Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = intra-annual runoff distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2339 KB  
Article
Projected Hydrological Regime Shifts in Kazakh Rivers Under CMIP6 Climate Scenarios: Integrated Modeling and Seasonal Flow Analysis
by Aliya Nurbatsina, Aisulu Tursunova, Lyazzat Makhmudova, Zhanat Salavatova and Fredrik Huthoff
Atmosphere 2025, 16(9), 1020; https://doi.org/10.3390/atmos16091020 - 29 Aug 2025
Cited by 1 | Viewed by 1649
Abstract
The article presents an analysis of current (during the period 1985–2022) and projected (during the period 2025–2099) changes in the hydrological regime of the Buktyrma, Yesil, and Zhaiyk river basins in Kazakhstan under the conditions of global climate change. This study is based [...] Read more.
The article presents an analysis of current (during the period 1985–2022) and projected (during the period 2025–2099) changes in the hydrological regime of the Buktyrma, Yesil, and Zhaiyk river basins in Kazakhstan under the conditions of global climate change. This study is based on the integration of data from General Circulation Models (GCMs) of the sixth phase of the CMIP6 project, socio-economic development scenarios SSP2-4.5 and SSP5-8.5, as well as the results of hydrological modelling using the SWIM model. The studies were carried out with an integrated approach to hydrological change assessment, taking into account scenario modelling, uncertainty analysis and the use of bias correction methods for climate data. A calculation method was used to analyse the intra-annual distribution of runoff, taking into account climate change. Detailed forecasts of changes in runoff and intra-annual water distribution up to the end of the 21st century for key water bodies in Kazakhstan were obtained. While the projections of river flow and hydrological parameters under CMIP6 scenarios are actively pursued worldwide, few studies have explicitly focused on forecasting intra-annual flow distribution in Central Asia, calculated using a methodology appropriate for this region and using CMIP6 ensemble scenarios. There have been studies on changes in the intra-annual distribution of runoff for individual river basins or local areas, but for the historical period, there have also been studies on modelling runoff forecasts using CMIP6 climate models, but have been very few systematic publications on the distribution of predicted intra-annual runoff in Central Asia, and this issue has not been fully studied. The projections suggest an intensification of flow seasonality (1), earlier flood peaks (2), reduced summer discharges (3) and an increased likelihood of extreme hydrological events under future climatic conditions. Changes in the seasonal structure of river flow in Central Asia are caused by both climatic factors—temperature, precipitation and glacier degradation—and significant anthropogenic influences, including irrigation and water management structures. These changes directly affect the risks of flooding and water shortages, as well as the adaptive capacity of water management systems. Given the high level of water management challenges and interregional conflicts over water use, the intra-annual distribution of runoff is important for long-term planning, the development of adaptation measures, and the formulation of public policy on sustainable water management in the face of growing climate challenges. This is critically important for water, agricultural, energy, and environmental planning in a region that already faces annual water management challenges and conflicts due to the uneven seasonal distribution of resources. Full article
(This article belongs to the Special Issue The Water Cycle and Climate Change (3rd Edition))
Show Figures

Figure 1

21 pages, 12252 KB  
Article
Changes in Intra-Annual River Runoff in the Ile and Zhetysu Alatau Mountains Under Climate Change Conditions
by Rustam G. Abdrakhimov, Victor P. Blagovechshenskiy, Sandugash U. Ranova, Aigul N. Akzharkynova, Sezar Gülbaz, Ulzhan R. Aldabergen and Aidana N. Kamalbekova
Water 2025, 17(14), 2165; https://doi.org/10.3390/w17142165 - 21 Jul 2025
Cited by 1 | Viewed by 1424
Abstract
This paper presents the results of studies on intra-annual runoff changes in the Ile River basin based on data from gauging stations up to 2021. Changes in climatic characteristics that determine runoff formation in the mountainous and foothill areas of the river catchment [...] Read more.
This paper presents the results of studies on intra-annual runoff changes in the Ile River basin based on data from gauging stations up to 2021. Changes in climatic characteristics that determine runoff formation in the mountainous and foothill areas of the river catchment have led to alterations in the water regime of the watercourses. The analysis of the temporal and spatial patterns of river flow formation in the basin, as well as its distribution by seasons and months, is essential for solving applied water management problems and assessing the risks of hazardous hydrological phenomena, such as high floods and low water levels. The statistical analysis of annual and monthly river runoff fluctuations enabled the identification of relatively homogeneous estimation periods during stationary observations under varying climatic conditions. The obtained characteristics of annual and intra-annual river runoff in the Ile River basin for the modern period provide insights into changes in average monthly water discharge and, more broadly, runoff volume during different phases of the water regime. In the future, these characteristics are expected to guide the design of hydraulic structures and the rational use of surface runoff in this intensively developing region of Kazakhstan. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

