Hydrological Modeling to Unravel the Spatiotemporal Heterogeneity and Attribution of Baseflow in the Yangtze River Source Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. SWAT Model
2.4. Baseflow Separation Approaches
2.5. Trend and Mutation Analysis
2.6. Attributions to Baseflow Variation
2.6.1. Decoupling Climate Change and Human Contribution
2.6.2. Estimation of Climate Factor Contribution
3. Results
3.1. SWAT Model Performance
3.2. Sensitivity Analysis
3.3. Statistical Analysis of Baseflow and Meteorological Factors
3.4. Spatiotemporal Variation of Baseflow
3.5. Attribution of Climate Change and Human Activities to Baseflow Variation
4. Discussion
4.1. Key Role of Baseflow in Streamflow Generation
4.2. Underlying Mechanisms of Baseflow and BFI Spatiotemporal Variations
4.3. Uncertainties and Limitations
5. Conclusions and Prospects
- (1)
- Precipitation, temperature, and baseflow in the SRYR exhibited significant upward trends. The baseflow during warm months was greater than that during cold months. On the contrary, the BFI in cold months was greater than that in warm months. Additionally, the baseflow and BFI exhibited distinct intra-annual distribution patterns—unimodal and bimodal, respectively.
- (2)
- The spatial distribution of baseflow increased from northwest to southeast, and more than 50% of the entire basin had an annual BFI value greater than 0.7, which insinuates that baseflow was the major contributor to runoff generation. The Tongtian River exhibited the highest baseflow values compared to other regions of the SRYR, and the baseflow and BFI values of the Dangqu River were greater than that of the other tributaries. The maximum BFI value occurred in the middle and lower reaches of the Tongtian River, and the smallest BFI values occurred in the Chumaer River and the upper reaches of the Tuotuo River.
- (3)
- The contributions of climate change and human activities to baseflow variability were 122% and −22%, and those to BFI variability were 60% and 40%, respectively. Precipitation contributed to the baseflow and BFI variations by 116% and 60%, respectively, while temperature exhibited contributions of 6% and 8%. All in all, the spatiotemporal variability in the baseflow and BFI primarily resulted from the combined influence of precipitation, temperature, and human activity (changing land cover).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ficklin, D.L.; Robeson, S.M.; Knouft, J.H. Impacts of Recent Climate Change on Trends in Baseflow and Stormflow in United States Watersheds. Geophys. Res. Lett. 2016, 43, 5079–5088. [Google Scholar] [CrossRef]
- Shao, J.; Xiong, Y.; Bu, H.; Wang, Z. Base flow variation in the source region of the Yangtze River and its meteorological influencing factors. Yangtze River 2022, 53, 61–65+71. [Google Scholar] [CrossRef]
- Xie, J.; Liu, X.; Jasechko, S.; Berghuijs, W.R.; Wang, K.; Liu, C.; Reichstein, M.; Jung, M.; Koirala, S. Majority of Global River Flow Sustained by Groundwater. Nat. Geosci. 2024, 17, 770–777. [Google Scholar] [CrossRef]
- Guisiano, P.A.; Santoni, S.; Huneau, F.; Mattei, A.; Garel, E. Garel Using Natural Tracers and Calibrated Analytical Filter to Highlight Baseflow Contribution to Mountainous Mediterranean Rivers in a Context of Climate Change. J. Hydrol. 2024, 641, 131842. [Google Scholar] [CrossRef]
