Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = internet of underwater things

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4301 KB  
Review
Powering Underwater Robotics Sensor Networks Through Ocean Energy Harvesting and Wireless Power Transfer Methods: Systematic Review
by Sverrir Jan Nordfjord, Saemundur E. Thorsteinsson and Kristinn Andersen
J. Mar. Sci. Eng. 2025, 13(9), 1728; https://doi.org/10.3390/jmse13091728 - 8 Sep 2025
Viewed by 544
Abstract
The global demand for innovative underwater applications is increasing, encompassing scientific research, commercial endeavors, and defense operations. A significant challenge these applications face is fulfilling the energy requirements of underwater devices. This challenge extends beyond powering individual devices to include the entire network [...] Read more.
The global demand for innovative underwater applications is increasing, encompassing scientific research, commercial endeavors, and defense operations. A significant challenge these applications face is fulfilling the energy requirements of underwater devices. This challenge extends beyond powering individual devices to include the entire network of underwater robotic sensors. These devices have varying energy needs; some are mobile while others are stationary, and they operate under diverse environmental conditions, such as different depths, temperatures, pressures, currents, and salinity levels. This paper compares the latest state-of-the-art research on powering underwater devices, addressing the challenges and practical considerations. It examines two primary approaches: first, energy harvesting from the natural environment, and second, the use of wireless power transfer (WPT). While energy harvesting methods have been established, their effectiveness greatly depends on the specific environment in which they are deployed, making them less viable as a universal solution. On the other hand, WPT presents its challenges, particularly as its efficiency diminishes with distance. Nonetheless, it remains a promising option, and further research is essential to explore its potential, including the integration of other technologies to develop hybrid solutions that leverage multiple power sources. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 5161 KB  
Article
AUV Trajectory Planning for Optimized Sensor Data Collection in Internet of Underwater Things
by Talal S. Almuzaini and Andrey V. Savkin
Future Internet 2025, 17(7), 293; https://doi.org/10.3390/fi17070293 - 30 Jun 2025
Viewed by 468
Abstract
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for [...] Read more.
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for a single Autonomous Underwater Vehicle (AUV) operating in coordination with an Unmanned Surface Vehicle (USV) to collect data from multiple Cluster Heads (CHs) deployed across an uneven seafloor. The proposed approach employs a VoI model that captures both the importance and timeliness of sensed data, guiding the AUV to collect and deliver critical information before its value significantly degrades. A forward Dynamic Programming (DP) algorithm is used to jointly optimize the AUV’s trajectory and the USV’s start and end positions, with the objective of maximizing the total residual VoI upon mission completion. The trajectory design incorporates the AUV’s kinematic constraints into travel time estimation, enabling accurate VoI evaluation throughout the mission. Simulation results show that the proposed strategy consistently outperforms conventional baselines in terms of residual VoI and overall system efficiency. These findings highlight the advantages of VoI-aware planning and AUV–USV collaboration for effective data collection in challenging underwater environments. Full article
Show Figures

Figure 1

19 pages, 2591 KB  
Article
Enhanced Real-Time Simulation of ROV Attitude and Trajectory Under Ocean Current and Wake Disturbances
by Yujing Zhao, Shipeng Xu, Xiaoben Zheng, Lisha Luo, Boyan Xu and Chunru Xiong
Appl. Syst. Innov. 2025, 8(3), 75; https://doi.org/10.3390/asi8030075 - 30 May 2025
Viewed by 1323
Abstract
This study focuses on the remotely operated underwater vehicle (ROV) and addresses key issues in existing simulation systems, such as neglecting the influence of ocean currents on the ROV’s trajectory or only simulating the impact of ocean currents instead of combining wake flow [...] Read more.
This study focuses on the remotely operated underwater vehicle (ROV) and addresses key issues in existing simulation systems, such as neglecting the influence of ocean currents on the ROV’s trajectory or only simulating the impact of ocean currents instead of combining wake flow and ocean currents. Additionally, the visualization capabilities of current simulation systems still have room for improvement. This paper develops a three-dimensional path simulation system for ocean inspection robots to tackle these challenges based on MATLAB and Simulink. The system optimizes the drag matrix of the original simulation model by decomposing the sea current into three directional components in three-dimensional space and simulating the relative velocity in each direction separately; it introduces the influence of the current wake, thus more accurately realizing the trajectory simulation of the ROV under the current perturbation. Experimental results demonstrate high consistency between the optimized model’s simulation outcomes and theoretical expectations. The proposed system significantly improves trajectory evolution stability and consistency, compared to traditional models. The findings of this study indicate that the proposed optimized simulation system not only effectively verifies the applicability of control algorithms but also provides reliable data support for ROV design and optimization. Additionally, it lays a solid foundation for further developing intelligent underwater robots based on Internet of Things (IoT) technology. Full article
Show Figures

