need for clinical markers to aid in the detection of individuals at risk of harboring an ascending thoracic aneurysm (ATAA) or developing one in the future. Objectives: To our knowledge, ATAA remains without a specific biomarker. This study aims to identify potential biomarkers for ATAA using targeted proteomic analysis. Methods: In this study, 52 patients were divided into three groups depending on their ascending aorta diameter: 4.0–4.5 cm (N = 23), 4.6–5.0 cm (N = 20), and >5.0 cm (N = 9). A total of 30 controls were in-house populations ethnically matched to cases without known or visible ATAA-related symptoms and with no ATAA familial history. Before the debut of our study, all patients provided medical history and underwent physical examination. Diagnosis was confirmed by echocardiography and angio-computed tomography (CT) scans. Targeted-proteomic analysis was conducted to identify possible biomarkers for the diagnosis of ATAA. Results: A Kruskal–Wallis test revealed that C-C motif chemokine ligand 5 (CCL5), defensin beta 1 (HBD1), intracellular adhesion molecule-1 (ICAM1), interleukin-8 (IL8), tumor necrosis factor alpha (TNFα) and transforming growth factor-beta 1 (TGFB1) expressions are significantly increased in ATAA patients in comparison to control subjects with physiological aorta diameter (p < 0.0001). The receiver-operating characteristic analysis showed that the area under the curve values for CCL5 (0.84), HBD1 (0.83) and ICAM1 (0.83) were superior to that of the other analyzed proteins. Conclusions: CCL5, HBD1 and ICAM1 are very promising biomarkers with satisfying sensitivity and specificity that could be helpful in stratifying risk for the development of ATAA. These biomarkers may assist in the diagnosis and follow-up of patients at risk of developing ATAA. This retrospective study is very encouraging; however, further in-depth studies may be worthwhile to investigate the role of these biomarkers in the pathogenesis of ATAA. Full article
Show Figures

Graphical abstract

19 pages, 3226 KiB  
Article
Partial Synthetic PPARƳ Derivative Ameliorates Aorta Injury in Experimental Diabetic Rats Mediated by Activation of miR-126-5p Pi3k/AKT/PDK 1/mTOR Expression
by Yasmin M. Ahmed, Raha Orfali, Nada S. Abdelwahab, Hossam M. Hassan, Mostafa E. Rateb and Asmaa M. AboulMagd
Pharmaceuticals 2022, 15(10), 1175; https://doi.org/10.3390/ph15101175 - 22 Sep 2022
Cited by 4 | Viewed by 3212
Abstract
Type 2 diabetes mellitus (T2D) is a world wild health care issue marked by insulin resistance, a risk factor for the metabolic disorder that exaggerates endothelial dysfunction, increasing the risk of cardiovascular complications. Peroxisome proliferator-activated receptor PPAR) agonists have therapeutically mitigated hyperlipidemia and [...] Read more.
Type 2 diabetes mellitus (T2D) is a world wild health care issue marked by insulin resistance, a risk factor for the metabolic disorder that exaggerates endothelial dysfunction, increasing the risk of cardiovascular complications. Peroxisome proliferator-activated receptor PPAR) agonists have therapeutically mitigated hyperlipidemia and hyperglycemia in T2D patients. Therefore, we aimed to experimentally investigate the efficacy of newly designed synthetic PPARα/Ƴ partial agonists on a High-Fat Diet (HFD)/streptozotocin (STZ)-induced T2D. Female Wistar rats (200 ± 25 g body weight) were divided into four groups. The experimental groups were fed the HFD for three consecutive weeks before STZ injection (45 mg/kg/i.p) to induce T2D. Standard reference PPARƳ agonist pioglitazone and the partial synthetic PPARƳ (PIO; 20 mg/kg/BW, orally) were administered orally for 2 weeks after 72 h of STZ injection. The aorta tissue was isolated for biological ELISA, qRT-PCR, and Western blotting investigations for vascular inflammatory endothelial mediators endothelin-1 (ET-1), intracellular adhesion molecule 1 (ICAM-1), E-selectin, and anti-inflammatory vasoactive intestinal polypeptide (VIP), as well as microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR, endothelial Nitric Oxide Synthase (eNOS) immunohistochemical staining all are coupled with and histopathological examination. Our results revealed that HFD/STZ-induced T2D increased fasting blood glucose, ET-1, ICAM-1, E-selectin, and VIP levels, while decreasing the expression of both microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR phosphorylation. In contrast, the partial synthetic PPARƳ derivative evidenced a vascular alteration significantly more than reference PIO via decreasing (ET-1), ICAM-1, E-selectin, and VIP, along with increased expression of microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR. In conclusion, the partial synthetic PPARƳ derivative significantly affected HFD/STZ-induced T2D with vascular complications in the rat aorta. Full article
(This article belongs to the Special Issue Drug Candidates for the Treatment of Metabolic Syndrome)
Show Figures