- Duan, H.; Li, L.; Kong, Z.; Ye, X. Combining the Digital Filtering Method with the SWAT Model to Simulate Spatiotemporal Variations of Baseflow in a Mountainous River Basin. J. Hydrol. Reg. Stud. 2024, 56, 101972. [Google Scholar] [CrossRef]
- Qian, K.; Lv, J.; Chen, T.; Liang, S.; Wan, L. A review on base-flow calculation and its application. Hydrogeol. Eng 2011, 38, 20–25+31. [Google Scholar] [CrossRef]
- Sundar, B.S.; Kumar, J.M.; Bhumika, U. Assessing Efficacy of Baseflow Separation Techniques in a Himalayan River Basin, Northern India. Environ. Process. 2024, 11, 4. [Google Scholar]
- Nagy, E.D.; Szilagyi, J.; Torma, P. Calibrating the Lyne-Hollick Filter for Baseflow Separation Based on Catchment Response Time. J. Hydrol. 2024, 638, 131483. [Google Scholar] [CrossRef]
- He, S.; Yan, Y.; Yu, K.; Xin, X.; Guzman, S.M.; Lu, J.; He, Z. Baseflow Estimation Based on a Self-Adaptive Non-Linear Reservoir Algorithm in a Rainy Watershed of Eastern China. J. Environ. Manag. 2023, 332, 117379. [Google Scholar] [CrossRef]
- Tunqui Neira, J.M.; Tallec, G.; Andréassian, V.; Mouchel, J.-M. Revisiting the Hydrograph Separation Issue Using High-Frequency Chemical Information. Enviro. Model Assess 2024, 29, 813–826. [Google Scholar] [CrossRef]
- Mei, Y.; Wang, D.; Zhu, J.; Tang, G.; Cai, C.; Shen, X.; Hong, Y.; Zhang, X. Optimal Baseflow Separation Through Chemical Mass Balance: Comparing the Usages of Two Tracers, Two Concentration Estimation Methods, and Four Baseflow Filters. Water Resour. Res. 2024, 60, e2023WR036386. [Google Scholar] [CrossRef]
- Anh, V.T.; Anh, H.L.; Kien, M.D.; Hoai, V.; Nhan, D.D.; Kumar, U.S. Stream Analysis for a Sub-Catchment of Red River (Vietnam) Using Isotopic Technique and Recursive Digital Filter Method. J. Hydro-Environ. Res. 2024, 52, 1–16. [Google Scholar] [CrossRef]
- Lyu, S.; Guo, C.; Zhai, Y.; Huang, M.; Zhang, G.; Zhang, Y.; Cheng, L.; Liu, Q.; Zhou, Y.; Woods, R.; et al. Characterising Baseflow Signature Variability in the Yellow River Basin. J. Environ. Manag. 2023, 345, 118565. [Google Scholar] [CrossRef] [PubMed]
- Malede, D.A.; Alamirew, T.; Andualem, T.G. Integrated and Individual Impacts of Land Use Land Cover and Climate Changes on Hydrological Flows over Birr River Watershed, Abbay Basin, Ethiopia. Water 2023, 15, 166. [Google Scholar] [CrossRef]
- Narimani, R.; Jun, C.; Nezhad, S.M.; Bateni, S.M.; Lee, J.; Baik, J. The Role of Climate Conditions and Groundwater on Baseflow Separation in Urmia Lake Basin, Iran. J. Hydrol. Reg. Stud. 2023, 47, 101383. [Google Scholar] [CrossRef]
- Nong, X.; Nie, W.; Ma, X. Baseflow variation and driving factors in the Blow-sand region of Wuding River Basin. Soil Water Conserv. 2023, 37, 103–113. [Google Scholar] [CrossRef]
- Liu, Z.; Sheng, F.; Liu, S.Y.; Wang, Y.Y.; Zhou, C.M.; Gu, C.J. Baseflow Variations and Its Causes in a Subtropical Watershed of Southern China. J. Mt. Sci. 2022, 19, 2817–2829. [Google Scholar] [CrossRef]