17 pages, 7071 KB  
Article
Sustainability Challenges in Kazakhstan’s River Systems: Assessing Climate-Induced Hydrological Changes
by Aisulu Tursunova, Aliya Nurbatsina, Zhanat Salavatova and Fredrik Huthoff
Sustainability 2025, 17(8), 3405; https://doi.org/10.3390/su17083405 - 11 Apr 2025
Cited by 3 | Viewed by 1120
Abstract
Global and regional climate change and their water-related impacts are a key component in future development scenarios to guide sustainable water management. Climatic changes may lead to an undesirable redistribution of water supplies and potentially harmful extremities in river flows throughout the year. [...] Read more.
Global and regional climate change and their water-related impacts are a key component in future development scenarios to guide sustainable water management. Climatic changes may lead to an undesirable redistribution of water supplies and potentially harmful extremities in river flows throughout the year. If we add to this the uneven spatial distribution of water resources in Kazakhstan, the importance of assessment of the intra-annual distribution of river flows under historical and present climatic conditions becomes evident. The presented scientific study analyzes decadal regional trends from 1985 to 2022 in the intra-annual distribution of river runoff in selected catchments in Kazakhstan, including Buktyrma River, Zhabay River, and Ulken-Kobda River. The river basins were selected to cover diverse regions in terms of geographical features and hydrological conditions, significantly affected by climate change. We applied statistical analysis methods using multiyear values of mean monthly and mean annual river flows, mean monthly air temperatures, and mean monthly precipitation. To analyze the intra-annual distribution of annual river flow in the context of climate change, a computational method was used, in which the actual current river flow (modern river flow taking into account non-stationarity of climatic changes) was compared with the conditionally natural flow obtained by modeling and corresponding to the natural regime of the river. The long-term dynamics of flow-forming factors and runoff parameters with regard to phases of different water content (25%, 50%, and 75%) were considered. Statistical analysis of seasonal changes in water content of modeled and actual river flow, taking into account climatic non-stationarity, allowed us to identify significant trends of flow redistribution within the year: indicating a decrease in the volume of spring floods, an increase in winter flow and increase in seasonal variability, especially for the Ulken Kobda River. It appears that atmospheric circulation significantly affects annual and seasonal variations of water availability. The shift in western circulation type (W) contributes to increased average annual river flow, while the shift in eastern circulation type (E) is associated with amplification of extreme flood-type events. The results obtained are important for adapting sustainable water management practices under a changing climate, helping to anticipate the availability of water resources and allowing pro-active measures to mitigate hydrological extremes. Full article
Show Figures

Figure 1

26 pages, 18197 KB  
Article
Investigation of the Spatiotemporal Patterns in Water Surface Temperature from Landsat Data in Plateau Rivers
by Youyuan Wang, Yun Deng, Yanjing Yang, Youcai Tuo, Xingmin Wang and Jia Zhu
Remote Sens. 2025, 17(7), 1141; https://doi.org/10.3390/rs17071141 - 23 Mar 2025
Cited by 1 | Viewed by 1208
Abstract
Water temperature, a key environmental factor in river ecosystems, plays an important role in understanding the health of river ecosystems and addressing climate change. The Tibetan Plateau is sensitive to global climate change, and owing to its unique geographic and climatic conditions, the [...] Read more.
Water temperature, a key environmental factor in river ecosystems, plays an important role in understanding the health of river ecosystems and addressing climate change. The Tibetan Plateau is sensitive to global climate change, and owing to its unique geographic and climatic conditions, the spatiotemporal distribution of water temperature in plateau rivers is highly heterogeneous. However, owing to the complex terrain and harsh climate, traditional water temperature monitoring methods struggle to provide comprehensive coverage. This study focuses on the downstream section of the Yarlung Tsangpo River and uses Landsat 7 and 8 images from 2004–2022. Considering the high water vapor content in the region and the satellite’s inherent system errors, a remote sensing-based model for interpreting water temperature in plateau rivers was developed. This model aims to address the limitations of traditional monitoring methods and provide a new technological approach for studying the spatiotemporal variations in water temperature in plateau rivers. The results show that the model has high accuracy (RMSE ranging from 1.00 °C to 1.85 °C), and regression correction can reduce the relative error by 1.6% to 22.2%. The water temperature downstream of the Yarlung Tsangpo River is influenced by a combination of climate, topography, and runoff inputs, resulting in clear spatiotemporal variation characteristics. Air temperature is the most important factor affecting water temperature, and both the intra-annual variations and spatial distributions of water temperature show significant regional differences. This study provides important data support and technical methods for long-term monitoring and ecological research on water temperature in plateau rivers, as well as scientific evidence for water resource management in plateau regions. Full article
Show Figures

