Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = interphase/interface region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4705 KB  
Article
The Phase Distribution Characteristics and Interphase Mass Transfer Behaviors of the CO2–Water/Saline System under Gathering and Transportation Conditions: Insights on Molecular Dynamics
by Shuang Wang, Qinglin Cheng, Zhidong Li, Shaosong Zhao and Yue Liu
Molecules 2024, 29(17), 4256; https://doi.org/10.3390/molecules29174256 - 8 Sep 2024
Viewed by 1127
Abstract
In order to investigate the interphase mass transfer and component distribution characteristics of the CO2–water system under micro-scale and nano-scale transport conditions, a micro-scale kinetic model representing interphase mass transfer in the CO2–water/saline system is developed in this paper. [...] Read more.
In order to investigate the interphase mass transfer and component distribution characteristics of the CO2–water system under micro-scale and nano-scale transport conditions, a micro-scale kinetic model representing interphase mass transfer in the CO2–water/saline system is developed in this paper. The molecular dynamics method is employed to delineate the diffusion and mass transfer processes of the system’s components, revealing the extent of the effects of variations in temperature, pressure, and salt ion concentration on interphase mass transfer and component distribution characteristics. The interphase mass transfer process in the CO2–water system under transport conditions can be categorized into three stages: approach, adsorption, and entrance. As the system temperature rises and pressure decreases, the peak density of CO2 molecules at the gas–liquid interface markedly drops, with their aggregation reducing and their diffusion capability enhancing. The specific hydration structures between salt ions and water molecules hinder the entry of CO2 into the aqueous phase. Additionally, as the salt concentration in water increases, the density peak of CO2 molecules at the gas–liquid interface slightly increases, while the density value in the water phase region significantly decreases. Full article
Show Figures

Figure 1

15 pages, 6070 KB  
Article
Assessment of DPPC Liposome Disruption by Embedded Tocopheryl Malonate
by Grażyna Neunert, Jolanta Tomaszewska-Gras, Marlena Gauza-Włodarczyk, Stanislaw Witkowski and Krzysztof Polewski
Appl. Sci. 2023, 13(10), 6219; https://doi.org/10.3390/app13106219 - 19 May 2023
Cited by 3 | Viewed by 2307
Abstract
In this study, the effect of α-tocopheryl malonate (TM) on physical and structural properties of DPPC liposomes was investigated using ANS fluorescence, DPH, and TMA–DPH anisotropy fluorescence and differential scanning calorimetry (DSC) methods. The presence of embedded TM in DPPC liposomes caused alteration [...] Read more.
In this study, the effect of α-tocopheryl malonate (TM) on physical and structural properties of DPPC liposomes was investigated using ANS fluorescence, DPH, and TMA–DPH anisotropy fluorescence and differential scanning calorimetry (DSC) methods. The presence of embedded TM in DPPC liposomes caused alteration in its phase transition temperatures, structural order, dynamics, and hydration of head groups increasingly with growing TM concentration. The ANS fluorescence results demonstrated that increasing TM presence in the DPPC gel phase due to interrupted membrane structure caused the formation of new binding sites. Temperature investigations in the range of 20 °C to 60 °C showed that increasing temperature rises ANS fluorescence which reaches local and global maxima at 36 °C and 42 °C, respectively. The rising TM concentration at the phase transition temperature of DPPC led to the lowering of ANS fluorescence, indicating a decreased binding of ANS. Simultaneously, during heating, a roughly 10-nm shift of ANS emission maximum was observed. The results indicated that in the fluid phase, the observed quenching appears as a result of increasing accessibility of water molecules into ANS in this region. The DPH results indicated that in the gel phase presence of TM introduced disorder in the hydrophobic acyl chain region led to its fluidization. The TMA–DPH results indicated an increasing disorder in the interface region and an increasing hydration of head group atoms at the surface of the membrane. The increasing concentration of TM results in the formation of multicomponent DSC traces, suggesting the formation of another structural phase. The applied methods proved that the incorporation of TM into DPPC membrane results in the interaction of malonate moiety with DPPC head group atoms in the interphase layer and induces the interruption in the membrane packing order, leading to its structural changes. The presented results show that TM presence could regulate the membrane properties, thus it may indicate one of the possible mechanisms responsible for the effective disruption of cell membranes by TM. The knowledge of molecular mechanism how TM interacts with the membrane will help to elucidate its possible pharmacological activity. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

