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Abstract: Watershed water cycles undergo profound changes under changing environments. Anal-
yses of runoff evolution characteristics are fundamental to our understanding of the evolution of
water cycles under changing environments. In this study, linear regression, moving average, Mann–
Kendall, Pettitt, accumulative anomaly, STARS, wavelet analysis, and CEEMDAN methods were used
to analyze the trends, mutations, and periodic and intrinsic dynamic patterns of runoff evolution
using long-term historical data. The intra-annual distribution of runoff in the Dawen River Basin was
uneven, with an overall decreasing trend and mutations in 1975–1976. The main periods of runoff
were 1.9 and 2.2 years, and the strongest oscillations in the study period occurred in 1978–1983. The
runoff decomposition high-frequency term (intra-annual fluctuation term) had a stronger fluctuation
frequency, with a period of 0.51–0.55 years, while the low-frequency term (interannual fluctuation
term) had a period of 1.55–2.26 years. The trend term for the runoff decomposition tended to decrease
throughout the monitoring period and gradually stabilized at the end of the monitoring period,
while the period gradually decreased from upstream to downstream. In summary, we used multiple
methods to analyze the evolutionary characteristics of runoff, which are of great relevance to the
adaptive management of water resources under changing environments.

Keywords: runoff; evolutionary characteristics; change environment

1. Introduction

The fourth report of the Intergovernmental Panel on Climate Change (IPCC) [1] stated
that climate warming has led to significant changes in some features of the water and
energy cycles. In addition to climate change, human activities such as irrigation farming,
afforestation, deforestation, and urban construction have led to changes in hydrological
processes, such as afforestation, reducing runoff [2] and urbanization and increasing surface
runoff [3]. The United States Geological Survey (USGS) recently updated the water cycle
diagram for the first time in 20 years [4]. In addition to natural processes, such as precipita-
tion, evaporation, runoff, and lakes, the new water cycle schematic now includes human
activities for the first time, such as industrial and agricultural water use, urban runoff, and
reservoir behaviors, showing the role of humans in the overall water cycle process. Among
the different components of the water cycle, runoff is the most important outcome of water
resource management. The evolution of runoff significantly affects the patterns of water
via different production sectors, such as the agriculture, domestic, industry, hydropower,
and shipping sectors.

The impacts of environmental changes on watersheds are mainly reflected in the
evolution of river runoff, which is increasingly influenced by human activities and cli-
mate change, mainly caused by global or regional human activities and increased climate
change [5,6]. River runoff is the result of natural and anthropogenic influences and is
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one of the most important and easily exploitable forms of water resources [7]. As a key
component of the hydrological cycle, the runoff has undergone substantial evolution with
environmental changes [8,9]. Significant changes in runoff have been observed in 24% of
the world’s rivers [10].

There is strong spatial and temporal heterogeneity in the variability of runoff from
environmental changes. Since the beginning of the 20th century, the global average annual
runoff has followed an increasing trend, while the average annual runoff has decreased in
localized areas, such as the Pacific Northwest of the United States, the southeastern United
States, and northern China [11]. Labat et al. studied the effects of global warming on runoff,
and showed that an increase in global temperatures of 1 ◦C will increase global runoff by
4% [12]. Duan et al. (2017) studied the relative effects of climate variables on annual runoff
in a region of the United States, and proposed that changes in runoff are mainly caused by
precipitation [13]. In Canada, climate change typically leads to increases in mean annual
runoff [14]. Surface runoff in the eastern part of southern Europe has tended to decrease,
while that in the rest of the region has increased. From the Atlantic to the southern Gulf
of Mexico region and the Pacific Northwest of the United States, river runoff is gradually
decreasing. In the Yellow River Basin of China, there is an overall trend of decreasing
surface runoff, with a 12% decrease in precipitation in summer and autumn [15]. However,
in the Yangtze River Basin, the annual runoff has increased annually due to increased
monsoon precipitation. One-third of the world’s top 200 rivers have experienced significant
changes in runoff, either increasing or decreasing. With global warming and snow melt,
the arrival date of maximum runoff in spring is occurring earlier, and snowfall events in
winter are gradually turning into rainfall events, resulting in increased runoff in spring
and winter, reduced runoff in summer, and the aggravation of drought. The forecast for
global scale runoff shows that the average annual runoff will increase at high latitudes and
in tropical humid regions, while that in most tropical dry regions will decrease. There is
considerable uncertainty in the predicted results for regional runoff, both in terms of the
quantity and trends.

Trend and mutation analyses are the main contents of runoff change research, and a
large amount of research work has been carried out by domestic and foreign researchers
for runoff change trends in different regions and watersheds [16–19]. The main methods of
trend testing include parametric statistics such as linear regression analyses; accumulative
anomaly and sliding t-tests; and non-parametric statistics such as the Mann–Kendall rank
test, Spearman rank test, and Sen’s slope estimation. Since the methods are based on
different principles, there are often differences between their calculation results, and the
characteristics of the series such as autocorrelation and cyclical fluctuations may also
lead to deviations in the analysis results when they are specifically applied [18]. Periodic
diagnosis is another important element of runoff evolution characterization, and traditional
analysis methods mainly use spectral analysis based on autocorrelation function or a
Fourier transform [20], which has disadvantages such as its low resolution and serious
frequency leakage, and is only applicable to stable and consistent time series [21,22]. The
maximum entropy spectrum analysis (MESA) has the advantage of high resolution and
adaptation to short sequences, and has become an important tool for hydrological sequence
periodic identification [21,22]. A wavelet analysis can reveal the local characteristics of
a sequence from the time and frequency domains, which is suitable for the study of
sequences with multi-timescale variation and non-stationary characteristics, and is more
widely used in the period identification and spatiotemporal scale variation analysis of
runoff sequences [23–25]. With the introduction of theoretical approaches such as entropy,
chaos, and fractals, the field of hydrological research has explored the non-linear and non-
stationary nature of hydrological systems in greater depth. Huang et al. [26,27] proposed
that the empirical mode decomposition (EMD) can be directly based on the sequence itself
step by step decomposition, and described the different time scale oscillation characteristics
and trend changes embedded in the series using a set of intrinsic mode functions (IMFs)
characterizing the local changes of the original series, which provides better performance
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in describing the multi-scale change characteristics of non-stationary time series and has
been more widely used.