Figure 1

21 pages, 17554 KB  
Article
Hydrological Modeling to Unravel the Spatiotemporal Heterogeneity and Attribution of Baseflow in the Yangtze River Source Area, China
by Huazhun Ren, Guangdong Wu, Longcang Shu, Wenjian Tang, Chengpeng Lu, Bo Liu, Shuyao Niu, Yunliang Li and Yuxuan Wang
Water 2024, 16(20), 2892; https://doi.org/10.3390/w16202892 - 11 Oct 2024
Cited by 2 | Viewed by 1509
Abstract
Revealing the spatiotemporal variation in baseflow and its underlying mechanisms is critical for preserving the health and ecological functions of alpine rivers, but this has rarely been conducted in the source region of the Yangtze River (SRYR). Our study employed the Soil and [...] Read more.
Revealing the spatiotemporal variation in baseflow and its underlying mechanisms is critical for preserving the health and ecological functions of alpine rivers, but this has rarely been conducted in the source region of the Yangtze River (SRYR). Our study employed the Soil and Water Assessment Tool (SWAT) model coupled with two-parameter digital filtering and geostatistical approaches to obtain a visual representation of the spatiotemporal heterogeneity characteristics of the baseflow and baseflow index (BFI) in the SRYR. The SWAT model and multiple linear regression model (MLR) were used to quantitatively estimate the contribution of climate change and human activities to baseflow and BFI changes. The results underscore the robust applicability of the SWAT model within the SRYR. Temporally, the precipitation, temperature, and baseflow exhibited significant upward trends, and the baseflow and BFI showed contrasting intra-annual distribution patterns, which were unimodal and bimodal distribution, respectively. Spatially, the baseflow increased from northwest to southeast, and from the watershed perspective, the Tongtian River exhibited higher baseflow values compared to other regions of the SRYR. The baseflow and BFI values of the Dangqu River were greater than those of other tributaries. More than 50% of the entire basin had an annual BFI value greater than 0.7, which indicates that baseflow was the major contributor to runoff generation. Moreover, the contributions of climate change and human activities to baseflow variability were 122% and −22%, and to BFI variability, 60% and 40%. Specifically, precipitation contributed 116% and 60% to the baseflow and BFI variations, while the temperature exhibited contributions of 6% and 8%, respectively. Overall, it was concluded that the spatiotemporal distributions of baseflow and the BFI are controlled by various factors, and climate change is the main factor of baseflow variation. Our study offers valuable insights for the management and quantitative assessment of groundwater resources within the SRYR amidst climate change. Full article
Show Figures

Graphical abstract

22 pages, 20353 KB  
Article
The Spatio-Temporal Changes of Small Lakes of the Qilian Mountains from 1987 to 2020 and Their Driving Mechanisms
by Chao Li, Shiqiang Zhang, Rensheng Chen, Dahong Zhang, Gang Zhou, Wen Li and Tianxing Rao
Remote Sens. 2023, 15(14), 3604; https://doi.org/10.3390/rs15143604 - 19 Jul 2023
Cited by 4 | Viewed by 1974
Abstract
Small lakes (areas ranging from 0.01 km2 to 1 km2) are highly sensitive to climate change and human activities. However, few studies have investigated the long-term intra-annual trends in the number and area of small lakes and their driving mechanisms [...] Read more.
Small lakes (areas ranging from 0.01 km2 to 1 km2) are highly sensitive to climate change and human activities. However, few studies have investigated the long-term intra-annual trends in the number and area of small lakes and their driving mechanisms in the Qinghai–Tibet Plateau (QTP). As a significant water tower in northwest China, the Qilian Mountains region (QMR) in the QTP is essential for sustaining regional industrial and agricultural production, biodiversity, and human well-being. We conducted an analysis of the dynamics of small lakes in the QMR region. In this study, we employed Geodetector and examined nine factors to investigate the driving mechanisms behind the long-term variations in the small lake water bodies (SLWBs). We specifically focused on understanding the effects of single-factor and two-factor interactions. The results indicate that the number and area of small lakes had a fluctuating trend from 1987 to 2020. Initially, there was a decrease followed by an increase, which was generally consistent with trends in the large lakes on the QTP. All basins had far more expanding than shrinking lakes. The area of seasonal SLWBs in each basin was increasing more rapidly than permanent SLWBs. The distribution and trends in the area and number of small lakes varied widely across elevation zones. Runoff, snow depth, and temperature contributed the most to SLWB changes. Human activities and wind speed contributed the least. However, the main drivers varied across basins. The impact of two-factor interactions on SLWB changes in basins was greater than that of single factors. Our results provide useful information for planning and managing water resources and studies of small lakes. Full article
Show Figures