27 pages, 6344 KB  
Review
Application of Planar Laser-Induced Fluorescence for Interfacial Transfer Phenomena
by Vladimir Dulin, Andrey Cherdantsev, Roman Volkov and Dmitriy Markovich
Energies 2023, 16(4), 1877; https://doi.org/10.3390/en16041877 - 14 Feb 2023
Cited by 5 | Viewed by 4342
Abstract
The present review describes the current achievements in the applications of a planar laser-induced fluorescence (PLIF) method for the diagnostics of liquid films, bubbles, individual droplets, and sprays. Such flows are related with strongly curved interphases, which often results in additional high errors [...] Read more.
The present review describes the current achievements in the applications of a planar laser-induced fluorescence (PLIF) method for the diagnostics of liquid films, bubbles, individual droplets, and sprays. Such flows are related with strongly curved interphases, which often results in additional high errors during the PLIF data quantification because of laser light reflection, refraction, and absorption. The present review demonstrates that a two-color PLIF approach and a PLIF modification for regularly structured illumination resolves the reflection- and refraction-caused errors. The latter modification ensures proper phase separation in the measurement cross-section and visualization of the interface dynamics. The former approach provides the accurate evaluation of the local temperature and concentration both in liquid and gaseous phases even in the case of strong variations of the laser sheet intensity. With intensified cameras, the PLIF method is used for multi-parameter diagnostics of the two-phase combustion of sprays in combustion chambers with optical access. It visualizes and quantifies the liquid fuel evaporation and mixing, to measure temperature in the gas and liquid phases and to reveal the regions of pollutant formation. The PLIF technique can also be easily combined with a particle image (or tracking) velocimetry method, to evaluate local heat and mass transfer. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process)
Show Figures

Figure 1

13 pages, 6000 KB  
Article
Random Stiffness Tensor of Particulate Composites with Hyper-Elastic Matrix and Imperfect Interface
by Damian Sokołowski and Marcin Kamiński
Materials 2021, 14(21), 6676; https://doi.org/10.3390/ma14216676 - 5 Nov 2021
Viewed by 2420
Abstract
The main aim of this study is determination of the basic probabilistic characteristics of the effective stiffness for inelastic particulate composites with spherical reinforcement and an uncertain Gaussian volume fraction of the interphase defects. This is determined using a homogenization method with a [...] Read more.
The main aim of this study is determination of the basic probabilistic characteristics of the effective stiffness for inelastic particulate composites with spherical reinforcement and an uncertain Gaussian volume fraction of the interphase defects. This is determined using a homogenization method with a cubic single-particle representative volume element (RVE) of such a composite and the finite element method solution. A reinforcing particle is spherical, located centrally in the RVE, surrounded by the thin interphase of constant thickness, and remains in an elastic reversible regime opposite to the matrix, which is hyper-elastic. The interphase defects are represented as semi-spherical voids, which are placed on the outer surface of this particle. The interphase is modeled as hyper-elastic and isotropic, whose effective stiffness is calculated by the spatial averaging of hyper-elastic parameters of the matrix and of the defects. A constitutive relation of the matrix is recovered experimentally by its uniaxial stretch. The 3D homogenization problem solution is based upon a numerical determination of strain energy density in the given RVE under specific uniaxial and biaxial stretches as well as under shear deformations. The analytical relation of the effective composite stiffness to the input uncertain parameter is recovered via the response function method, using a polynomial basis and an optimized order. Probabilistic calculations are completed using three concurrent approaches, namely the iterative stochastic finite element method (SFEM), Monte Carlo simulation and by the semi-analytical method. Previous papers consider the composite fully elastic, which limits the applicability of the resulting effective stiffness tensor computed therein. The current study voids this assumption and defines the composite as fully hyper-elastic, thus extending applicability of this tensor to strains up to 0.25. The most important research finding is that (1) the effective stiffness tensor is sensitive to random interface defects in its hyper-elastic range, (2) its resulting randomness is not close to Gaussian, (3) the semi-analytical method is not perfectly suited to stochastic calculations in this region of strains, as opposed to the linear elastic region, and (4) that the increase in random dispersion of defects volume fraction has a much higher effect on the stochastic characteristics of this stiffness tensor than fluctuation of the strain. Full article
Show Figures