Figure 1

17 pages, 4010 KiB  
Article
Cucurbitacin B Down-Regulates TNF Receptor 1 Expression and Inhibits the TNF-α-Dependent Nuclear Factor κB Signaling Pathway in Human Lung Adenocarcinoma A549 Cells
by Eiichi Kusagawa, Chiharu Okuda, Rikako Yamaguchi, Kaori Nakano, Yasunobu Miyake and Takao Kataoka
Int. J. Mol. Sci. 2022, 23(13), 7130; https://doi.org/10.3390/ijms23137130 - 27 Jun 2022
Cited by 17 | Viewed by 3153
Abstract
Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), induce the expression of intracellular adhesion molecule-1 (ICAM-1) by activating the nuclear factor κB (NF-κB) signaling pathway. In the present study, we found that cucurbitacin B decreased the expression of ICAM-1 in human lung adenocarcinoma [...] Read more.
Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), induce the expression of intracellular adhesion molecule-1 (ICAM-1) by activating the nuclear factor κB (NF-κB) signaling pathway. In the present study, we found that cucurbitacin B decreased the expression of ICAM-1 in human lung adenocarcinoma A549 cells stimulated with TNF-α or interleukin-1α. We further investigated the mechanisms by which cucurbitacin B down-regulates TNF-α-induced ICAM-1 expression. Cucurbitacin B inhibited the nuclear translocation of the NF-κB subunit RelA and the phosphorylation of IκBα in A549 cells stimulated with TNF-α. Cucurbitacin B selectively down-regulated the expression of TNF receptor 1 (TNF-R1) without affecting three adaptor proteins (i.e., TRADD, RIPK1, and TRAF2). The TNF-α-converting enzyme inhibitor suppressed the down-regulation of TNF-R1 expression by cucurbitacin B. Glutathione, N-acetyl-L-cysteine, and, to a lesser extent, L-cysteine attenuated the inhibitory effects of cucurbitacin B on the TNF-α-induced expression of ICAM-1, suggesting that an α,β-unsaturated carbonyl moiety is essential for anti-inflammatory activity. The present results revealed that cucurbitacin B down-regulated the expression of TNF-R1 at the initial step in the TNF-α-dependent NF-κB signaling pathway. Full article
(This article belongs to the Special Issue NF-κB and Disease 3.0)
Show Figures

Figure 1

21 pages, 4899 KiB  
Article
Inhalative as well as Intravenous Administration of H2S Provides Neuroprotection after Ischemia and Reperfusion Injury in the Rats’ Retina
by Stefanie Scheid, Max Goeller, Wolfgang Baar, Jakob Wollborn, Hartmut Buerkle, Günther Schlunck, Wolf Lagrèze, Ulrich Goebel and Felix Ulbrich
Int. J. Mol. Sci. 2022, 23(10), 5519; https://doi.org/10.3390/ijms23105519 - 15 May 2022
Cited by 10 | Viewed by 2644
Abstract
Background: Neuronal ischemia-reperfusion injury (IRI), such as it can occur in glaucoma or strokes, is associated with neuronal cell death and irreversible loss of function of the affected tissue. Hydrogen sulfide (H2S) is considered a potentially neuroprotective substance, but the most [...] Read more.
Background: Neuronal ischemia-reperfusion injury (IRI), such as it can occur in glaucoma or strokes, is associated with neuronal cell death and irreversible loss of function of the affected tissue. Hydrogen sulfide (H2S) is considered a potentially neuroprotective substance, but the most effective route of application and the underlying mechanism remain to be determined. Methods: Ischemia-reperfusion injury was induced in rats by a temporary increase in intraocular pressure (1 h). H2S was then applied by inhalation (80 ppm at 0, 1.5, and 3 h after reperfusion) or by intravenous administration of the slow-releasing H2S donor GYY 4137. After 24 h, the retinas were harvested for Western blotting, qPCR, and immunohistochemical staining. Retinal ganglion cell survival was evaluated 7 days after ischemia. Results: Both inhalative and intravenously delivered H2S reduced retinal ganglion cell death with a better result from inhalative application. H2S inhalation for 1.5 h, as well as GYY 4137 treatment, increased p38 phosphorylation. Both forms of application enhanced the extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and inhalation showed a significant increase at all three time points. H2S treatment also reduced apoptotic and inflammatory markers, such as caspase-3, intracellular adhesion molecule 1 (ICAM-1), vascular endothelial growth factor (VEGF), and inducible nitric oxide synthase (iNOS). The protective effect of H2S was partly abolished by the ERK1/2 inhibitor PD98059. Inhalative H2S also reduced the heat shock response including heme oxygenase (HO-1) and heat shock protein 70 (HSP-70) and the expression of radical scavengers such as superoxide dismutases (SOD1, SOD2) and catalase. Conclusion: Hydrogen sulfide acts, at least in part, via the mitogen-activated protein kinase (MAPK) ERK1/2 to reduce apoptosis and inflammation. Both inhalative H2S and intravenous GYY 4137 administrations can improve neuronal cell survival. Full article
(This article belongs to the Special Issue Precision Medicine in Retinal Diseases)
Show Figures