Graphical abstract

18 pages, 11898 KB  
Article
Snow Cover and Climate Change and Their Coupling Effects on Runoff in the Keriya River Basin during 2001–2020
by Wei Yan, Yifan Wang, Xiaofei Ma, Minghua Liu, Junhui Yan, Yaogeng Tan and Sutao Liu
Remote Sens. 2023, 15(13), 3435; https://doi.org/10.3390/rs15133435 - 6 Jul 2023
Cited by 7 | Viewed by 2697
Abstract
As a significant component of the cryosphere, snow cover plays a crucial role in modulating atmospheric circulation and regional hydrological equilibrium. Therefore, studying the dynamics of snow cover and its response to climate change is of great significance for regional water resource management [...] Read more.
As a significant component of the cryosphere, snow cover plays a crucial role in modulating atmospheric circulation and regional hydrological equilibrium. Therefore, studying the dynamics of snow cover and its response to climate change is of great significance for regional water resource management and disaster prevention. In this study, reanalysis climate datasets and a new MODIS snow cover extent product over China were used to analyze the characteristics of climate change and spatiotemporal variations in snow cover in the Keriya River Basin (KRB). Furthermore, the effects of climate factors on snow cover and their coupling effects on runoff were quantitatively evaluated by adopting partial least squares regression (PLSR) method and structural equation modeling (SEM), respectively. Our findings demonstrated the following: (1) Air temperature and precipitation of KRB showed a significant increase at rates of 0.24 °C/decade and 14.21 mm/decade, respectively, while the wind speed did not change significantly. (2) The snow cover frequency (SCF) in the KRB presented the distribution characteristics of “low in the north and high in the south”. The intra-annual variation of snow cover percentage (SCP) of KRB displayed a single peak (in winter), double peaks (in spring and autumn), and stability (SCP > 75%), whose boundary elevations were 4000 m and 6000 m, respectively. The annual, summer, and winter SCP in the KRB declined, while the spring and autumn SCP experienced a trend showing an insignificant increase during the hydrological years of 2001–2020. Additionally, both the annual and seasonal SCF (except autumn) will be further increased in more than 50% of the KRB, according to estimates. (3) Annual and winter SCF were controlled by precipitation, of which the former showed a mainly negative response, while the latter showed a mainly positive response, accounting for 43.1% and 76.16% of the KRB, respectively. Air temperature controlled SCF changes in 45% of regions in spring, summer, and autumn, mainly showing negative effects. Wind speed contributed to SCF changes in the range of 11.23% to 26.54% across annual and seasonal scales. (4) Climate factors and snow cover mainly affect annual runoff through direct influences, and the total effect was as follows: precipitation (0.609) > air temperature (−0.122) > SCP (0.09). Full article
(This article belongs to the Special Issue Remote Sensing of Cryosphere and Related Processes)
Show Figures

Figure 1

27 pages, 21707 KB  
Article
Evolutionary Characteristics of Runoff in a Changing Environment: A Case Study of Dawen River, China
by Xuyang Yang, Jun Xia, Jian Liu, Jiake Li, Mingsen Wang and Yanyan Li
Water 2023, 15(4), 636; https://doi.org/10.3390/w15040636 - 6 Feb 2023
Cited by 5 | Viewed by 2304
Abstract
Watershed water cycles undergo profound changes under changing environments. Analyses of runoff evolution characteristics are fundamental to our understanding of the evolution of water cycles under changing environments. In this study, linear regression, moving average, Mann–Kendall, Pettitt, accumulative anomaly, STARS, wavelet analysis, and [...] Read more.
Watershed water cycles undergo profound changes under changing environments. Analyses of runoff evolution characteristics are fundamental to our understanding of the evolution of water cycles under changing environments. In this study, linear regression, moving average, Mann–Kendall, Pettitt, accumulative anomaly, STARS, wavelet analysis, and CEEMDAN methods were used to analyze the trends, mutations, and periodic and intrinsic dynamic patterns of runoff evolution using long-term historical data. The intra-annual distribution of runoff in the Dawen River Basin was uneven, with an overall decreasing trend and mutations in 1975–1976. The main periods of runoff were 1.9 and 2.2 years, and the strongest oscillations in the study period occurred in 1978–1983. The runoff decomposition high-frequency term (intra-annual fluctuation term) had a stronger fluctuation frequency, with a period of 0.51–0.55 years, while the low-frequency term (interannual fluctuation term) had a period of 1.55–2.26 years. The trend term for the runoff decomposition tended to decrease throughout the monitoring period and gradually stabilized at the end of the monitoring period, while the period gradually decreased from upstream to downstream. In summary, we used multiple methods to analyze the evolutionary characteristics of runoff, which are of great relevance to the adaptive management of water resources under changing environments. Full article
Show Figures