Figure 1

29 pages, 11544 KB  
Article
Multiscale Modeling of Epoxy-Based Nanocomposites Reinforced with Functionalized and Non-Functionalized Graphene Nanoplatelets
by Hashim Al Mahmud, Matthew S. Radue, Sorayot Chinkanjanarot and Gregory M. Odegard
Polymers 2021, 13(12), 1958; https://doi.org/10.3390/polym13121958 - 13 Jun 2021
Cited by 33 | Viewed by 4596
Abstract
The impact on the mechanical properties of an epoxy resin reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and functionalized graphene oxide (FGO) has been investigated in this study. Molecular dynamics (MD) using a reactive force field (ReaxFF) has been [...] Read more.
The impact on the mechanical properties of an epoxy resin reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and functionalized graphene oxide (FGO) has been investigated in this study. Molecular dynamics (MD) using a reactive force field (ReaxFF) has been employed in predicting the effective mechanical properties of the interphase region of the three nanocomposite materials at the nanoscale level. A systematic computational approach to simulate the reinforcing nanoplatelets and probe their influence on the mechanical properties of the epoxy matrix is established. The modeling results indicate a significant degradation of the in-plane elastic Young’s (decreased by ~89%) and shear (decreased by ~72.5%) moduli of the nanocomposite when introducing large amounts of oxygen and functional groups to the robust sp2 structure of the GNP. However, the wrinkled morphology of GO and FGO improves the nanoplatelet-matrix interlocking mechanism, which produces a significant improvement in the out-of-plane shear modulus (increased by 2 orders of magnitudes). The influence of the nanoplatelet content and aspect ratio on the mechanical response of the nanocomposites has also been determined in this study. Generally, the predicted mechanical response of the bulk nanocomposite materials demonstrates an improvement with increasing nanoplatelet content and aspect ratio. The results show good agreement with experimental data available from the literature. Full article
(This article belongs to the Special Issue Modeling and Simulation of Polymer Nanocomposites)
Show Figures

Graphical abstract

16 pages, 4266 KB  
Article
Tensile Strength and Structure of the Interface between a Room-Curing Epoxy Resin and Thermoplastic Films for the Purpose of Sensor Integration
by Alexander Kyriazis, Riem Kilian, Michael Sinapius, Korbinian Rager and Andreas Dietzel
Polymers 2021, 13(3), 330; https://doi.org/10.3390/polym13030330 - 21 Jan 2021
Cited by 13 | Viewed by 3731
Abstract
The article presents a study on the adhesion of thermoplastic films to a room temperature-hardening epoxy resin, which deals with an important question on sensor integration into fibre composites. By means of a morphological box, a test specimen is developed, which allows to [...] Read more.
The article presents a study on the adhesion of thermoplastic films to a room temperature-hardening epoxy resin, which deals with an important question on sensor integration into fibre composites. By means of a morphological box, a test specimen is developed, which allows to test strength values for the adhesion of thermoplastic films to epoxy resin. Polyimide (PI), which is typically used as a carrier material for flexible sensors, is compared with the thermoplastics polyetherimide (PEI), polyethersulfone (PES) and polyamide 6 (PA6). To evaluate the spatial formation of the interface, images taken with a light microscope, fluorescence microscope and electron microscope and an energy-dispersive X-ray spectroscopy (EDX) analysis are presented. The images show that during the curing process of the epoxy resin the initially expected pronounced interphase does not form. In this respect, it is surprising that PEI achieves such a high adhesion strength even without extended interphase formation, that the failure of the test specimen occurs in the epoxy resin region at a tensile stress of 70 MPa and not at the interface between epoxy and PEI, as might initially be assumed. It is also surprising that PES exhibits the lowest adhesion strength of 5 MPa to room temperature-hardening epoxy resin, although in previous investigations it was often used as a soluble toughness modifier for epoxy resins. The tensile adhesion strength of PI to epoxy resin was found at 27 MPa and the tensile adhesion strength of PA6 to epoxy resin was found at 13 MPa. For sensor integration, the findings mean that flexible sensors on PEI substrates promise a low tendency to delaminate even in the room temperature-hardening epoxy resin used, while the other materials tested indicate an increased tendency to delaminate. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