- Lamichhane, M.; Phuyal, S.; Mahato, R.; Shrestha, A.; Pudasaini, U.; Lama, S.D.; Chapagain, A.R.; Mehan, S.; Neupane, D. Assessing Climate Change Impacts on Streamflow and Baseflow in the Karnali River Basin, Nepal: A CMIP6 Multi-Model Ensemble Approach Using SWAT and Web-Based Hydrograph Analysis Tool. Sustainability 2024, 16, 3262. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Duan, Q.; Lei, X.; Li, X.; Li, H. Dynamics and Attributions of Baseflow in the Semiarid Loess Plateau. J. Geophys. Res. Atmos. 2019, 124, 3684–3701. [Google Scholar] [CrossRef]
- Liu, L.; Cao, W.; Shao, Q.; Huang, L.; He, T. Characteristics of Land Use/Cover and Macroscopic Ecological Changes in the Headwaters of the Yangtze River and of the Yellow River over the Past 30 Years. Sustainability 2016, 8, 237. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Shamsuddin, S.; Li, H. An Optimized Baseflow Separation Method for Assessment of Seasonal and Spatial Variability of Baseflow and the Driving Factors. J. Geogr. Sci. 2021, 31, 1875–1896. [Google Scholar] [CrossRef]
- Murray, J.; Ayers, J.; Brookfield, A. The Impact of Climate Change on Monthly Baseflow Trends across Canada. J. Hydrol. 2023, 618, 129254. [Google Scholar] [CrossRef]
- Biswas, S.; Biswas, S. Estimation of Monthly Snowmelt Contribution to Runoff Using Gridded Meteorological Data in SWAT Model for Upper Alaknanda River Basin, India. Env. Monit Assess 2024, 196, 86. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Qiu, D.; Wu, C.; Mu, X.; Zhao, G.; Sun, W.; Gao, P. Quantifying Climate and Anthropogenic Impacts on Runoff Using the SWAT Model, a Budyko-Based Approach and Empirical Methods. Hydrol. Sci. J. 2023, 68, 1358–1371. [Google Scholar] [CrossRef]
- Chiphang, N. Assessment of Baseflow Estimates Using ArcSWAT and Digital Filter Method in Mago River Basin of Arunachal Pradesh. Sustain. Water Resour. Manag. 2023, 9, 161. [Google Scholar] [CrossRef]
- Lee, J.; Park, M.; Min, J.-H.; Na, E.H. Integrated Assessment of the Land Use Change and Climate Change Impact on Baseflow by Using Hydrologic Model. Sustainability 2023, 15, 12465. [Google Scholar] [CrossRef]
- Xu, X.; Dong, L.; Zhao, Y.; Wang, Y. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the Characteristics of Atmospheric Water Circulation. Chin. Sci. Bull. 2019, 64, 2830–2841. [Google Scholar]
- Di, Y.; Zhang, Y.; Zeng, H.; Tang, Z. Effects of Changed Asian Water Tower on Tibetan Plateau Ecosystem. Chin. Acad. Sci. 2019, 34, 1322–1331. [Google Scholar] [CrossRef]
- Li, Q. Investigation of Runoff Evolution at the Headwaters of Yangtze River and Its Driving Forces. Yangtze River Sci. Res. 2018, 35, 1–5+16. [Google Scholar]
- Li, G.; Fan, L. Comparative analysis of base flow segmentation methods and characteristics of base flow in the source area of the Yangtze River. Yangtze River Sci. Res 2023, 40, 185–190. [Google Scholar]
- Luo, K. Response of Hydrological Systems to the Intensity of Ecological Engineering. J. Environ. Manag. 2021, 296, 113173. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Xu, J.; Wang, Y. Historical and Future Changes of Blue Water and Green Water Resources in the Yangtze River Source Region, China. Theor. Appl. Clim. 2019, 138, 1035–1047. [Google Scholar] [CrossRef]
