Factors Influencing Seasonal Changes in Inundation of the Daliyaboyi Oasis, Lower Keriya River Valley, Central Tarim Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
Data Collection
2.3. Methods
2.3.1. Geometric Correction
2.3.2. Inundation Area Digitization, Verification and Statistical Analysis
2.3.3. Hydrological and Meteorological Data and Field Investigations
3. Results
3.1. Temporal Changes in Inundation Area within the Daliyaboyi Oasis
3.1.1. Inter-Annual Changes
3.1.2. Intra-Annual Variations and Spatial Distribution
3.2. Downstream Human Regulation
4. Discussion
4.1. Factors Controlling Seasonal Variations in Inundation Area
4.1.1. Peak Values in Inundation Area during July and August
4.1.2. Peak Values in Inundation Area during February/March
4.1.3. The May Minimums in Inundation Area
4.2. Benefits of the Ecological Water Diversion
4.3. Relationship between Intra-Annual Changes in Inundation Area and the Period of Vegetation Water Demand
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, J.M.; Liu, T.S. The age of the Taklimakan Desert. Science 2006, 312, 1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Z.L. Research on the Impacts of Land Utilization to Ecology & Environment in Xinjiang and the Correspondent Countermeasures; Meteorological Press: Beijing, China, 1996; pp. 82–174. [Google Scholar]
- Zhong, W.; Xie, H.B. The preliminary study on historical evolution of man-land relationship in extreme arid area—Taking Tarim Basin as example. J. Xinjiang Univ. Nat. Sci. Ed. 2000, 17, 65–71. [Google Scholar]
- Tang, Q.C.; Zhang, J.B. Water resources and Eco-environment Protection in the Arid Regions in Northwest of China. Prog. Hum. Geogr. 2001, 20, 227–233. [Google Scholar]
- Hamid, Y.; Pan, X.L.; Tashpolat, T.; Ernst, G.; Zhang, F. Water resource development in Tarim Basin and its eco-environmental effects. Resour. Sci. 2002, 24, 48–54. [Google Scholar]
- Chen, Y.N.; Li, W.H.; Xu, H.L.; Liu, J.Z.; Zhang, H.F.; Chen, Y.P. The influence of groundwater on vegetation in the lower reaches of Tarim Basin, China. Acta Geogr. Sin. 2003, 58, 542–549. [Google Scholar]
- Gao, Q.Z. Water resources development and effect on oasis eco-environment at the south edge of Taklimakan Desert. J. Desert Res. 2004, 24, 286–293. [Google Scholar]
- Qian, Y.B.; Fan, Z.L.; Lei, J.Q.; Wu, Z.N. Exploitation of water and land resources and its ecoenvironment issues in Xinjiang of China in recent 50 a. J. Arid Land Resour Environ. 2006, 20, 58–63. [Google Scholar]
- Chen, Y.N.; Zhang, X.L.; Zhu, X.M.; Li, W.H.; Zhang, Y.M.; Xu, H.L.; Zhang, H.F.; Chen, Y.P. Analysis on the ecological benefits of the stream water conveyance to the dried-up river of the lower reaches of Tarim River, China. Sci. China Ser. D Earth Sci. 2004, 47, 1053–1064. [Google Scholar] [CrossRef]
- Yang, G.; Guo, Y.P. The change and prospect of vegetation in the end of the lower reaches of Tarim River after ecological water delivering. J. Desert Res. 2004, 24, 167–172. [Google Scholar]
- Deng, M.J.; Yang, P.N.; Zhou, H.Y.; Xu, H.L. Water conversion and strategy of ecological water conveyance in the lower reaches of the Tarim River. Arid Zone Res. 2017, 34, 717–726. [Google Scholar]
- Deng, M.J.; Zhou, H.Y.; Xu, H.L.; Ling, H.B.; Zhang, P. Research on the ecological operation in the lower reaches of Tarim River based on water conveyance. Sci. Sin. Tech. 2016, 46, 864–876. [Google Scholar]