18 pages, 7459 KB  
Article
Comparative Screening of the Structural and Thermomechanical Properties of FDM Filaments Comprising Thermoplastics Loaded with Cellulose, Carbon and Glass Fibers
by Alp Karakoç, Vibhore K. Rastogi, Tapani Isoaho, Blaise Tardy, Jouni Paltakari and Orlando J. Rojas
Materials 2020, 13(2), 422; https://doi.org/10.3390/ma13020422 - 16 Jan 2020
Cited by 30 | Viewed by 4505
Abstract
Additive manufacturing (AM) has been rapidly growing for a decade in both consumer and industrial products. Fused deposition modeling (FDM), one of the most widely used additive manufacturing methods, owes its popularity to cost effectiveness in material and equipment investment. Current efforts are [...] Read more.
Additive manufacturing (AM) has been rapidly growing for a decade in both consumer and industrial products. Fused deposition modeling (FDM), one of the most widely used additive manufacturing methods, owes its popularity to cost effectiveness in material and equipment investment. Current efforts are aimed toward high load-bearing capacity at low material costs. However, the mechanical reliability of end-products derived from these compositions and their dependence on microstructural effects, have remained as major limitations. This is mainly owing to the unknown mechanics of the materials, including the reinforcing or filler components and their interphase/interface compatibility. For this reason, here we investigate the most relevant commercial polymeric materials used in composite filaments, associated phases and the characterization protocols that can guide component selection, screening and troubleshooting. We first present thermal analyses (thermogravimetric, TGA and differential scanning calorimetry, DSC) in relation to the constituent fractions and identify the type of polymer for uses in filaments production. The influence of various fillers is unveiled in terms of the crystallization behavior of derived 3D-printed parts. To understand the microstructural effects on the material strength, we carry out a series of tensile experiments on 3-D printed dog-bone shaped specimens following ISO standards. Simultaneously, real-time thermal energy dissipation and damage analyses are applied by using infrared measurements at fast frame rates (200 Hz) and high thermal resolution (50 mK). The failure regions of each specimen are examined via optical, scanning and transmission electron microscopies. The results are used to reveal new insights into the size, morphology and distribution of the constituents and interphases of polymer filaments for FDM. The present study represents advancement in the field of composite filament fabrication, with potential impact in the market of additive manufacturing. Full article
Show Figures

Figure 1

15 pages, 3152 KB  
Article
Effect of Poly(styrene-ran-methyl acrylate) Inclusion on the Compatibility of Polylactide/Polystyrene-b-Polybutadiene-b-Polystyrene Blends Characterized by Morphological, Thermal, Rheological, and Mechanical Measurements
by Bocheng Wang, Zheng Tu, Chonggang Wu, Tao Hu, Xiaotao Wang, Shijun Long and Xinghou Gong
Polymers 2019, 11(5), 846; https://doi.org/10.3390/polym11050846 - 10 May 2019
Cited by 7 | Viewed by 4192
Abstract
A poly(styrene-ran-methyl acrylate) (S-MA) (75/25 mol/mol), synthesized by surfactant-free emulsion copolymerization, was used as a compatibilizer for polystyrene-b-polybutadiene-b-polystyrene (SBS)-toughened polylactide (PLA) blends. Upon compatibilization, the blends exhibited a refined dispersed-phase morphology, a decreased crystallinity with an increase [...] Read more.
A poly(styrene-ran-methyl acrylate) (S-MA) (75/25 mol/mol), synthesized by surfactant-free emulsion copolymerization, was used as a compatibilizer for polystyrene-b-polybutadiene-b-polystyrene (SBS)-toughened polylactide (PLA) blends. Upon compatibilization, the blends exhibited a refined dispersed-phase morphology, a decreased crystallinity with an increase in their amorphous interphase, improved thermal stability possibly from the thicker, stronger interfaces insusceptible to thermal energy, a convergence of the maximum decomposition-rate temperatures, enhanced magnitude of complex viscosity, dynamic storage and loss moduli, a reduced ramification degree in the high-frequency terminal region of the Han plot, and an increased semicircle radius in the Cole–Cole plot due to the prolonged chain segmental relaxation times from increases in the thickness and chain entanglement degree of the interphase. When increasing the S-MA content from 0 to 3.0 wt %, the tensile properties of the blends improved considerably until 1.0 wt %, above which they then increased insignificantly, whereas the impact strength was maximized at an optimum S-MA content of ~1.0 wt %, hypothetically due to balanced effects of the medium-size SBS particles on the stabilization of preexisting crazes and the initiation of new crazes in the PLA matrix. These observations confirm that S-MA, a random copolymer first synthesized in our laboratory, acted as an effective compatibilizer for the PLA/SBS blends. Full article
(This article belongs to the Collection Sustainable Polymeric Materials from Renewable Resources)
Show Figures