Systematic analyses and identification studies of runoff evolution characteristics are
fundamental in the research on water cycle evolution in basins under changing environ-
ments. They are important for analyzing the characteristics of runoff evolution using
mathematical statistics and other techniques to evaluate the trends, periodicity, and spatial
differentiation. To date, studies have investigated the characteristics of runoff evolution
using a variety of research methods to elucidate these characteristics from different angles.
However, there are limitations to the different methods used. A single method often cannot
fully and effectively consider the complex characteristics of runoff evolution, and is limited
by the length and quality of data in the study area. Thus, there remain limitations and uncer-
tainties in our understanding of the characteristics of runoff evolution. Thus, the objectives
of this study are: (1) to identify runoff evolution in the Dawen River Basin through trend,
mutation, and periodic analyses of runoff series from 1961 to 2019; (2) by decomposing and
reclassifying the runoff series itself, we describe the characteristics of oscillations and trend
changes at different time scales embedded in the runoff series; (3) we integrate multiple
methods to improve the credibility of runoff evolution characteristics, and provide scientific
support for managers to develop and manage regional water resources and cope with the
changing environment.

2. Materials and Methods
2.1. Study Area

The Dawen River is the largest tributary of the lower reaches of the Yellow River in
Shandong Province, and is one of the few rivers in China that flows from east to west.
The Dawen River originates in Laiwu City, flows through Tai’an City, and merges into
Dongping Lake from east to west (Dongping Lake is the only important flood storage and
detention area in the Yellow River basin, and the source of the national South-to-North
Water Transfer East Line storage hub and Shandong Jiaodong Water Transfer Project), and
then enters the main channel of the Yellow River through Qinghe Lock. It has a total length
of 231 km and a watershed area of 8944 km2. The natural water resources in the Dawen
River Basin are more abundant than in the whole region of Shandong; however, due to
frequent human activities, the construction of a large amount of water infrastructure on
the river, coupled with the impact of climate change, the river has undergone periodic
disruption. The river runoff deviates significantly from its natural evolution; if we do not
fully understand the basin hydrology, particularly the variation in river runoff, the water
security risk may be very high. The ecological protection and high-quality development of
the Yellow River basin is a major national strategy [16]. The Dawen River Basin is the main
battlefield for ecological protection and the high-quality development of the lower reaches
of the Yellow River, and an important position for ensuring the safety of the Yellow River
and the water quality of the South-to-North Water Diversion Project (Figure 1).

2.2. Data

The monthly runoff data used in this study were obtained between 1961 and 2019
from the hydrological stations of Laiwu, Beiwang, Dawenkou, and Daicunba, which were
sourced from the Shandong Provincial Hydrological Bureau.
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Figure 1. An overview map of the Daven River Basin.

2.3. Methods
2.3.1. Trend Analysis

A series of climate data that change over time constitutes a climate time series. These
variables are usually random series obtained by discrete observations, with the following
characteristics: the data values vary with time; the randomness of the values at each
moment; the correlation and continuity between data before and after the moment; the
sequence as a whole has an upward or downward trend and shows periodic oscillations;
there is a turn or abrupt change at a certain moment. A trend analysis involves the analysis
of continuous increases or decreases in the time series of hydrometeorological elements
over a long time period. In this study, linear tendency estimates and moving averages were
used to analyze the trend characteristics of the time series.

(1) Linear tendency estimation

A climate variable with sample size n (sample size n ≥ 30) is represented by xi, and
the time corresponding to xi is represented by ti. A unitary linear regression is established
between xi and ti, as follows:

x̂i = a + bti (t = 1, 2, · · · , n) (1)
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Equation (1) is a simple linear regression, and is a typical method used for time series
analyses. Where a is the regression constant and b is the regression coefficient, a and b can
be estimated using the least squares method as follows:b =

∑n
i=1 xiti− 1

n (∑n
i=1 xi)(∑n

i=1 ti)

∑n
i=1 t2

i −
1
n (∑n

i=1 ti)
2

a = x− bt

x = 1
n

n
∑

i=1
xi, t = 1

n

n
∑

i=1
ti

(2)

The correlation coefficient between the time and variables is calculated as follows:

r =

√√√√ ∑n
i=1 t2

i −
1
n (∑

n
i=1 ti)

2

∑n
i=1 x2

i −
1
n (∑

n
i=1 xi)

2 (3)

The linear regression results are expressed by analyzing the regression coefficient b
and the correlation coefficient r. The symbol of the regression coefficient b indicates the
trend tendency of the climate variable x. When b > 0, x increases with time t; when b < 0,
x decreases with time t. The magnitude of b reflects the rate of increase or decrease, i.e., it
indicates the degree of the tendency to increase or decrease. Therefore, b is usually referred
to as the tendency value; this method is termed a linear tendency estimation.

The correlation coefficient r indicates the closeness of the linear correlation between
the variable x and time t. The closer |r| is to 0, the smaller the linear correlation between x
and t. Conversely, the closer |r| is to 1, the closer the linear correlation between x and t. It
is also necessary to determine whether the degree of the trend change is significant and to
determine the significance level α. If |r| > rα, this indicates that the change in the trend of
x with time t is significant, otherwise it is not significant.

(2) Moving average

The moving average is a basic method to test for trendiness. It is similar to the low-
pass filter. For the sequence x with a sample size of n, its moving average sequence is
expressed as:

x̂i =
1
k

k

∑
i=1

xi+j−1 (j = 1, 2, · · · , n− k + 1) (4)

where k is the moving length; k is generally taken as an odd number so that the average can
be added to the time coordinate of the time series term. After a moving average, the period
in the series about the moving length is greatly weakened, showing a trend of change. The
moving average series graph is viewed to diagnose the trend of change.