- Chen, X.; Huang, Y.; Qian, J.; Liu, H.L.; Feng, X.W.; Liu, Y.; Bao, A.M.; Wang, W.S. Simulation analysis on the regulation of overflow ecological water consumption in arid areas. Sci. China Ser. D Earth Sci. 2007, 50, 1–8. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, X.; Qian, J.; Wang, W.S.; Bao, A.M. Eco-gate flood model of Tarim River Basin and its application—A Case study of Canmulik. J. Nat. Resour. 2007, 22, 37–43. [Google Scholar]
- Tursun, K.; Shi, L.; Han, G.H.; Mannisaguli, T. Response of vegetation and desertification to groundwater change due to emergency water supply in lower reaches of Tarim River. J. Desert Res. 2008, 28, 1033–1038. [Google Scholar]
- Ye, Z.X.; Chen, Y.N.; Li, W.H.; Yan, Y.; Wan, J.H. Groundwater fluctuations induced by ecological water conveyance in the lower Tarim River, Xinjiang, China. J. Arid Environ. 2009, 73, 726–732. [Google Scholar] [CrossRef]
- Li, W.H.; Hao, X.M.; Chen, Y.J.; Zhang, L.H.; Ma, X.D.; Zhou, H.H. Response of groundwater chemical characteristics to ecological water conveyance in the lower reaches of the Tarim River, Xinjiang, China. Hydrol. Process. 2010, 24, 187–195. [Google Scholar] [CrossRef]
- Zhang, J.F.; Li, G.M.; Zhang, Y.; Bao, A.M.; Chen, X. Responses of groundwater levels to intermittent water transfer in the lower Tarim River. Chin. J. Geophys. 2012, 55, 622–630. [Google Scholar]
- Chen, Y.N.; Li, W.H.; Xu, C.C.; Ye, Z.X.; Chen, Y.P. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin. Environ. Earth Sci. 2015, 73, 547–558. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Gulimire, H.; Su, L.T.; Zhang, Y. Response process of groundwater table to ecological water conveyance in the lower reaches of Tarim River riparian zone. Arid Land Geogr. 2017, 40, 979–986. [Google Scholar]
- Chen, Y.J.; Chen, Y.N.; Li, W.H.; Liu, J.Z.; Chen, Y.P. The reaction of groundwater chemical characteristics to the eco-water conveyance in the lower Tarim River. Acta Geogr. Sin. 2005, 60, 309–318. [Google Scholar]
- Chen, Y.J.; Liu, J.Z.; Chen, Y.N.; Li, X.G.; Zhu, H.Y. Analysis of the relationship between species diversity and hydrologic factors during an interval of intermittent water delivery at the Lower Reaches of Tarim River, China. Acta Ecologi. Sin. 2013, 33, 2212–2224. [Google Scholar] [CrossRef] [Green Version]
- Li, W.H.; Chen, Y.J.; Chen, Y.P.; Huang, X. Effects of ecological stream water transfusion on groundwater level and quality in the lower reaches of the Tarim River. Resour. Sci. 2006, 28, 157–163. [Google Scholar]
- Zhao, Z.Y.; Wang, R.H.; Sun, H.B.; Zhang, H.Z. Assessment of water-recharging based on ecological features of riparian forest in the lower reaches of Tarim River. Chin. Sci. Bull. 2006, 51, 37–42. [Google Scholar] [CrossRef]
- Xu, H.L.; Ye, M.; Li, J.M. Changes in groundwater levels and the response of natural vegetation to transfer of water to the lower reaches of the Tarim River. J. Environ. Sci. 2007, 19, 1199–1207. [Google Scholar] [CrossRef]
- Tao, H.; Gemmer, M.; Song, Y.D.; Jiang, T. Ecohydrological responses on water diversion in the lower reaches of the Tarim River, China. Water Resour. Res. 2008, 44, W08422. [Google Scholar] [CrossRef]