Figure 1

21 pages, 11055 KB  
Article
Factors Influencing Seasonal Changes in Inundation of the Daliyaboyi Oasis, Lower Keriya River Valley, Central Tarim Basin, China
by Jinhua Wang, Feng Zhang, Guangming Luo, Yuchuan Guo, Jianghua Zheng, Shixin Wu, Dawei Wang, Suhong Liu and Qingdong Shi
Remote Sens. 2022, 14(19), 5050; https://doi.org/10.3390/rs14195050 - 10 Oct 2022
Cited by 15 | Viewed by 2966
Abstract
The ecological water diversion project (EWDP) in the Tarim River Basin, China, aims to allocate more surface water to downstream reaches to restore the degraded ecosystems. However, seasonal changes in ecological water diversion; the factors (natural and anthropogenic) controlling the ecological water diversion, [...] Read more.
The ecological water diversion project (EWDP) in the Tarim River Basin, China, aims to allocate more surface water to downstream reaches to restore the degraded ecosystems. However, seasonal changes in ecological water diversion; the factors (natural and anthropogenic) controlling the ecological water diversion, whether the seasonal delivery of water temporally corresponded to the vegetation’s seasonal water demands; and the benefits of the ecological water diversion through overflowing surface water irrigation are unclear. To address the above issues, this study examines the intra-annual changes and its influencing factors in ecological water diversion (inundation) in the Daliyaboyi Oasis in the lower Keriya River valley within the Tarim Basin, discusses whether the seasonal delivery of water temporally corresponded to the vegetation’s seasonal water demands, and assesses the ecological benefits of overflowing surface water irrigation. Inundation was quantified by digitizing monthly changes in the inundated area from 2000 to 2018 in the oasis using 184 Landsat images. The results demonstrate that seasonal changes in the inundated area varied significantly, with maximum peaks occurring in February and August; a period of minimal inundation occurred in May. Differences in the July/August peak (i.e., July or August) in inundation dominated the inter-annual variations in the inundated area over the 19-year study period. The two peaks in the inundation area were temporally consistent with the vegetation’s seasonal water demand. Local residents have used ecological water to irrigate vegetation in different parts of the oasis during different seasons, an approach that expanded the inundated area. The February peak in the inundated area is closely linked to elevated downstream groundwater levels and the melting of ice along the river. The August peak is related to a peak in runoff from headwater areas. The minimum May value is correlated to a relatively low value in upstream runoff and an increase in agricultural water demand. Thus, natural factors control the intra-annual and inter-annual variations in the inundated area. Humans changed the spatial distribution of the inundated area and enhanced the water’s ecological benefits, but did not alter the correlation between peak periods of inundation and vegetation water demand. The results from this study improve our understanding of the benefits of the EWDP in the Tarim River Basin. Full article
(This article belongs to the Special Issue Wetland Monitoring Using Remote Sensing)
Show Figures