- Ahmed, N.; Wang, G.; Lü, H.; Booij, M.J.; Marhaento, H.; Prodhan, F.A.; Ali, S.; Ali Imran, M. Attribution of Changes in Streamflow to Climate Change and Land Cover Change in Yangtze River Source Region, China. Water 2022, 14, 259. [Google Scholar] [CrossRef]
- Naveed, A.; Wang, G.-x.W.; Oluwafemi, A.; Munir, S.; Hu, Z.-y.; Shakoor, A.; Imran, M.A. Temperature Trends and Elevation Dependent Warming during 1965–2014 in Headwaters of Yangtze River, Qinghai Tibetan Plateau. J. Mountain Sci. 2020, 17, 556–571. [Google Scholar]
- Yu, G.; Liu, L.; Li, Z.; Li, Y.; Huang, H.; Brierley, G.; Blue, B.; Wang, Z.; Pan, B. Fluvial diversity in relation to valley setting in the source region of the Yangtze and Yellow Rivers. J. Geogr. Sci. 2013, 23, 817–832. [Google Scholar] [CrossRef]
- Ali, S. Climatic Variability and Periodicity for Upstream Sub-Basins of the Yangtze River, China, Water 2020. Water 2021, 12, 842. [Google Scholar]
- Yuan, J.; Xu, Y.; Wu, L.; Wang, J.; Wang, Y.; Xu, Y.; Dai, X. Variability of Precipitation Extremes over the Yangtze River Delta, Eastern China, during 1960–2016. Theor. Appl. Climatol. 2019, 138, 305–319. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Hock, R. Temperature Index Melt Modelling in Mountain Areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Zhao, H.; Li, H.; Xuan, Y.; Li, C.; Ni, H. Improvement of the SWAT Model for Snowmelt Runoff Simulation in Seasonal Snowmelt Area Using Remote Sensing Data. Remote Sens. 2022, 14, 5823. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Eckhardt, K. A Comparison of Baseflow Indices, Which Were Calculated with Seven Different Baseflow Separation Methods. J. Hydrol. 2008, 352, 168–173. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, J.; Li, Y.; Liu, Y.; Ren, H.; Yang, M. Revealing Temporal Variation of Baseflow and Its Underlying Causes in the Source Region of the Yangtze River (China). Hydrol. Res. 2024, 55, 392–411. [Google Scholar] [CrossRef]
- Stefano, F.; Roberto, D.; Francesco, V.; Giuseppe, M. On the Role of Serial Correlation and Field Significance in Detecting Changes in Extreme Precipitation Frequency. Water Resour. Res. 2021, 57, e2021WR030172. [Google Scholar]
- Ahiablame, L.; Sheshukov, A.Y.; Rahmani, V.; Moriasi, D. Annual Baseflow Variations as Influenced by Climate Variability and Agricultural Land Use Change in the Missouri River Basin. J. Hydrol. 2017, 551, 188–202. [Google Scholar] [CrossRef]
- Miller, M.P.; Buto, S.G.; Susong, D.D.; Rumsey, C.A. The Importance of Base Flow in Sustaining Surface Water Flow in the Upper Colorado River Basin. Water Resour. Res. 2016, 52, 3547–3562. [Google Scholar] [CrossRef]
- Gonzales, A.L.; Nonner, J.; Heijkers, J.; Uhlenbrook, S. Comparison of Different Base Flow Separation Methods in a Lowland Catchment. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 2055–2068. [Google Scholar] [CrossRef]
- Guo, X.; Feng, Q.; Yin, Z.; Si, J.; Xi, H.; Zhao, Y. Critical Role of Groundwater Discharge in Sustaining Streamflow in a Glaciated Alpine Watershed, Northeastern Tibetan Plateau. Sci. Total Environ. 2022, 822, 153578. [Google Scholar] [CrossRef]
- Luo, K. Contribution of Ecological Conservation Programs and Climate Change to Hydrological Regime Change in the Source Region of the Yangtze River in China. Reg. Env. Change 2022, 22, 10. [Google Scholar] [CrossRef]