- Deng, X.Y.; Xu, H.L.; Ye, M.; Li, B.L.; Fu, J.Y.; Yang, Z.F. Impact of long-term zero-flow and ecological water conveyance on the radial increment of Populus euphratica in the lower reaches of the Tarim River, Xinjiang, China. Reg. Envir. Chang. 2015, 15, 13–23. [Google Scholar] [CrossRef]
- Bao, A.M.; Huang, Y.; Ma, Y.G.; Guo, H.; Wang, Y.Q. Assessing the effect of EWDP on vegetation restoration by remote sensing in the lower reaches of Tarim River. Ecol. Indic. 2017, 74, 261–275. [Google Scholar] [CrossRef]
- Ling, H.B.; Zhang, P.; Guo, B.; Xu, H.L.; Ye, M.; Deng, X.Y. Negative feedback adjustment challenges reconstruction study from tree rings: A study case of response of Populus euphratica to river discontinuous flow and ecological water conveyance. Sci. Total Environ. 2017, 574, 109–119. [Google Scholar] [CrossRef]
- Ling, H.B.; Xu, H.L.; Guo, B.; Deng, X.Y.; Zhang, P.; Wang, X.Y. Regulating water disturbance for mitigating drought stress to conserve and restore a desert riparian forest ecosystem. J. Hydrol. 2019, 572, 659–670. [Google Scholar] [CrossRef]
- Fu, A.H.; Li, W.H.; Chen, Y.N.; Wang, Y.; Hao, H.C.; Li, Y.P.; Sun, F.; Zhou, H.H.; Zhu, C.G.; Hao, X.M. The effects of ecological rehabilitation projects on the resilience of an extremely drought-prone desert riparian forest ecosystem in the Tarim River Basin, Xinjiang, China. Sci. Rep. 2021, 11, 18485. [Google Scholar] [CrossRef]
- Dou, X.; Ma, X.F.; Huo, T.C.; Zhu, J.T.; Zhao, C.Y. Assessment of the environmental effects of ecological water conveyance over 31 years for a terminal lake in Central Asia. Catena 2022, 208, 105725. [Google Scholar] [CrossRef]
- Huang, P.Y. A study on restricted factor of natural distribution of some desert plants in Xinjiang. J. Arid Land Resour. Environ. 1990, 4, 59–67. [Google Scholar]
- Tang, Q.C. Formation and transformation of runoff in arid regions of China. J. Nat. Resour. 1990, 5, 1–10. [Google Scholar]
- Gao, X.; Ye, B.S.; Zhang, S.Q.; Qiao, C.J.; Zhang, X.W. Glacier runoff variation and its influence on river runoff during 1961–2006 in the Tarim River Basin, China. Sci. China Earth Sci. 2010, 53, 880–891. [Google Scholar] [CrossRef]
- Chen, Y.N.; Wumaierjiang, W.; Aikeremu, A.; Cheng, Y.; Chen, Y.P.; Hao, X.M.; Zhu, C.G.; Wang, Y. Monitoring and analysis of ecological benefits of water conveyance in the lower reaches of Tarim River in recent 20 years. Arid Land Geogr. 2021, 44, 605–611. [Google Scholar]
- Fan, Z.L.; Alishir, K.; Xu, H.L.; Zhang, Q.Q.; Abdumijiti. Changes of Tarim River and evolution of Lop Nur. Quat. Sci. 2009, 29, 232–240. [Google Scholar]
- Chen, H.S. Effect of water in eco-geographic environment of the Keriya River Valley. J. Desert Res. 1988, 8, 38–53. [Google Scholar]
- Zhu, Z.D.; Lu, J.H.; Jiang, W.Z. Study on formation and development of aeolian landform and trend of environmental change at lower reach of the Keriya River, Taklimakan Desert. J. Desert Res. 1988, 8, 1–10. [Google Scholar]
- Fan, Z.L.; Ji, F. The changes of natural environment and the green corridor protection in middle-lower reaches of the Keliya River. Arid Zone Res. 1989, 16–24. [Google Scholar]
- Yang, Y.C. Formation and evolution on Keliya River landforms. Arid Land Geogr. 1990, 13, 37–45. [Google Scholar]
- Kazama, S.; Hagiwara, T.; Ranjan, P.; Sawamoto, M. Evaluation of groundwater resources in wide inundation areas of the Mekong River basin. J. Hydrol. 2007, 340, 233–243. [Google Scholar] [CrossRef]