Figure 1

19 pages, 2973 KiB  
Article
A High-Fat Diet Induces Low-Grade Cochlear Inflammation in CD-1 Mice
by Jeffrey Chan, Ravi Telang, Dagmara Kociszewska, Peter R. Thorne and Srdjan M. Vlajkovic
Int. J. Mol. Sci. 2022, 23(9), 5179; https://doi.org/10.3390/ijms23095179 - 6 May 2022
Cited by 14 | Viewed by 3943
Abstract
There is growing evidence for a relationship between gut dysbiosis and hearing loss. Inflammatory bowel disease, diet-induced obesity (DIO), and type 2 diabetes have all been linked to hearing loss. Here, we investigated the effect of a chronic high-fat diet (HFD) on the [...] Read more.
There is growing evidence for a relationship between gut dysbiosis and hearing loss. Inflammatory bowel disease, diet-induced obesity (DIO), and type 2 diabetes have all been linked to hearing loss. Here, we investigated the effect of a chronic high-fat diet (HFD) on the development of inner ear inflammation using a rodent model. Three-week-old CD-1 (Swiss) mice were fed an HFD or a control diet for ten weeks. After ten weeks, mouse cochleae were harvested, and markers of cochlear inflammation were assessed at the protein level using immunohistochemistry and at the gene expression level using quantitative real-time RT-PCR. We identified increased immunoexpression of pro-inflammatory biomarkers in animals on an HFD, including intracellular adhesion molecule 1 (ICAM1), interleukin 6 receptor α (IL6Rα), and toll-like-receptor 2 (TLR2). In addition, increased numbers of ionized calcium-binding adapter molecule 1 (Iba1) positive macrophages were found in the cochlear lateral wall in mice on an HFD. In contrast, gene expression levels of inflammatory markers were not affected by an HFD. The recruitment of macrophages to the cochlea and increased immunoexpression of inflammatory markers in mice fed an HFD provide direct evidence for the association between HFD and cochlear inflammation. Full article
(This article belongs to the Special Issue Gut Microbiota and Immunity 2.0)
Show Figures

Figure 1

16 pages, 1765 KiB  
Article
Identification of Epitopes on Rhinovirus 89 Capsid Proteins Capable of Inducing Neutralizing Antibodies
by Katarzyna Niespodziana, Clarissa R. Cabauatan, Petra Pazderova, Phyllis C. Vacal, Judith Wortmann, Walter Keller, Peter Errhalt and Rudolf Valenta
Int. J. Mol. Sci. 2022, 23(9), 5113; https://doi.org/10.3390/ijms23095113 - 4 May 2022
Cited by 3 | Viewed by 2953
Abstract
Rhinoviruses (RVs) are major causes of the common cold, but they can also trigger exacerbations of asthma. More than 160 different RV strains exist and can be classified into three genetic species (RV-A, RV-B and RV-C) which bind to different receptors on human [...] Read more.
Rhinoviruses (RVs) are major causes of the common cold, but they can also trigger exacerbations of asthma. More than 160 different RV strains exist and can be classified into three genetic species (RV-A, RV-B and RV-C) which bind to different receptors on human cells including intracellular adhesion molecule 1 (ICAM-1), the low-density lipoprotein receptor (LDLR) or the cadherin-related family member 3 (CDHR3). Epitopes located in the RV capsid have mainly been determined for RV2, a minor-group RV-A strain binding to LDLR, and for RV14, a major-group RV-B strain binding to ICAM-1. In order to study epitopes involved in the neutralization of RV89, an ICAM-1-binding RV-A strain which is highly different from RV2 and RV14 in terms of receptor specificity and sequence, respectively, we analyzed the specificity and epitopes of a highly neutralizing antiserum using recombinantly produced RV89 capsid proteins (VP1, VP2, VP3 and VP4), recombinant fragments and synthetic overlapping peptides thereof. We found that the antiserum which neutralized in vitro RV89 infection up to a dilution of 1:24,000 reacted with the capsid proteins VP1 and VP2 but not with VP3 and VP4. The neutralizing antibodies recognized recombinant fragments comprising approximately 100 amino acids of the N- and C-terminus of VP1 and the middle part of VP2, in particular, three peptides which, according to molecular modeling based on the three-dimensional structure of RV16, were surface-exposed on the viral capsid. Two recombinant fusion proteins containing the identified peptides fused to hepatitis B (HBV)-derived preS as a carrier protein induced upon immunization of rabbits antibodies capable of neutralizing in vitro RV89 infections. Interestingly, the virus-neutralizing epitopes determined for RV89 corresponded to those determined for minor-group RV2 binding to LDL and major-group RV14 belonging to the RV-B species, which are highly different from RV89. Our results indicate that highly different RV strains, even when reacting with different receptors, seem to engage similar parts of their capsid in the infection process. These results may be important for the design of active and passive immunization strategies for RV. Full article
(This article belongs to the Special Issue Molecular Medicine in Asthma and Allergic Diseases)
Show Figures