2.3.2. Mutation Analysis

Mutation is the phenomenon of discontinuous change in climate variables, jumping
from one stable state to another, meaning is a quantitative change to a certain degree
will become a qualitative change. Mutation is the node of the mutation point, and the
change trends before and after the sequence are inconsistent. The “jump” at a certain point
(the jump point is removed and the stable states before and after are consistent) is not a
mutation. There are many controversies in the application of mutation theory, and different
test methods may yield multiple mutation results. In practice, multiple methods should
be compared and combined with professional knowledge to analyze the rationality of
mutation phenomena, in order to make a scientific judgment. In this study, Mann–Kendall,
Pettitt, accumulative anomaly, and regime shift detection techniques were used to identify
mutation points.

(1) Mann–Kendall Method

The principle of the Mann–Kendall (M-K) method was originally proposed and de-
veloped by Mann and Kendall [28,29]. Subsequently, it has been improved and refined,
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is recommended by the World Meteorological Organization, and is widely used in the
field of meteorology. The Mann–Kendall method is a rank-based non-parametric statistical
test, which does not require the assumed distribution of random variables, meaning it is a
distribution-free test. The abnormal values in the sample sequence will not significantly
affect the sample test results; thus, it is more suitable for testing the type and sequential
variables [30].

(2) Pettitt Method

The Pettitt method is a non-parametric test method, which was first applied by Pettitt
to test mutation points [31]. This test is used to evaluate the possible location of a single
mutation point. It is an order-based and distribution-free method, which is used when the
exact time of the mutation is unknown, similar to the Mann–Kendall method.

(3) Accumulative Anomaly Method

The accumulative anomaly is used to evaluation mutation based on the trend of the
curve. The accumulative anomaly of sequence xi at time t is expressed as follows:

x̂i =
t

∑
i=1

(xi − x) (t = 1, 2, · · · , n) (5)

The accumulative anomaly curve is plotted with the calculated accumulative anomaly
values at n moments at a time to analyze the trendiness, observe the trend of the accu-
mulative anomaly curve, determine the long-term evolutionary trend and changes, and
elucidate the approximate time of mutation occurrence.

(4) Regime Shift Detection (STARS) Method

The regime shift detection method [32,33], also known as STARS (the sequential-test
analysis of regime shifts), is a non-parametric method of mutation detection. It is used to
explain the “state” and “state transition” of long-term climate change, which is defined as
the rapid transition of climate ecosystems from one relatively stable state to another. This
concept was strongly promoted in the late 1970s when the global climate system underwent
a step change, identifying the state transition points, or mutation points, by seeking the
mean and variance shifts. This method can detect the moment and magnitude of the state
transition, and can quantitatively and visually obtain the pattern transition point [34].

2.3.3. Periodic Diagnosis

In recent years, the wavelet analysis method has been used to perform periodic
diagnoses. The wavelet analysis method is a breakthrough in Fourier analysis methods [35].
The wavelet transform has a solid mathematical foundation, and can determine the scale of
time series changes and the locations at which they occur.

The results obtained via wavelet transform can be analyzed as follows: using the
adjustable resolution, the fine part can be enlarged, enabling the local structure and charac-
teristics to be analyzed; local singularities located at the wavelet coefficient oscillation can
be evaluated, and the time positions of different scales can be determined to distinguish the
sudden change signal, to analyze the sequence in stages, and to make climate predictions
according to the above analysis. The figure shows the evolution of different cycles over
time and can be used to determine the significant cycles. Wavelet variance can determine
which length cycle has the strongest vibration, and can also confirm which cycle length has
the strongest vibration in which time period based on the segmented wavelet variance.

2.3.4. Runoff Sequence Decomposition–Reclassification Method

In this study, CEEMDAN (complete ensemble empirical mode decomposition with
adaptive noise) was used to decompose the runoff sequence when analyzing the character-
istics of long-term monthly runoff series. Thus, the decomposed data were reclassified into
high-frequency terms, low-frequency terms, and trend terms based on the percentages of



Water 2023, 15, 636 7 of 27

variance classes to analyze the intra-annual fluctuation characteristics, interannual fluctua-
tion characteristics, and long-term runoff trends. The CEEMDAN method is suitable for
analyzing the decomposition of adaptive non-stationary and non-linear data, and its main
principle is to decompose the original data into intrinsic mode functions (IMF) of different
frequency series based on its decomposition principle. The CEEMDAN method is mainly
based on the EMD (empirical-mode decomposition) and EEMD (ensemble empirical-mode
decomposition) methods. The main improvement is the addition of adaptive white noise
to the EMD method to reduce modal aliasing. The main principle of the method is as
follows [26,36–38]:

Stage (1) defines a long series of raw data, which is set as the original input signal:

xi(t) = x(t) + εωi(t) (6)

where ωi(t) is the white noise sequence and ε is the noise coefficient.
Stage (2) decomposes IMF1. The first IMF and average IMF are calculated using the

EMD method:

IMF1(t) =
1
N

N

∑
i=1

IMFi1(t) (7)

Its residuals are then refined:

r1(t) = x(t)− IMF1(t) (8)

Stage (3) decomposes IMF2:

IMF2(t) =
1
N

N

∑
i=1

IMF1(r1(t) + ε1IMF1(ω(t))) (9)

Stage (4) decomposes the other IMFs until the limit value is less than 2. The final signal
sequence is decomposed as follows:

x(t) =
N

∑
i=1

IMF2(t) + r(t) (10)

CEEMDAN can decompose the original data into different IMF sequences and extract
their different frequency features from the IMF sequences, using high frequency, low
frequency, and trend terms. In this study, the IMF sequences were reclassified using the
variance occupation ratio.

Based on the above, multiple methods were integrated to analyze the runoff evolution
characteristics. The procedure of the integrated framework is shown in Figure 2.
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3. Results and Discussion

In this study, the spatial and temporal evolution characteristics of the runoff were
analyzed at the hydrological stations of Laiwu, Beiwang, Dawenkou, and Daicunba from
the upstream to downstream of the Dawen River.