- Ayers, J.R.; Villarini, G.; Schilling, K.; Jones, C. On the Statistical Attribution of Changes in Monthly Baseflow across the U.S. Midwest. J. Hydrol. 2020, 592, 125551. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D. Elevation-Dependent Warming in Mountain Regions of the World. Nat. Clim. Change 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Yi, W.; Feng, Y.; Liang, S.; Kuang, X.; Yan, D.; Wan, L. Increasing Annual Streamflow and Groundwater Storage in Response to Climate Warming in the Yangtze River Source Region. Environ. Res. Lett. 2021, 16, 084011. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Striegl, R.G. Increased Groundwater to Stream Discharge from Permafrost Thawing in the Yukon River Basin: Potential Impacts on Lateral Export of Carbon and Nitrogen. Geophys. Res. Lett. 2007, 34, 2007GL030216. [Google Scholar] [CrossRef]
- Lyu, S.; Zhai, Y.; Zhang, Y.; Cheng, L.; Kumar Paul, P.; Song, J.; Wang, Y.; Huang, M.; Fang, H.; Zhang, J. Baseflow Signature Behaviour of Mountainous Catchments around the North China Plain. J. Hydrol. 2022, 606, 127450. [Google Scholar] [CrossRef]
- Waterman, B.R.; Alcantar, G.; Thomas, S.G.; Kirk, M.F. Spatiotemporal Variation in Runoff and Baseflow in Watersheds Located across a Regional Precipitation Gradient. J. Hydrol. Reg. Stud. 2022, 41, 101071. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and Global Climate Change: The Role of Wetland Restoration in a Changing World. Wetl. Ecol. Manag. 2009, 17, 71. [Google Scholar] [CrossRef]
- Min, J.-H.; Perkins, D.B.; Jawitz, J.W. Wetland-Groundwater Interactions in Subtropical Depressional Wetlands. Wetlands 2010, 30, 997–1006. [Google Scholar] [CrossRef]
- Bertassello, L.E.; Rao, P.S.C.; Park, J.; Jawitz, J.W.; Botter, G. Stochastic Modeling of Wetland-Groundwater Systems. Adv. Water Resour. 2018, 112, 214–223. [Google Scholar] [CrossRef]
- Bullock, A.; Acreman, M. The Role of Wetlands in the Hydrological Cycle. Hydrol. Earth Syst. Sci. 2003, 7, 358–389. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater Recharge Rates and Surface Runoff Response to Land Use and Land Cover Changes in Semi-Arid Environments. Ecol. Process. 2016, 5, 16. [Google Scholar] [CrossRef]
- Paule-Mercado, M.A.; Lee, B.Y.; Memon, S.A.; Umer, S.R.; Salim, I.; Lee, C.-H. Influence of Land Development on Stormwater Runoff from a Mixed Land Use and Land Cover Catchment. Sci. Total Environ. 2017, 599–600, 2142–2155. [Google Scholar] [CrossRef] [PubMed]
- Bayard, D.; Stähli, M.; Parriaux, A.; Flühler, H. The Influence of Seasonally Frozen Soil on the Snowmelt Runoff at Two Alpine Sites in Southern Switzerland. J. Hydrol. 2005, 309, 66–84. [Google Scholar] [CrossRef]
- Lyu, H.; Wu, T.; Su, X.; Wang, Y.; Wang, C.; Yuan, Z. Factors Controlling the Rise and Fall of Groundwater Level during the Freezing-Thawing Period in Seasonal Frozen Regions. J. Hydrol. 2022, 606, 127442. [Google Scholar] [CrossRef]
Data | Details | Periods | Sources |
---|---|---|---|
DEM map | Raster 30 m-resolution | - | Geospatial Data Cloud (https://www.gscloud.cn) |
LUCC map | Raster 30 m-resolution | 1980, 2020 | Resource and Environment Science and Data Center, China (https://www.resdc.cn/Default.aspx) |