Figure 1

20 pages, 3116 KiB  
Article
Grape Pomace Extract Attenuates Inflammatory Response in Intestinal Epithelial and Endothelial Cells: Potential Health-Promoting Properties in Bowel Inflammation
by Nadia Calabriso, Marika Massaro, Egeria Scoditti, Tiziano Verri, Amilcare Barca, Carmela Gerardi, Giovanna Giovinazzo and Maria Annunziata Carluccio
Nutrients 2022, 14(6), 1175; https://doi.org/10.3390/nu14061175 - 11 Mar 2022
Cited by 31 | Viewed by 5832
Abstract
Inflammatory bowel disease (IBD) implies the chronic inflammation of the gastrointestinal tract, combined with systemic vascular manifestations. In IBD, the incidence of cardiovascular disease appears to be related to an increase of oxidative stress and endothelial dysfunction. Grape pomace contains high levels of [...] Read more.
Inflammatory bowel disease (IBD) implies the chronic inflammation of the gastrointestinal tract, combined with systemic vascular manifestations. In IBD, the incidence of cardiovascular disease appears to be related to an increase of oxidative stress and endothelial dysfunction. Grape pomace contains high levels of anti-oxidant polyphenols that are able to counteract chronic inflammatory symptoms. The aim of this study was to determine whether grape pomace polyphenolic extract (GPE) was able to mitigate the overwhelming inflammatory response in enterocyte-like cells and to improve vascular function. Intestinal epithelial Caco-2 cells, grown in monolayers or in co-culture with endothelial cells (Caco-2/HMEC-1), were treated with different concentrations of GPE (1, 5, 10 µg/mL gallic acid equivalents) for 2 h and then stimulated with lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α for 16 h. Through multiple assays, the expression of intestinal and endothelial inflammatory mediators, intracellular reactive oxygen species (ROS) levels and NF-κB activation, as well as endothelial-leukocyte adhesion, were evaluated. The results showed that GPE supplementation prevented, in a concentration-dependent manner, the intestinal expression and release of interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and matrix metalloproteinases (MMP)-9 and MMP-2. In Caco-2 cells, GPE also suppressed the gene expression of several pro-inflammatory markers, such as IL-1β, TNF-α, macrophage colony-stimulating factor (M-CSF), C-X-C motif ligand (CXCL)-10, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and cyclooxygenase (COX)-2. The GPE anti-inflammatory effect was mediated by the inhibition of NF-κB activity and reduced intracellular ROS levels. Furthermore, transepithelial GPE suppressed the endothelial expression of IL-6, MCP-1, VCAM-1, and ICAM-1 and the subsequent adhesion of leukocytes to the endothelial cells under pro-inflammatory conditions. In conclusion, our findings suggest grape pomace as a natural source of polyphenols with multiple health-promoting properties that could contribute to the mitigation of gut chronic inflammatory diseases and improve vascular endothelial function. Full article
(This article belongs to the Special Issue Dietary Polyphenols and Their Role in Gut Health)
Show Figures