3.1. Trend Analysis

As shown in Figure 3, the intra-annual distribution of runoff in the Dawen River
Basin is extremely uneven, with the runoff decreasing sequentially from upstream to
downstream at Laiwu, Beiwang, Dawenkou, and Daicunba. The runoff from the four
hydrological stations is mainly concentrated in June to October during the abundant water
period, accounting for 84–87% of the annual runoff, while that during the dry period
(November–May) is less abundant, accounting for 13–18% of the annual runoff. The annual
runoff, abundant water season runoff, and drought water season runoff were analyzed for
each hydrological station in the Dawen River Basin from 1961 to 2019. As shown in Figure 4
and Table 1, with the exception the Dawenkou hydrological station, which showed an
increasing trend in runoff during the dry period (which did not pass the significance test),
the other stations presented decreasing trends in runoff on different time scales. Among the
four hydrological stations, the runoff at the Dawenkou and Laiwu stations during the dry
period presented insignificant trends, while the other runoffs presented significant trend
changes. This indicated that the runoff of Dawen River Basin shows a significant decreasing
trend. According to the five-year moving average variation curves, the dynamics of annual
runoff and runoff during the abundant water period from 1961 to 2019 are consistent in
pace with time, while the dynamics of change during the dry water period differ. This,
further illustrates the uneven intra-annual distribution of runoff in the Dawen River Basin,
with the runoff during the abundant water period providing the greatest contribution to
the annual runoff.

Water 2023, 15, x FOR PEER REVIEW 9 of 28 
 

 

 
Figure 3. The annual distribution of the runoff in the Dawen River Basin. 

 
Figure 4. The trend analysis for annual runoff in the Dawen River Basin. 

  

Figure 3. The annual distribution of the runoff in the Dawen River Basin.



Water 2023, 15, 636 9 of 27

Water 2023, 15, x FOR PEER REVIEW 9 of 28 
 

 

 
Figure 3. The annual distribution of the runoff in the Dawen River Basin. 

 
Figure 4. The trend analysis for annual runoff in the Dawen River Basin. 

  

Figure 4. The trend analysis for annual runoff in the Dawen River Basin.

Table 1. Variations in interannual runoff in the Dawen River Basin.

Hydrological
Station Scale Average

Tendency Rate
(mm/10a) Trendy

Linear Regression
Significance

r r0.05

Laiwu
Annual 2561.47 −297.10 Downtrend 0.28 0.25 Significant

Wet season 2144.80 −272.97 Downtrend 0.28 0.25 Significant
Dry season 416.66 −24.13 Downtrend 0.19 0.25 Insignificant

Beiwang
Annual 2206.51 −294.64 Downtrend 0.28 0.25 Significant

Wet season 1798.43 −247.88 Downtrend 0.26 0.25 Significant
Dry season 408.08 −46.76 Downtrend 0.34 0.25 Significant

Dawenkou
Annual 2027.21 −167.61 Downtrend 0.17 0.25 Insignificant

Wet season 1702.58 −176.97 Downtrend 0.20 0.25 Insignificant
Dry season 324.63 9.36 Uptrend 0.07 0.25 Insignificant

Daicunba
Annual 1352.20 −224.55 Downtrend 0.28 0.25 Significant

Wet season 1173.45 −198.87 Downtrend 0.28 0.25 Significant
Dry season 178.74 −25.68 Downtrend 0.23 0.25 Significant
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The interdecadal variation in runoff at the Dawen River Basin was analyzed, as shown
in Table 2 and Figure 5. The runoff at all hydrological stations in the Dawen River Basin was
highest in 1961–1969, with varying increases in runoff compared to the multi-year average
(1961–2019), especially at Beiwang and Daicunba stations, which accounted for 60–98% of
the multi-year average runoff. The runoff was lower in the 1980s and 2010s. In the 1980s,
the runoff rates were reduced by 30–39, 26–49, 48–53, and 59–61% compared with the multi-
year average runoff at Laiwu, Beiwang, Dawenkou, and Daicunba stations, respectively.
In the 2010s, the runoff rates were reduced by 8–33, 29–32, 0–29, and 18–40%, respectively,
compared with the multi-year average runoff at Laiwu, Beiwang, Dawenkou, and Daicunba
stations. Thus, the runoff decreases continuously from upstream to downstream, and the
variation dynamics and amplitude of the interannual runoff are consistent in the abundant
water season, with differences in the fluctuation state of runoff in the dry season. This
is likely to be caused by the more frequent water extraction activities in the middle and
lower reaches.

Table 2. An examination of the variation tendencies for interannual runoff in the Dawen River Basin.

Hydrological
Station Decade

Annual The Wet Season The Dry Season

Runoff Anomaly Runoff Anomaly Runoff Anomaly

Laiwu

1961–2019 2561.47 2144.80 416.66
1961–1969 3815.90 49.0% 3194.68 48.9% 621.23 49.1%
1970–1979 2854.82 11.5% 2455.23 14.5% 399.59 –4.1%
1980–1989 1612.85 –37.0% 1324.58 –38.2% 288.27 –30.8%
1990–1999 2728.17 6.5% 2375.51 10.8% 352.66 –15.4%
2001–2009 2658.80 3.8% 2181.66 1.7% 477.14 14.5%
2010–2019 1823.69 –28.8% 1442.15 –32.8% 381.54 –8.4%

Beiwang

1961–2019 2206.51 1798.43 408.08
1961–1969 3718.86 68.5% 3063.76 70.4% 655.09 60.5%
1970–1979 2373.03 7.5% 1951.91 8.5% 421.12 3.2%
1980–1989 1221.40 –44.6% 921.49 –48.8% 299.91 –26.5%
1990–1999 2051.82 –7.0% 1708.54 –5.0% 343.28 –15.9%
2001–2009 2467.19 11.8% 1994.81 10.9% 472.37 15.8%
2010–2019 1558.01 –29.4% 1276.60 –29.0% 281.41 –31.0%

Dawenkou

1961–2019 2027.21 1702.58 324.63
1961–1969 3060.02 50.9% 2656.83 56.0% 403.19 24.2%
1970–1979 2045.47 0.9% 1775.21 4.3% 270.26 –16.7%
1980–1989 981.71 –51.6% 813.33 –52.2% 168.38 –48.1%
1990–1999 2149.75 6.0% 1833.69 7.7% 316.06 –2.6%
2001–2009 2486.85 22.7% 2012.19 18.2% 474.66 46.2%
2010–2019 1542.74 –23.9% 1219.64 –28.4% 323.09 –0.5%