Soil type map | Raster 30 m-resolution | - | Harmonized World Soil Database v 1.2 |
Meteorological data | Daily | 1963–2020 | China Meteorological Data Service Centre (http://data.cma.cn/) |
Hydrological data | Daily | 1963–2020 | Zhimenda Hydrological Station |
Parameter | Parameter Definition | Fitted_Value |
---|---|---|
r_CN2.mgt | SCS runoff curve number | −0.0868 |
v_ALPHA_BF.gw | Baseflow alpha factor | 0.857 |
v_GW_DELAY.gw | Groundwater delay | 116.939995 |
v_GWQMN.gw | Threshold depth of water in the shallow aquifer | 1.366 |
v_GW_REVAP.gw | Groundwater “revap” coefficient | 0.1182 |
v_ESCO.hru | Soil evaporation compensation factor | 0.8034 |
v_CH_N2.rte | Manning’s “n” value for the main channel | 0.2157 |
v_CH_K2.rte | Effective hydraulic conductivity in main channel alluvium | 19.375 |
v_ALPHA_BNK.rte | Baseflow alpha factor for bank storage | 0.289 |
r_SOL_AWC(1).sol | Available water capacity of the soil layer | −0.0062 |
r_SOL_K(1).sol | Saturated hydraulic conductivity | 0.76 |
r_SOL_BD(1).sol | Moist bulk density | 0.4515 |
v_SFTMP.bsn | Snowfall temperature | 4.75 |
v_SMTMP.bsn | Snow melt base temperature | 2.79 |
v_SMFMX.bsn | Maximum melt rate of snow during the year | 8.145 |
v_SMFMN.bsn | Minimum melt rate of snow during the year | 1.028 |
v_TIMP.bsn | Snow pack temperature lag factor | 0.787 |
v_SNOCOVMX.bsn | Minimum snow water content that corresponds to 100% snow cover | 1.863 |
v_SNO50COV.bsn | Snow water equivalent that corresponds to 50% snow cover | 0.4395 |
Factors | Trend | ||
---|---|---|---|
Slope | U | Significance (a = 0.05, Ua/2 = 1.96) | |
Temperature | 0.04 °C/a | 6.499 | S+ |
Precipitation | 1.35 mm/a | 2.961 | S+ |
Baseflow | 2.22 m³/s.a | 2.274 | S+ |
BFI | 0.0002 | 2.595 | S+ |
Baseflow | BFI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
△Bobs | △Bsim | Contribution (%) | △BFIobs | △BFIsim | Contribution (%) | ||||||
C | P | T | H | C | P | T | H | ||||
111.3 | 135.7 | 122 | 116 | 6 | −22 | 0.006 | 0.003 | 60 | 52 | 8 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Wu, G.; Shu, L.; Tang, W.; Lu, C.; Liu, B.; Niu, S.; Li, Y.; Wang, Y. Hydrological Modeling to Unravel the Spatiotemporal Heterogeneity and Attribution of Baseflow in the Yangtze River Source Area, China. Water 2024, 16, 2892. https://doi.org/10.3390/w16202892
Ren H, Wu G, Shu L, Tang W, Lu C, Liu B, Niu S, Li Y, Wang Y. Hydrological Modeling to Unravel the Spatiotemporal Heterogeneity and Attribution of Baseflow in the Yangtze River Source Area, China. Water. 2024; 16(20):2892. https://doi.org/10.3390/w16202892
Chicago/Turabian StyleRen, Huazhun, Guangdong Wu, Longcang Shu, Wenjian Tang, Chengpeng Lu, Bo Liu, Shuyao Niu, Yunliang Li, and Yuxuan Wang. 2024. "Hydrological Modeling to Unravel the Spatiotemporal Heterogeneity and Attribution of Baseflow in the Yangtze River Source Area, China" Water 16, no. 20: 2892. https://doi.org/10.3390/w16202892
APA StyleRen, H., Wu, G., Shu, L., Tang, W., Lu, C., Liu, B., Niu, S., Li, Y., & Wang, Y. (2024). Hydrological Modeling to Unravel the Spatiotemporal Heterogeneity and Attribution of Baseflow in the Yangtze River Source Area, China. Water, 16(20), 2892. https://doi.org/10.3390/w16202892