Figure 1

16 pages, 7267 KB  
Article
Blending In Situ Polyurethane-Urea with Different Kinds of Rubber: Performance and Compatibility Aspects
by Muhammad Tahir, Gert Heinrich, Nasir Mahmood, Regine Boldt, Sven Wießner and Klaus Werner Stöckelhuber
Materials 2018, 11(11), 2175; https://doi.org/10.3390/ma11112175 - 2 Nov 2018
Cited by 14 | Viewed by 6617
Abstract
Specific physical and reactive compatibilization strategies are applied to enhance the interfacial adhesion and mechanical properties of heterogeneous polymer blends. Another pertinent challenge is the need of energy-intensive blending methods to blend high-tech polymers such as the blending of a pre-made hard polyurethane [...] Read more.
Specific physical and reactive compatibilization strategies are applied to enhance the interfacial adhesion and mechanical properties of heterogeneous polymer blends. Another pertinent challenge is the need of energy-intensive blending methods to blend high-tech polymers such as the blending of a pre-made hard polyurethane (-urea) with rubbers. We developed and investigated a reactive blending method to prepare the outstanding blends based on polyurethane-urea and rubbers at a low blending temperature and without any interfacial compatibilizing agent. In this study, the polyurethane-urea (PUU) was synthesized via the methylene diphenyl diisocyanate end-capped prepolymer and m-phenylene diamine based precursor route during blending at 100 °C with polar (carboxylated nitrile rubber (XNBR) and chloroprene rubber (CR)) and non-polar (natural rubber (NR), styrene butadiene rubber (sSBR), and ethylene propylene butadiene rubber (EPDM)) rubbers. We found that the in situ PUU reinforces the tensile response at low strain region and the dynamic-mechanical response up to 150 °C in the case of all used rubbers. Scanning electron microscopy reveals a stronger rubber/PUU interface, which promotes an effective stress transfer between the blend phases. Furthermore, energy filtered transmission electron microscopy (EFTEM) based elemental carbon map identifies an interphase region along the interface between the nitrile rubber and in situ PUU phases of this exemplary blend type. Full article
(This article belongs to the Special Issue Polymer Blends and Compatibilization 2018)
Show Figures

Graphical abstract

18 pages, 5343 KB  
Article
Further Progress in Functional Interlayers with Controlled Mechanical Properties Designed for Glass Fiber/Polyester Composites
by Antonin Knob, Jaroslav Lukes, Lawrence Thadeus Drzal and Vladimir Cech
Fibers 2018, 6(3), 58; https://doi.org/10.3390/fib6030058 - 16 Aug 2018
Cited by 18 | Viewed by 6024
Abstract
Compatible interlayers must be coated on reinforcing fibers to ensure effective stress transfer from the polymer matrix to the fiber in high-performance polymer composites. The mechanical properties of the interlayer, and its interfacial adhesion on both interfaces with the fiber and polymer matrix [...] Read more.
Compatible interlayers must be coated on reinforcing fibers to ensure effective stress transfer from the polymer matrix to the fiber in high-performance polymer composites. The mechanical properties of the interlayer, and its interfacial adhesion on both interfaces with the fiber and polymer matrix are among the key parameters that control the performance of polymer composite through the interphase region. Plasma-synthesized interlayers, in the form of variable materials from polymer-like to glass-like films with a Young’s modulus of 10–52 GPa, were deposited on unsized glass fibers used as reinforcements in glass fiber/polyester composites. Modulus Mapping (dynamic nanoindentation testing) was successfully used to examine the mechanical properties across the interphase region on cross-sections of the model composite in order to distinguish the fiber, the interlayer, and the modified and bulk polymer matrix. The interfacial shear strength for plasma-coated fibers in glass fiber/polyester composites, determined from the microindentation test, was up to 36% higher than those of commercially sized fibers. The effects of fiber pretreatment, single and double interlayers, and post-treatment of the interlayer on interfacial shear strength were also discussed. Functional interlayers with high shear yield strength and controlled physicochemical properties are promising for high-performance polymer composites with a controlled interphase. Full article
(This article belongs to the Special Issue Glass Fibers 2018)
Show Figures