Daicunba

1961–2019 1352.20 1173.45 178.74
1961–1969 2527.66 86.9% 2174.95 85.3% 352.71 97.3%
1970–1979 1453.74 7.5% 1281.18 9.2% 172.56 –3.5%
1980–1989 540.61 –60.0% 468.40 –60.1% 72.21 –59.6%
1990–1999 1253.62 –7.3% 1130.19 –3.7% 123.43 –30.9%
2001–2009 1632.81 20.8% 1410.52 20.2% 222.29 24.4%
2010–2019 822.29 −39.2% 675.64 –42.4% 146.66 –18.0%

The runoff variation of the Dawen River Basin was similar to that of the Yellow River
Basin, with an attenuation tendency, while the annual distribution was uneven and the
interdecadal variation differed.
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3.2. Mutation Analysis

The Mann–Kendall, accumulative anomaly, STARS, and Pettitt methods were used to
identify mutations in runoff series data from the hydrological stations at Laiwu, Beiwang,
Dawenkou, and Daicunba in the Dawen River Basin.

(1) Runoff at Laiwu Hydrological Station (Figure 6)

Interannual runoff: Based on the M-K test, there were multiple intersections of the UF
and UB statistical value curves within the confidence interval, two intersections around
1968, one in 1972, two around 2002, and one each in 2006 and 2009, respectively. The
accumulative anomaly curve revealed a significant mutation in 1976 (|T| = 2.53 > T
[0.05/2] = 1.64). The STARS test showed that state transitions occurred in 1964–1965,
1975–1976, 1988–1989, and 2011–2012. The Pettitt test found significant mutations around
1976 (p = 0.21 < 0.5). An analysis of the change curves for the statistical values obtained
with each test method and for the mutation results, combined with the dynamics of the
changes in the time series of indicators, showed that significant mutation of the interannual
runoff occurred in 1976.

Wet season runoff: Based on the M-K test, there were multiple intersections of the UF
and UB statistical value curves within the confidence interval: two intersections around
1968, two around 1973, one in 1994, and two around 2002. The accumulative anomaly curve
revealed a significant mutation in 1975 (|T| = 2.63 > T [0.05/2] = 1.64). The results of the
STARS test showed that state transitions occurred in 1964–1965, 1975–1976, 1989–1990, and
2012–2013. The Pettitt test showed significant mutations around 1975 (p = 0.23 < 0.5). An
analysis of the change curves for the statistical values obtained with each test method and
for the mutation results, combined with the dynamics of the changes in the time series of
indicators, showed that significant mutation in the wet season runoff occurred in 1976.

Dry season runoff: Based on the M-K test, there were multiple intersections of the UF
and UB statistical value curves within the confidence interval: two intersections around
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1968, one in 1971, two around 2002, and one in 2014. The accumulative anomaly curve
revealed a significant mutation in 1976 (|T| = 2.68 > T [0.05/2] = 1.64). The results of the
STARS test show that state transitions occurred in 1964–1965, 1975–1976, 1989–1990, and
2012–2013. The Pettitt test revealed significant mutations around 1976 (p = 0.24 < 0.5). An
analysis of the change curves for the statistical values obtained by each test method and
for the mutation results, combined with the dynamics of the changes in the time series of
indicators, showed that a significant mutation in the dry season runoff occurred in 1976.
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(2) Runoff at Beiwang Hydrological Station (Figure 7)

Interannual runoff: As shown the M-K test, there were multiple intersections of the
UF and UB statistical value curves within the confidence interval: two intersections around
1966, two around 1970, and two around 2006. The accumulative anomaly curve revealed a
significant mutation in 1965 (|T| = 4.76 > T [0.05/2] = 1.64), whereby a jump point was
formed due to the heavy precipitation in 1964, removing the unusually large water surplus
in 1964, along with a mutation point in 1980. The results of the STARS test showed that
state transitions occurred in 1964–1965, 1979–1980, and 2003–2004. The Pettitt test revealed
significant mutations around 1980 (p = 0.14 < 0.5). An analysis of the change curves for the
statistical values obtained by each test method and for the mutation results, combined with
the dynamics of the changes in the time series of indicators, determined that a significant
mutation in interannual runoff occurred in 1980.

Wet season runoff: Based on the M-K test, there were multiple intersections of the
UF and UB statistical value curves within the confidence interval: one intersection in
1967, one in 1972, and two around 2004. The accumulative anomaly curve test revealed a
significant mutation in 1965 (|T| = 4.38 > T [0.05/2] = 1.64). A jump point formed due to
the occurrence of heavy precipitation in 1964, removing the unusually large water surplus
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in 1964, along with a mutation point in 1980. The results of the STARS test showed that
state transitions occurred in 1964–1965, 1975–1976, 1989–1990, and 2012–2013. The Pettitt
test revealed significant mutations around 1980 (p = 0.18 < 0.5). An analysis of the change
curves for the statistical values obtained by each test method and for the mutation results,
combined with the dynamics of change in the time series of indicators, determined that a
significant mutation in wet season runoff occurred in 1980.