- Huang, C.Q.; Peng, Y.; Lang, M.G.; Yeo, I.Y.; McCarty, G. Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sens. Environ. 2014, 141, 231–242. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Wu, J.P. Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and MODIS imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 350–362. [Google Scholar] [CrossRef]
- Thomas, R.F.; Kingsford, R.T.; Lu, Y.; Cox, S.J.; Sims, N.C.; Hunter, S.J. Mapping inundation in the heterogeneous floodplain wetlands of the Macquarie marshes, using Landsat Thematic Mapper. J. Hydrol. 2015, 524, 194–213. [Google Scholar] [CrossRef]
- Smith, L.C. Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Process. 1997, 11, 1427–1439. [Google Scholar] [CrossRef]
- Hall, A.; Thomas, R.F.; Wassens, S. Mapping the maximum inundation extent of lowland intermittent riverine wetland depressions using LiDAR. Remote Sens. Environ. 2019, 233, 111376. [Google Scholar] [CrossRef]
- Fuentes, I.; Padarian, J.; Ogtrop, F.V.; Vervoort, R.W. Spatiotemporal evaluation of inundated areas using MODIS imagery at a catchment scale. J. Hydrol. 2019, 573, 952–963. [Google Scholar] [CrossRef]
- Williams, D.L.; Goward, S.; Arvidson, T. Landsat: Yesterday, today, and tomorrow. Photogramm. Eng. Remote Sens. 2006, 72, 1171–1178. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Wang, J.Z.; Ding, J.L.; Li, G.N.; Liang, J.; Yu, D.L.; Aishan, T.; Zhang, F.; Yang, J.M.; Abulimiti, A.; Liu, J. Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. Catena 2019, 177, 189–201. [Google Scholar] [CrossRef]
- Wang, J.Z.; Shi, T.Z.; Yu, D.L.; Teng, D.X.; Ge, X.Y.; Zhang, Z.P.; Yang, X.D.; Wang, H.X.; Wu, G.F. Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China. Environ. Pollut. 2020, 266, 115412. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.C.; Chen, Y.; Wang, J.Z. Combined use of Sentinel-2 and Landsat 8 to monitor water surface area dynamics using Google Earth Engine. Remote Sens. Lett. 2020, 11, 687–696. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ. 2008, 112, 3112–3130. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Zhang, F.; Luo, G.M.; Guo, Y.C.; Zheng, J.H.; Wu, S.X.; Keram, Q.; Liu, S.H.; Shi, Q.D. Influence of natural and anthropogenic controls on runoff in the Keriya River, central Tarim Basin, China. PLoS ONE 2022, 17, e0269132. [Google Scholar] [CrossRef]
- Zhou, X.J.; Zhu, F.; Li, S.Q. The formation and evolution of oasis in the Keriya River Valley. Quat. Sci. 1994, 249–255. [Google Scholar]
- Zhou, X.J.; Li, B.S.; Zhu, F.; Wang, Y. The research on the development and evolution of the oasis of Keriya River in the Tarim Basin of Xinjiang. Yunnan Geogr. Environ. Res. 1996, 8, 44–57. [Google Scholar]
- Wei, Y.L. Yutian County Annals; Xinjiang People’s Publishing House: Urumqi, China, 2006; pp. 301–308. [Google Scholar]
- Ni, P.R. History, present situation and evolution prospect of Daliyaboyi Oasis. Arid Zone Res. 1993, 10, 12–18. [Google Scholar]
- Huang, J.J.; Zhang, F.; Shi, Q.D.; Jin, L.L. Variation characteristics for temperature and relative humidity of the natural oasis in the hinterland of the Taklamakan Desert for 2015–2016. J. Xinjiang. Univ. Nat. Sci. Ed. 2019, 36, 267–275. [Google Scholar]