Figure 1

19 pages, 6116 KB  
Article
Inverse Trend in Runoff in the Source Regions of the Yangtze and Yellow Rivers under Changing Environments
by Houfa Wu, Zhenxin Bao, Jie Wang, Guoqing Wang, Cuishan Liu, Yanqing Yang, Dan Zhang, Shuqi Liang and Chengfeng Zhang
Water 2022, 14(12), 1969; https://doi.org/10.3390/w14121969 - 20 Jun 2022
Cited by 7 | Viewed by 2535
Abstract
The source regions of the Yangtze River (SRYZ) and the Yellow River (SRYR) are sensitive areas of global climate change. Hence, determining the variation characteristics of the runoff and the main influencing factors in this region would be of great significance. In this [...] Read more.
The source regions of the Yangtze River (SRYZ) and the Yellow River (SRYR) are sensitive areas of global climate change. Hence, determining the variation characteristics of the runoff and the main influencing factors in this region would be of great significance. In this study, different methods were used to quantify the contributions of climate change and other environmental factors to the runoff variation in the two regions, and the similarities and differences in the driving mechanisms of runoff change in the two regions were explored further. First, the change characteristics of precipitation, potential evapotranspiration, and runoff were analyzed through the observational data of the basin. Then, considering the non-linearity and non-stationarity of the runoff series, a heuristic segmentation algorithm method was used to divide the entire study period into natural and impacted periods. Finally, the effects of climate change and other environmental factors on runoff variation in two regions were evaluated comprehensively using three methods, including the improved double mass curve (IDMC), the slope change ratio of cumulative quantity (SCRCQ), and the Budyko-based elasticity (BBE). Results indicated that the annual precipitation and potential evapotranspiration increased during the study period in the two regions. However, the runoff increased in the SRYZ and decreased in the SRYR. The intra-annual distribution of the runoff in the SRYZ was unimodal during the natural period and bimodal in the SRYR. The mutation test indicated that the change points of annual runoff series in the SRYZ and SRYR occurred in 2004 and 1989, respectively. The attribution analysis methods yielded similar results that climate change had the greatest effect on the runoff variation in the SRYZ, with a contribution of 59.6%~104.6%, and precipitation contributed 65.3%~109.6% of the increase in runoff. In contrast, the runoff variation in the SRYR was mainly controlled by other environmental factors such as permafrost degradation, land desertification, and human water consumption, which contributed 83.7%~96.5% of the decrease in the runoff. The results are meaningful for improving the efficiency of water resources utilization in the SRYZ and SRYR. Full article
Show Figures

Figure 1

34 pages, 1620 KB  
Review
Permafrost Degradation and Its Hydrogeological Impacts
by Huijun Jin, Yadong Huang, Victor F. Bense, Qiang Ma, Sergey S. Marchenko, Viktor V. Shepelev, Yiru Hu, Sihai Liang, Valetin V. Spektor, Xiaoying Jin, Xinyu Li and Xiaoying Li
Water 2022, 14(3), 372; https://doi.org/10.3390/w14030372 - 26 Jan 2022
Cited by 84 | Viewed by 14383
Abstract
Under a warming climate, permafrost degradation has resulted in profound hydrogeological consequences. Here, we mainly review 240 recent relevant papers. Permafrost degradation has boosted groundwater storage and discharge to surface runoffs through improving hydraulic connectivity and reactivation of groundwater flow systems, resulting in [...] Read more.
Under a warming climate, permafrost degradation has resulted in profound hydrogeological consequences. Here, we mainly review 240 recent relevant papers. Permafrost degradation has boosted groundwater storage and discharge to surface runoffs through improving hydraulic connectivity and reactivation of groundwater flow systems, resulting in reduced summer peaks, delayed autumn flow peaks, flattened annual hydrographs, and deepening and elongating flow paths. As a result of permafrost degradation, lowlands underlain by more continuous, colder, and thicker permafrost are getting wetter and uplands and mountain slopes, drier. However, additional contribution of melting ground ice to groundwater and stream-flows seems limited in most permafrost basins. As a result of permafrost degradation, the permafrost table and supra-permafrost water table are lowering; subaerial supra-permafrost taliks are forming; taliks are connecting and expanding; thermokarst activities are intensifying. These processes may profoundly impact on ecosystem structures and functions, terrestrial processes, surface and subsurface coupled flow systems, engineered infrastructures, and socioeconomic development. During the last 20 years, substantial and rapid progress has been made in many aspects in cryo-hydrogeology. However, these studies are still inadequate in desired spatiotemporal resolutions, multi-source data assimilation and integration, as well as cryo-hydrogeological modeling, particularly over rugged terrains in ice-rich, warm (>−1 °C) permafrost zones. Future research should be prioritized to the following aspects. First, we should better understand the concordant changes in processes, mechanisms, and trends for terrestrial processes, hydrometeorology, geocryology, hydrogeology, and ecohydrology in warm and thin permafrost regions. Second, we should aim towards revealing the physical and chemical mechanisms for the coupled processes of heat transfer and moisture migration in the vadose zone and expanding supra-permafrost taliks, towards the coupling of the hydrothermal dynamics of supra-, intra- and sub-permafrost waters, as well as that of water-resource changes and of hydrochemical and biogeochemical mechanisms for the coupled movements of solutes and pollutants in surface and subsurface waters as induced by warming and thawing permafrost. Third, we urgently need to establish and improve coupled predictive distributed cryo-hydrogeology models with optimized parameterization. In addition, we should also emphasize automatically, intelligently, and systematically monitoring, predicting, evaluating, and adapting to hydrogeological impacts from degrading permafrost at desired spatiotemporal scales. Systematic, in-depth, and predictive studies on and abilities for the hydrogeological impacts from degrading permafrost can greatly advance geocryology, cryo-hydrogeology, and cryo-ecohydrology and help better manage water, ecosystems, and land resources in permafrost regions in an adaptive and sustainable manner. Full article
(This article belongs to the Special Issue Hydrological Impacts of Degrading Permafrost and Changing Climate)
Show Figures