Dry season runoff: Based on the M-K test, there were multiple intersections of the
UF and UB statistical value curves within the confidence interval: four intersections from
1965 to 1973 and two in 2008. The accumulative anomaly curve test revealed a significant
mutation in 1966 (|T| = 4.47 > T [0.05/2] = 1.64), whereby a jump point was formed due to
the occurrence of large precipitation in 1964, removing the unusually large water surplus
in 1964, along with a mutation point in 1980. The results of the STARS test showed that
state transitions occurred in 1964–1965, 1975–1976, 1989–1990, and 2012–2013. The Pettitt
test revealed significant mutations around 1980 (p = 0.11 < 0.5). An analysis of the change
curves for the statistical values obtained by each test method and for the mutation results,
combined with the dynamics of the changes in the time series of indicators, determined
that a significant mutation in the dry season runoff occurred in 1980.
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(3) Runoff at Dawenkou Hydrological Station (Figure 8)

Interannual runoff: Based on the M-K test, there were multiple intersections of the
UF and UB statistical value curves within the confidence interval: one intersection in 1965,
and five from 1994 to 2001. The accumulative anomaly curve test revealed a significant
mutation in 1965 (|T| = 4.07 > T [0.05/2] = 1.64), whereby a jump point was formed due to
the occurrence of heavy precipitation in 1964, removing the unusually large water surplus
in 1964, along with a mutation point in 1976. The results of the STARS test showed that
state transitions occurred in 1975–1976 and 2002–2003. The Pettitt test revealed significant
mutations around 1975 (p = 0.39 < 0.5). An analysis of the change curves of statistical values
obtained by each test method and the mutation results, combined with the dynamics of
the changes in the time series of indicators, determined that a significant mutation in the
interannual runoff occurred in 1976.

Wet season runoff: Based on the M-K test, there were multiple intersections of the UF
and UB statistical value curves within the confidence interval: one in 1965, and five from
1994 to 2001. The accumulative anomaly curve test revealed a significant mutation in 1965
(|T| = 4.05 > T [0.05/2] = 1.64), whereby a jump point was formed due to the occurrence
of heavy precipitation in 1964, removing the unusually large water surplus in 1964, along
with a mutation point in 1976. The results of the STARS test showed that state transitions
occurred in 1975–1976 and 2002–2003. The Pettitt test revealed significant mutations around
1975 (p = 0.33 < 0.5). An analysis of the change curves for the statistical values obtained by
each test method and the mutation results, combined with the dynamics of the changes
in the time series of indicators, determined that a significant mutation in the wet season
runoff occurred in 1975–1976.

Dry season runoff: Based on the M-K test, there were multiple intersections of the
UF and UB statistical value curves within the confidence interval: three intersections
from1963 to 1965, two around 1995, and one in 2015. The accumulative anomaly curve
test revealed a significant mutation in 2003 (|T| = 2.19 > T [0.05/2] = 1.64). The results of
the STARS test showed that state transitions occurred in 1980–1981, 1992–1993, 2002–2003,
and 2012–2013. The Pettitt test revealed significant mutations around 2011 (p = 0.37 < 0.5).
An analysis of the change curves for the statistical values obtained by each test method
and the mutation results, combined with the dynamics of the changes in the time series of
indicators, determined that a significant mutation in the dry season runoff occurred in 2003.

(4) Runoff at Daicunba Hydrological Station (Figure 9)

Interannual runoff: Based on the M-K test, there were multiple intersections of the
UF and UB statistical value curves within the confidence interval: one intersection in 1966
and one in 2002. The accumulative anomaly curve test revealed a significant mutation
in 1965 (|T| = 5.26 > T [0.05/2] = 1.64), whereby a jump point was formed due to the
occurrence of heavy precipitation in 1964, removing the unusually large water surplus
in 1964, along with a mutation point in 1976. The results of the STARS test showed that
state transitions occurred in 1975–1976, 2002–2003, and 2013–2014. The Pettitt test revealed
significant mutations around 1975 (p = 0.18 < 0.5). An analysis of the change curves for the
statistical values obtained by each test method and the mutation results, combined with
the dynamics of the changes in the time series of indicators, determined that a significant
mutation in interannual runoff occurred in 1975–1976.

Wet season runoff: Based on the M-K test, there were multiple intersections of the UF
and UB statistical value curves within the confidence interval: one intersection in 1966,
and three intersections from 2010 to 2012. The accumulative anomaly curve test revealed
a significant mutation in 1965 (|T| = 4.92 > T [0.05/2] = 1.64), whereby a jump point
was formed due to the occurrence of heavy precipitation in 1964, removing the unusually
large water surplus in 1964, along with a mutation point in 1976. The results of the
STARS test showed that state transitions occurred in 1975–1976, 2002–2003, and 2012–2013.
The Pettitt test results revealed significant mutations around 1975 (p = 0.18 < 0.5). An
analysis of the change curves for the statistical values obtained by each test method and
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the mutation results, combined with the dynamics of the changes in the time series of
indicators, determined that a significant mutation in the wet season runoff occurred in
1975–1976.

Dry season runoff: Based on the M-K test, there were multiple intersections of the UF
and UB statistical value curves within the confidence interval: one intersection in 1965, and
one in 2013. The accumulative anomaly curve test revealed a significant mutation in 1966
(|T| = 4.73 > T [0.05/2] = 1.64). The results of the STARS test showed that state transitions
occurred in 1977–1978, 2002–2003, and 2011–2012. The Pettitt test results revealed significant
mutations around 2011(p = 0.08 < 0.5). An analysis of the change curves for the statistical
values obtained by each test method and the mutation results, combined with the dynamics
of the changes in the time series of indicators, determined that a significant mutation in the
dry season runoff occurred in 2011.
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Figure 8. The mutation analysis of the runoff at Dawenkou station.

The mutations of the annual runoff and wet season occurred roughly from 1975 to 1976
at four hydrological stations in the Dawen River Basin. The mutation of the dry period at
the same stations occurred later than for the annual runoff and wet season, and it occurred
at a later times from upstream to downstream in 1976, 1980, 2003, and 2011, respectively.
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3.3. Periodic Diagnosis

A wavelet analysis was used to analyze periodic variations in runoff at Laiwu, Bei-
wang, Dawenkou, and Daicunba hydrological stations in the Dawen River Basin.

The wavelet power spectrum and global wavelet spectrum for the Laiwu hydrological
station are shown in Figure 10. The oscillation periods of the interannual and wet season
runoff series were generally consistent. The range of the significant period was 0.7–2.5 years,
there was a main period of 2.2 years, and the variation was most significant in the period
1965–1995, during the early 21st century. Furthermore, there was a significant period of
1.1 years and non-significant periods of about 5.3 and 12.6 years. During the dry season,
the significant period for the runoff ranged over 0.7–2.4 years. There was a main period
of 1.9 years, and the period variation was most significant over 1976–1984. There was a
significant period of 0.8 years and non-significant periods of about 12.6 and 17.8 years.