Graphical abstract

14 pages, 1632 KiB  
Article
Progression of Metabolic Syndrome Components along with Depression Symptoms and High Sensitivity C-Reactive Protein: The Bogalusa Heart Study
by Azad R. Bhuiyan, Marinelle Payton, Amal K. Mitra, Sophia S. Leggett, Jihua Xu, Paul B. Tchounwou and Frank Smart
Int. J. Environ. Res. Public Health 2021, 18(9), 5010; https://doi.org/10.3390/ijerph18095010 - 9 May 2021
Cited by 4 | Viewed by 3379
Abstract
This study examined the association between depression symptoms and metabolic syndrome (MetS) or its components prospectively. It assessed the mediator role of high-sensitivity C-reactive protein (hs-CRP) and intracellular adhesion molecule-1 (ICAM-1). Self-reported depression symptoms were assessed using the Center for Epidemiologic Studies-Depression scale. [...] Read more.
This study examined the association between depression symptoms and metabolic syndrome (MetS) or its components prospectively. It assessed the mediator role of high-sensitivity C-reactive protein (hs-CRP) and intracellular adhesion molecule-1 (ICAM-1). Self-reported depression symptoms were assessed using the Center for Epidemiologic Studies-Depression scale. MetS was defined as having at least three of the following five criteria: (1) waist circumference >102 centimeters (cm) in men or >88 cm in women; (2) triglycerides ≥ 50 milligrams per deciliter (mg/dL); (3) high-density lipoprotein cholesterol <40 mg/dL in men or <50 mg/dL in women; (4) blood pressure: systolic ≥ 30 and diastolic ≥85 mm of mercury or on antihypertensive medication; and (5) fasting glucose ≥110 mg/dL. The risk ratios (RR) with 95% confidence interval (CI) were estimated using multivariate Poisson regression models. A total of 419 White and 180 Black individuals with a mean age of 36 years were followed for 6.9 years. The findings demonstrated that hs-CRP mediated the influence of depression symptoms on central obesity in White young adults. The adjusted RR for central obesity was 1.08 with 95% CI of 0.88–1.32, and the value for hs-CRP was 1.12 with 95% CI of 1.02–1.23. Although depression did not influence MetS in this study cohort, the complete mediator role of hs-CRP was established for central obesity, a component of MetS in White young adults. Full article
Show Figures

Figure 1

19 pages, 2511 KiB  
Article
KRIT1 Deficiency Promotes Aortic Endothelial Dysfunction
by Francesco Vieceli Dalla Sega, Raffaella Mastrocola, Giorgio Aquila, Francesca Fortini, Claudia Fornelli, Alessia Zotta, Alessia S. Cento, Andrea Perrelli, Enrica Boda, Antonio Pannuti, Saverio Marchi, Paolo Pinton, Roberto Ferrari, Paola Rizzo and Saverio Francesco Retta
Int. J. Mol. Sci. 2019, 20(19), 4930; https://doi.org/10.3390/ijms20194930 - 5 Oct 2019
Cited by 29 | Viewed by 5653
Abstract
Loss-of-function mutations of the gene encoding Krev interaction trapped protein 1 (KRIT1) are associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries and affecting 0.5% of the human population. However, growing evidence [...] Read more.
Loss-of-function mutations of the gene encoding Krev interaction trapped protein 1 (KRIT1) are associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries and affecting 0.5% of the human population. However, growing evidence demonstrates that KRIT1 is implicated in the modulation of major redox-sensitive signaling pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, suggesting that its loss-of-function mutations may have pathological effects not limited to CCM disease. The aim of this study was to address whether KRIT1 loss-of-function predisposes to the development of pathological conditions associated with enhanced endothelial cell susceptibility to oxidative stress and inflammation, such as arterial endothelial dysfunction (ED) and atherosclerosis. Silencing of KRIT1 in human aortic endothelial cells (HAECs), coronary artery endothelial cells (HCAECs), and umbilical vein endothelial cells (HUVECs) resulted in increased expression of endothelial proinflammatory adhesion molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) and in enhanced susceptibility to tumor necrosis factor alpha (TNF-α)-induced apoptosis. These effects were associated with a downregulation of Notch1 activation that could be rescued by antioxidant treatment, suggesting that they are consequent to altered intracellular redox homeostasis induced by KRIT1 loss-of-function. Furthermore, analysis of the aorta of heterozygous KRIT1+/− mice fed a high-fructose diet to induce systemic oxidative stress and inflammation demonstrated a 1.6-fold increased expression of VCAM-1 and an approximately 2-fold enhanced fat accumulation (7.5% vs 3.6%) in atherosclerosis-prone regions, including the aortic arch and aortic root, as compared to corresponding wild-type littermates. In conclusion, we found that KRIT1 deficiency promotes ED, suggesting that, besides CCM, KRIT1 may be implicated in genetic susceptibility to the development of atherosclerotic lesions. Full article
Show Figures

Graphical abstract

Back to TopTop