Figure 1

24 pages, 6443 KB  
Article
Analysis on the Variation of Hydro-Meteorological Variables in the Yongding River Mountain Area Driven by Multiple Factors
by Kaijie Niu, Qingfang Hu, Yintang Wang, Hanbo Yang, Chuan Liang, Leizhi Wang, Lingjie Li, Xiting Li, Yong Du and Chengxi Li
Remote Sens. 2021, 13(16), 3199; https://doi.org/10.3390/rs13163199 - 12 Aug 2021
Cited by 10 | Viewed by 3064
Abstract
In recent decades, strong human activities have not only brought about climate change including both global warming and shifts in the weather patterns but have also caused anomalous variations of hydrological elements in different basins all around the world. Studying the mechanisms and [...] Read more.
In recent decades, strong human activities have not only brought about climate change including both global warming and shifts in the weather patterns but have also caused anomalous variations of hydrological elements in different basins all around the world. Studying the mechanisms and causes of these hydrological variations scientifically is the basis for the management of water resources and the implementation of ecological protection. Therefore, taking the Yongding River mountain area as a representative watershed in China, the changes of different observed and simulated hydro-meteorological variables and their possible causes are analyzed on an inter-annual scale based on ground based observations and remotely sensed data of hydrology, meteorology and underlying surface characteristics from 1956 to 2016. The results show that the annual natural runoff of Guanting hydrological station in the main stream of the Yongding River, Cetian hydrological station and Xiangshuibao hydrological station in the tributary of the Yongding River all have a significant decreasing trend and abrupt changes, and all the abrupt change points of the annual natural runoff series of the three hydrological stations appear in the early 1980s. On the inter-annual scale, the water balance model with double parameters is unable to effectively simulate the natural surface runoff after the abrupt change points. The annual average precipitation after the abrupt change points decreases by no more than 10%, compared with that before the abrupt change points. However, the precipitation from July to August, which is the main runoff-production period, decreases by more than 25%, besides the intra-annual temporal distribution of precipitation becoming uniform and a significant decrease in effective rainfall, which is the source of the runoff. Meanwhile, the NDVI in the basin show an increasing trend, while the groundwater level and land water storage decrease significantly. These factors do not lead only to the continuous reduction of the annual natural runoff in the Yongding River mountain area from 1956 to 2016, but also result in significant changes of the hydro-meteorological relationship in the basin. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Water Scarcity Assessment)
Show Figures

Figure 1

19 pages, 3596 KB  
Article
Future Runoff Variation and Flood Disaster Prediction of the Yellow River Basin Based on CA-Markov and SWAT
by Guangxing Ji, Zhizhu Lai, Haibin Xia, Hao Liu and Zheng Wang
Land 2021, 10(4), 421; https://doi.org/10.3390/land10040421 - 15 Apr 2021
Cited by 59 | Viewed by 5067
Abstract
The purpose of this paper is to simulate the future runoff change of the Yellow River Basin under the combined effect of land use and climate change based on Cellular automata (CA)-Markov and Soil & Water Assessment Tool (SWAT). The changes in the [...] Read more.
The purpose of this paper is to simulate the future runoff change of the Yellow River Basin under the combined effect of land use and climate change based on Cellular automata (CA)-Markov and Soil & Water Assessment Tool (SWAT). The changes in the average runoff, high extreme runoff and intra-annual runoff distribution in the middle of the 21st century are analyzed. The following conclusions are obtained: (1) Compared with the base period (1970–1990), the average runoff of Tangnaihai, Toudaoguai, Sanmenxia and Lijin hydrological stations in the future period (2040–2060) all shows an increasing trend, and the probability of flood disaster also tends to increase; (2) Land use/cover change (LUCC) under the status quo continuation scenario will increase the possibility of future flood disasters; (3) The spring runoff proportion of the four hydrological stations in the future period shows a decreasing trend, which increases the risk of drought in spring. The winter runoff proportion tends to increase; (4) The monthly runoff proportion of the four hydrological stations in the future period tends to decrease in April, May, June, July and October. The monthly runoff proportion tends to increase in January, February, August, September and December. Full article
(This article belongs to the Special Issue Advances in Hydrologic and Water Quality Modeling of Water Systems)
Show Figures