The wavelet power spectrum and global wavelet spectrum for Beiwang hydrological
station are shown in Figure 11. The oscillation periods of the interannual and wet season
runoff series were generally consistent. The range of the significant period range was
0.7–2.6 years, there was a main period of 2.2 years, and the variation was most significant
over the period 1976–1984. Furthermore, there was a significant period of 1.1 years and non-
significant periods of about 4.4, 7.5, and 12.6 years. During the dry season, the significant
runoff period ranged over 1.2–2.4 years, there was a main period of 1.9 years, and the
variation was most significant over the periods 1976–1984 and 1997–2001. There were
non-significant periods of about 3.7, 6.3, and 12.6 years.
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Figure 10. The runoff wavelet power spectrum and global wavelet spectrum for Laiwu station.

The wavelet power spectrum and global wavelet spectrum for Dawenkou hydrological
station are shown in Figure 12. The oscillation periods of the interannual and wet season
runoff series were generally consistent. The range of the significant period was 0.7–2.6 years,
there was a main period of 2.2 years, and the variation was most significant over the period
1977–1984. Additionally, there was a significant period of 0.8 years and non-significant
periods of about 5.3, 7.5, and 12.6 years. During the dry season, the significant period for
the runoff ranged 0.8–2.7 years, there was a main period of 2.2 years, and the variation was
most significant over the periods 1963–1967, 1976–1984, 1993–1998, and 2000–2005. There
were non-significant periods of about 5.3, 7.5, and 12.6 years.

The wavelet power spectrum and global wavelet spectrum for Daicunba hydrological
station are shown in Figure 13. The oscillation periods of the interannual and wet season
runoff series were generally consistent. The range of the significant period was 0.7–2.5 years,
there was a main period of 2.2 years, and the variation was most significant over the period
1977–1984. There were significant periods of 0.8 and 1.1 years and non-significant periods
of about 5.3, 7.5, and 12.6 years. During the dry season, the significant periods for the runoff
ranged 0.8–0.9 and 1.7–2.5 years, there was a main period of 2.2 years, and the variation
was most significant over the period 1978–1983. There were non-significant periods of
about 5.3, 7.5, 12.6, and 17.8 years.
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3.4. Decomposition and Reclassification of the Dynamic Features of Runoff Sequences

The monthly runoff series for four hydrological stations, upstream to downstream
of the Dawen River Basin, namely Laiwu, Beiwang, Dawenkou, and Daicunba, were
decomposed and reclassified. The internal dynamic characteristics of the runoff were
analyzed, and the intra-annual, interannual, and long-term trends were analyzed based on
the CEEMDAN method.

(1) Decomposition of runoff sequences

The results from decomposing IMF terms and residual terms based on the CEEMDAN
method for runoff data from four hydrological stations in Laiwu, Beiwang, Dawenkou, and
Daicunba are shown in Figures 14–17. To ensure the accuracy of the results, the CEEMDAN
decomposition test was run 500 times, in which the white noise coefficient was set to 0.2 to
ensure that accurate decomposition data were obtained. Seven IMF terms and one residual
term were obtained for the long series runoff decomposition at all four hydrological stations.
The frequency and amplitude of the runoff IMF terms changed more notably from high to
low frequencies, and the high frequency IMF term was closer to the characteristics of the
runoff data. The frequency decreased gradually as the IMF term increased, reflecting the
periodicity and tendency of the runoff data. From the upstream to downstream stations of
Laiwu, Beiwang, Dawenkou, and Daicunba, the amplitude of the decomposition tended to
increase with the increased runoff. This amplitude reached the maximum in the IMF2 term
and then gradually decreased. The residual term of the runoff decomposition tended to
decrease throughout the observation period and the amplitude was relatively weak.
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(2) Analysis of Characteristics

To analyze the runoff characteristics decomposed by the CEEMDAN method, several
important indicators of the IMF and residual terms were analyzed in this study, including
the mean period, mean, variance, percentage of variance, and Pearson correlation between
IMF and residual terms and runoff series (Table 3). The results revealed that the fluctuations
were more intense and the period was shorter for smaller IMF terms, while the period for
each runoff decomposition term gradually increased and the data gradually stabilized as
the IMF term increased. The average absolute value and variance of each IMF increased
gradually with the increasing flow from upstream to downstream of the hydrological
station. The variance ratio for each runoff station revealed that Laiwu and Beiwang stations
had a mutation at IMF3, while Dawenkou and Daicunba had a mutation at IMF2. The IMF
terms for the four runoff stations presented an increasing trend from IMF1, reaching the
maximum at IMF2 and then decreasing rapidly.

(3) Reclassification

The decomposition of the runoff by the CEEMDAN method can capture more dynamic
information on the characteristics of the runoff; however, too many decomposition terms
may also impact analyses on the dynamic characteristics of runoff. To overcome the
multiple IMF terms in the runoff data decomposition, this study integrated the percentage
of variance and Pearson correlation mutation points for classification. Combined with the
characteristic analysis of the IMF terms, the terms for IMF1–IMF3 at Laiwu and Beiwang
stations were reclassified as high-frequency terms, reflecting the intra-annual fluctuation in
runoff. The terms for IMF4-IMF7 were reclassified as low-frequency terms, reflecting the
interannual fluctuations in runoff. The residual term represents the long-term tendency
of the runoff. The terms for IMF1 and IMF2 at Dawenkou and Daicunba stations were
reclassified as high-frequency terms, the terms for IMF3–IMF7 were reclassified as low-
frequency terms, and the residual terms were classified as trend terms (Figures 18–21).
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The results confirmed that the high-frequency term for the runoff data decomposition
(i.e., the intra-annual fluctuation term) had a stronger fluctuation frequency, which was
similar to the fluctuation frequency of the runoff series. The tendency of the low-frequency
term (i.e., interannual fluctuation term) of the runoff data decomposition term was similar to
the increasing and decreasing trends of the runoff interannual. Additionally, the analysis of
the reclassified terms revealed (Table 4) that the periodicity of the intra-annual fluctuation
terms was about 6.10–6.62 months, indicating that the intra-annual runoff fluctuation
had a periodicity of about half a year (0.51–0.55 years), the interannual fluctuation had
a periodicity of about 27.23–18.63 months (2.26–1.55 years), and the period gradually
shortened from the upstream to downstream hydrological stations.