Graphical abstract

22 pages, 24115 KB  
Article
On the Material Characterisation of Wind Turbine Blade Coatings: The Effect of Interphase Coating–Laminate Adhesion on Rain Erosion Performance
by Enrique Cortés, Fernando Sánchez, Anthony O’Carroll, Borja Madramany, Mark Hardiman and Trevor M. Young
Materials 2017, 10(10), 1146; https://doi.org/10.3390/ma10101146 - 28 Sep 2017
Cited by 81 | Viewed by 14378
Abstract
Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause for concern, even more so at offshore locations with larger blades and higher tip speeds. Due to the negative economic influence of blade erosion, all wind turbine [...] Read more.
Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause for concern, even more so at offshore locations with larger blades and higher tip speeds. Due to the negative economic influence of blade erosion, all wind turbine Original Equipment Manufacturers (OEMs) are actively seeking solutions. In most cases, since the surface coating plays a decisive role in the blade manufacture and overall performance, it has been identified as an area where a solution may be obtained. In this research, two main coating technologies have been considered: In-mould coatings (Gel coating) applied during moulding on the entire blade surface and the post-mould coatings specifically developed for Leading Edge Protection (LEP). The coating adhesion and erosion is affected by the shock waves created by the collapsing water droplets on impact. The stress waves are reflected and transmitted to the laminate substrate, so microstructural discontinuities in coating layers and interfaces play a key role on its degradation and may accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations based on their potential stress reduction on the interface. Nevertheless, in order to use them, it is necessary to measure the contact adhesion resistance of the multi-layered system interfaces. The rain erosion performance is assessed using an accelerated testing technique, whereby the test material is repeatedly impacted at high speed with water droplets in a Whirling Arm Rain Erosion Rig (WARER). The materials, specifically the coating–laminate interphase region and acoustic properties, are further characterised by several laboratory tests, including Differential Scanning Calorimetry (DSC), pull-off testing, peeling–adhesion testing and nanoindentation testing. This body of work includes a number of case studies. The first case study compares two of the main coating technologies used in industry (i.e., gel coating and LEP); the second case investigates the effects of the in-mould gel coating curing; and the third considers the inclusion of a primer layer on a LEP configuration system. Following these case studies, the LEP is found to be a far superior coating due to its appropriate mechanical and acoustic properties and the interface between the coating and the substrate is highlighted as a key aspect, as poor adhesion can lead to delamination and, ultimately, premature failure of the coating. Full article
(This article belongs to the Special Issue Composites for Wind Energy Applications)
Show Figures

Figure 1

23 pages, 5198 KB  
Article
Influence of the Processing Parameters on the Fiber-Matrix-Interphase in Short Glass Fiber-Reinforced Thermoplastics
by Anna Katharina Sambale, Marc Schöneich and Markus Stommel
Polymers 2017, 9(6), 221; https://doi.org/10.3390/polym9060221 - 13 Jun 2017
Cited by 15 | Viewed by 7855
Abstract
The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and [...] Read more.
The interphase in short fiber thermoplastic composites is defined as a three-dimensional, several hundred nanometers-wide boundary region at the interface of fibers and the polymer matrix, exhibiting altered mechanical properties. This region is of key importance in the context of fiber-matrix adhesion and the associated mechanical strength of the composite material. An interphase formation is caused by morphological, as well as thermomechanical processes during cooling of the plastic melt close to the glass fibers. In this study, significant injection molding processing parameters are varied in order to investigate the influence on the formation of an interphase and the resulting mechanical properties of the composite. The geometry of the interphase is determined using nano-tribological techniques. In addition, the influence of the glass fiber sizing on the geometry of the interphase is examined. Tensile tests are used in order to determine the resulting mechanical properties of the produced short fiber composites. It is shown that the interphase width depends on the processing conditions and can be linked to the mechanical properties of the short fiber composite. Full article
Show Figures

Figure 1

Back to TopTop