- Tian, Y.Z. Tugayi in the delta the lower reaches of the Keriya River—A natural complex reflecting ecological degradation. J. Desert Res. 1988, 8, 11–25. [Google Scholar]
- Leys, K.F.; Werritty, A. River channel planform change: Software for historical analysis. Geomorphology 1999, 29, 107–120. [Google Scholar] [CrossRef]
- Hughes, M.L.; Mcdowell, P.F.; Marcus, W.A. Accuracy assessment of georectified aerial photographs: Implications for measuring lateral channel movement in a GIS. Geomorphology 2006, 74, 1–16. [Google Scholar] [CrossRef]
- Deng, M.J.; Zhou, H.Y.; Xu, H.L.; Ling, H.B. Regulation of ecological water volume under high-or low-flow in the mainstream area of the Tarim River. Arid Zone Res. 2017, 34, 959–966. [Google Scholar]
- Deng, M.J.; Huang, Q.; Chang, J.X.; Huang, S.Z. Large-scale ecological operation research and practice. J. Hydraul. Eng. 2020, 51, 757–773. [Google Scholar]
- Chen, Y.N.; Chen, Y.P.; Xu, C.C.; Ye, Z.X.; Li, Z.Q.; Zhu, C.G.; Ma, X.D. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China. Hydrol. Process. 2010, 24, 170–177. [Google Scholar] [CrossRef]
- Chen, Y.N.; Chen, Y.P.; Zhu, C.G.; Wang, Y.; Hao, X.M. Ecohydrological effects of water conveyance in a disconnected river in an arid inland river basin. Sci Rep. 2022, 12, 9982. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.S. Ecological environment changes and rational utilization of water resources in the Keriya River Basin. J. Desert Res. 1990, 10, 1–12. [Google Scholar]
- Liu, M.T. Studies on the Tamarix L. of China and Its Extending Utilities; Lanzhou University Press: Lanzhou, China, 1995; pp. 104–121. [Google Scholar]
- Huang, P.Y. Studies of Populus euphratica on the decline and regeneration of the forest lands. J. Xinjiang. Univ. Nat. Sci. Ed. 1984, 97–104. [Google Scholar]
Data Type | Year | Resolution | Data Source |
---|---|---|---|
Landsat (TM, ETM+, OLI) Path/Row: 145/33 | 2000–2018 | 30 m | http://glovis.usgs.gov/ (accessed on 1 January 2019) |
Google Earth image | 2011, 2016 | 0.47 m | https://www.google.com/earth/ (accessed on 1 January 2019) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, F.; Luo, G.; Guo, Y.; Zheng, J.; Wu, S.; Wang, D.; Liu, S.; Shi, Q. Factors Influencing Seasonal Changes in Inundation of the Daliyaboyi Oasis, Lower Keriya River Valley, Central Tarim Basin, China. Remote Sens. 2022, 14, 5050. https://doi.org/10.3390/rs14195050
Wang J, Zhang F, Luo G, Guo Y, Zheng J, Wu S, Wang D, Liu S, Shi Q. Factors Influencing Seasonal Changes in Inundation of the Daliyaboyi Oasis, Lower Keriya River Valley, Central Tarim Basin, China. Remote Sensing. 2022; 14(19):5050. https://doi.org/10.3390/rs14195050
Chicago/Turabian StyleWang, Jinhua, Feng Zhang, Guangming Luo, Yuchuan Guo, Jianghua Zheng, Shixin Wu, Dawei Wang, Suhong Liu, and Qingdong Shi. 2022. "Factors Influencing Seasonal Changes in Inundation of the Daliyaboyi Oasis, Lower Keriya River Valley, Central Tarim Basin, China" Remote Sensing 14, no. 19: 5050. https://doi.org/10.3390/rs14195050
APA StyleWang, J., Zhang, F., Luo, G., Guo, Y., Zheng, J., Wu, S., Wang, D., Liu, S., & Shi, Q. (2022). Factors Influencing Seasonal Changes in Inundation of the Daliyaboyi Oasis, Lower Keriya River Valley, Central Tarim Basin, China. Remote Sensing, 14(19), 5050. https://doi.org/10.3390/rs14195050