Table 3. The IMF and residue terms for the decomposed long-term runoff data.

Variable IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 Residuals

Average period
(month)

Laiwu 2.97 6.21 11.06 27.23 54.46 118.00 177.00 708.00
Beiwang 2.80 5.28 8.96 22.84 54.46 88.50 236.00 708.00

Dawenkou 2.95 5.66 9.32 20.82 47.20 88.50 236.00 708.00
Daicunba 2.87 5.36 8.63 19.14 47.20 88.50 236.00 708.00

Average

Laiwu 0.67 −0.78 −0.22 −0.18 0.15 0.02 0.07 5.2
Beiwang 1.71 −1.54 −0.41 −0.65 0.48 −0.67 −0.50 19.72

Dawenkou 2.09 −4.49 −0.30 −1.75 3.53 −0.20 2.30 29.34
Daicunba 3.74 −4.48 −0.58 −3.78 2.50 −0.34 2.86 29.61

Variance

Laiwu 8.89 10.77 5.29 2.22 2.04 0.78 0.79 0.54
Beiwang 27.46 34.68 20.81 12.18 8.82 7.19 5.17 3.41

Dawenkou 47.35 60.71 25.01 22.50 16.30 9.34 7.80 2.14
Daicunba 51.41 68.14 31.90 27.55 23.19 8.99 12.45 9.72

Percentage of
variance

Laiwu 28.37 34.37 16.90 7.10 6.51 2.50 2.54 1.72
Beiwang 22.93 28.97 17.38 10.17 7.37 6.01 4.32 2.85

Dawenkou 24.77 31.76 13.08 11.77 8.53 4.89 4.08 1.12
Daicunba 22.03 29.20 13.67 11.81 9.94 3.85 5.34 4.16

Pearson’s correlation
coefficient

Laiwu 0.26 0.51 0.28 0.15 0.18 0.09 0.12 0.10
Beiwang 0.26 0.49 0.34 0.17 0.19 0.16 0.12 0.1

Dawenkou 0.27 0.56 0.25 0.18 0.19 0.17 0.15 0.09
Daicunba 0.25 0.52 0.27 0.14 0.24 0.17 0.17 0.11

Table 4. The periodicity of the reclassification items for different hydrological stations.

Hydrological
Station

Periodicity of Reclassification Items
Fluctuation Items

Intra-Annual
Fluctuation Items

Interannual Trend Items

Laiwu 6.62 27.23 708
Beiwang 6.38 22.84 708

Dawenkou 6.10 20.82 708
Daicunba 6.62 18.63 708
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4. Conclusions

In this study, the trends, mutations, and periodicity of the runoff in the Dawen River
Basin were analyzed, and the runoff was decomposed and reclassified. The dynamic
evolution of the runoff under changing environments was explored using various methods.

(1) Tendency analysis

The intra-annual distribution of the runoff in the Dawen River Basin was uneven. The
annual runoff, the wet season runoff, and the dry season runoff for all hydrological stations
presented a downward trend, and the runoff decreased continuously from upstream to
downstream. The runoff in the early years of the study period (1961–1969) was relatively
high in each chronological analysis. The dynamics and magnitude of the annual runoff and
the wet season runoff remained similar, while the dry season runoff rates differed. The
changes in runoff indicated that under environments of climate change, human activities
have a greater impact on runoff.

(2) Mutation analysis

From upstream to downstream, the annual, wet season, and dry season runoff for
Laiwu hydrological station showed mutations in 1975–1976. The annual runoff, wet season,
and dry season runoff at Beiwang Hydrological Station mutated in 1980. The annual and
wet season runoff at Dawenkou Hydrological Station mutated in 1975–1976, while the dry
season runoff mutated in 2003. The annual and wet season runoff at Daicunba Hydrological
Station mutated in 1975–1976, while the dry season runoff mutated in 2011. In summary,
runoff mutation in the Dawen River Basin occurred in 1975–1976.

(3) Periodic analysis

The significant periods for annual, wet season, and dry season runoff at all hydrolog-
ical stations was 0.7–2.7 years. The main period of annual and wet season runoff for all
hydrological stations was 2.2 years, with more intense vibration observed over 1977–1984.
The main period of dry season runoff at the Laiwu and Beiwang hydrologist stations was
1.9 years, while that at the Dawenkou and Daicunba hydrologist stations was 2.2 years,
with the most sever oscillations observed over 1978–1983.

(4) Decomposition and reclassification of runoff

Using the CEEMDAN method for runoff decomposition and reclassification, the
runoff decomposition high-frequency term (intra-annual fluctuation term) had a strong
fluctuation frequency with an intra-annual period of 0.51–0.55 years. The trend for the
low-frequency term (i.e., interannual fluctuation term) was similar to that for increasing and
decreasing annual runoff, with an interannual fluctuation term of 1.55–2.26 years. The trend
term for the runoff data decomposition term decreased throughout the monitoring period



Water 2023, 15, 636 26 of 27

and gradually stabilized at the end of the monitoring period, and the period gradually
decreased from upstream to downstream.

The impacts of climate change and human activities have been accompanied by
significant trend changes in hydrological elements in temporal, spatial, and quantitative
terms. The frequent occurrence of extreme hydrological events and the increasing demand
for regional water security and water resource management have placed more demand
on regional water cycle research. In practical applications, it is necessary to enhance
the preparation and evaluation of hydro-meteorological element observation data and
spatial and temporal distribution data, to select effective analysis methods to improve the
accuracy of the runoff evolution characteristic detection process, and to further deepen
the understanding of the spatial and temporal variability characteristics of runoff. After
clarifying the evolution pattern of runoff under changing environments, further research
on the driving mechanism of the runoff evolution should be carried out.
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