Figure 1

20 pages, 3844 KB  
Article
An Empirical Analysis of Sediment Export Dynamics from a Constructed Landform in the Wet Tropics
by Shahla Yavari, Neil McIntyre and Thomas Baumgartl
Water 2021, 13(8), 1087; https://doi.org/10.3390/w13081087 - 15 Apr 2021
Cited by 1 | Viewed by 2935
Abstract
Although plot-scale erosion experiments are numerous, there are few studies on constructed landforms. This limits the understanding of their long-term stability, which is especially important for planning mined land rehabilitation. The objective of this study was to gain insight into the erosion processes [...] Read more.
Although plot-scale erosion experiments are numerous, there are few studies on constructed landforms. This limits the understanding of their long-term stability, which is especially important for planning mined land rehabilitation. The objective of this study was to gain insight into the erosion processes in a 30 × 30 m trial plot on a mine waste rock dump in tropical northern Australia. The relationships between rainfall, runoff and suspended and bedload sediment export were assessed at annual, seasonal, inter-event and intra-event timescales. During a five-year study period, 231 rainfall–runoff–sediment export events were examined. The measured bedload and suspended sediments (mainly represented in nephelometric turbidity units (NTU)) showed the dominance of the wet season and heavy rainfall events. The bedload dominated the total mass, although the annual bedload diminished by approximately 75% over the five years, with greater flow energy required over time to mobilise the same bedload. The suspended load was more sustained, though it also exhibited an exhaustion process, with equal rainfall and runoff volumes and intensities, leading to lower NTU values over time. Intra-event NTU dynamics, including runoff-NTU time lags and hysteretic behaviours, were somewhat random from one event to the next, indicating the influence of the antecedent distribution of mobilisable sediments. The value of the results for supporting predictive modelling is discussed. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

20 pages, 4396 KB  
Article
Assessment of TMPA 3B42V7 and PERSIANN-CDR in Driving Hydrological Modeling in a Semi-Humid Watershed in Northeastern China
by Lu Zhang, Zhuohang Xin and Huicheng Zhou
Remote Sens. 2020, 12(19), 3133; https://doi.org/10.3390/rs12193133 - 24 Sep 2020
Cited by 16 | Viewed by 3260
Abstract
Recent developments of satellite precipitation products provide an unprecedented opportunity for better precipitation estimation, and thus broaden hydrological application. However, due to the errors and uncertainties of satellite products, a thorough validation is usually required before putting into the real hydrological application. As [...] Read more.
Recent developments of satellite precipitation products provide an unprecedented opportunity for better precipitation estimation, and thus broaden hydrological application. However, due to the errors and uncertainties of satellite products, a thorough validation is usually required before putting into the real hydrological application. As such, this study aims to provide a comprehensive evaluation on the performances of Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) 3B42V7 and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), as well as their adequacies in simulating hydrological processes in a semi-humid region in the northeastern China. It was found that TMPA 3B42V7 showed a superior performance at the daily and monthly time scales, and had a favorable capture of the rainfall-intensity distribution. Intra-annual comparisons indicated a better representation of TMPA 3B42V7 from January to September, whereas PERSIANN-CDR was more reliable from October to December. The Soil and Water Assessment Tool (SWAT) driven by gauge precipitation data performed excellently with NSE > 0.9, while the performances of TMPA 3B42V7- and PERSIANN-CDR-based models are satisfactory with NSE > 0.5. The performances varied under different flow levels and hydrological years. Water balance analysis indicated a better performance of TMPA 3B42V7 in simulating the hydrological processes, including evapotranspiration, groundwater recharge and total runoff. The runoff compositions (i.e., base flow, subsurface flow, and surface flow) driven by TMPA 3B42V7 were more accordant with the actual hydrological features. This study will not only help recognize the potential satellite precipitation products for local water resources management, but also be a reference for the poor-gauged regions with similar hydrologic and climatic conditions around the world, especially the northeastern China and western Russia. Full article
(This article belongs to the Special Issue Remote Sensing and Modeling of the Terrestrial Water Cycle)
Show Figures

Graphical abstract

Back to TopTop