Figure 1

20 pages, 3177 KB  
Article
Smart Underwater Sensor Network GPRS Architecture for Marine Environments
by Blanca Esther Carvajal-Gámez, Uriel Cedeño-Antunez and Abigail Elizabeth Pallares-Calvo
Sensors 2025, 25(11), 3439; https://doi.org/10.3390/s25113439 - 30 May 2025
Viewed by 773
Abstract
The rise of the Internet of Things (IoT) has made it possible to explore different types of communication, such as underwater IoT (UIoT). This new paradigm allows the interconnection of ships, boats, coasts, objects in the sea, cameras, and animals that require constant [...] Read more.
The rise of the Internet of Things (IoT) has made it possible to explore different types of communication, such as underwater IoT (UIoT). This new paradigm allows the interconnection of ships, boats, coasts, objects in the sea, cameras, and animals that require constant monitoring. The use of sensors for environmental monitoring, tracking marine fauna and flora, and monitoring the health of aquifers requires the integration of heterogeneous technologies as well as wireless communication technologies. Aquatic mobile sensor nodes face various limitations, such as bandwidth, propagation distance, and data transmission delay issues. Owing to their versatility, wireless sensor networks support remote monitoring and surveillance. In this work, an architecture for a general packet radio service (GPRS) wireless sensor network is presented. The network is used to monitor the geographic position over the coastal area of the Gulf of Mexico. The proposed architecture integrates cellular technology and some ad hoc network configurations in a single device such that coverage is improved without significantly affecting the energy consumption, as shown in the results. The network coverage and energy consumption are evaluated by analyzing the attenuation in a proposed channel model and the autonomy of the electronic system, respectively. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

26 pages, 5185 KB  
Article
Seamless Integration of UOWC/MMF/FSO Systems Using Orbital Angular Momentum Beams for Enhanced Data Transmission
by Mehtab Singh, Somia A. Abd El-Mottaleb, Hassan Yousif Ahmed, Medien Zeghid and Abu Sufian A. Osman
Photonics 2025, 12(5), 499; https://doi.org/10.3390/photonics12050499 - 16 May 2025
Cited by 2 | Viewed by 557
Abstract
This work presents a high-speed hybrid communication system integrating Underwater Optical Wireless Communication (UOWC), Multimode Fiber (MMF), and Free-Space Optics (FSO) channels, leveraging Orbital Angular Momentum (OAM) beams for enhanced data transmission. A Photodetector, Remodulate, and Forward Relay (PRFR) is employed to enable [...] Read more.
This work presents a high-speed hybrid communication system integrating Underwater Optical Wireless Communication (UOWC), Multimode Fiber (MMF), and Free-Space Optics (FSO) channels, leveraging Orbital Angular Momentum (OAM) beams for enhanced data transmission. A Photodetector, Remodulate, and Forward Relay (PRFR) is employed to enable wavelength conversion from 532 nm for UOWC to 1550 nm for MMF and FSO links. Four distinct OAM beams, each supporting a 5 Gbps data rate, are utilized to evaluate the system’s performance under two scenarios. The first scenario investigates the effects of absorption and scattering in five water types on underwater transmission range, while maintaining fixed MMF length and FSO link. The second scenario examines varying FSO propagation distances under different fog conditions, with a consistent underwater link length. Results demonstrate that water and atmospheric attenuation significantly impact transmission range and received optical power. The proposed hybrid system ensures reliable data transmission with a maximum overall transmission distance of 1125 m (comprising a 25 m UOWC link in Pure Sea (PS) water, a 100 m MMF span, and a 1000 m FSO range in clear weather) in the first scenario. In the second scenario, under Light Fog (LF) conditions, the system achieves a longer reach of up to 2020 m (20 m UOWC link + 100 m MMF span + 1900 m FSO range), maintaining a BER ≤ 10−4 and a Q-factor around 4. This hybrid design is well suited for applications such as oceanographic research, offshore monitoring, and the Internet of Underwater Things (IoUT), enabling efficient data transfer between underwater nodes and surface stations. Full article
(This article belongs to the Special Issue Optical Wireless Communication in 5G and Beyond)
Show Figures

Figure 1

25 pages, 6434 KB  
Article
AASNet: A Novel Image Instance Segmentation Framework for Fine-Grained Fish Recognition via Linear Correlation Attention and Dynamic Adaptive Focal Loss
by Jianlei Kong, Shunong Tang, Jiameng Feng, Lipo Mo and Xuebo Jin
Appl. Sci. 2025, 15(7), 3986; https://doi.org/10.3390/app15073986 - 4 Apr 2025
Cited by 2 | Viewed by 1097
Abstract
Smart fisheries, integrating advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), and image processing, are pivotal in enhancing aquaculture efficiency, sustainability, and resource management by enabling real-time environmental monitoring, precision feeding, and disease prevention. However, underwater fish recognition faces [...] Read more.
Smart fisheries, integrating advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), and image processing, are pivotal in enhancing aquaculture efficiency, sustainability, and resource management by enabling real-time environmental monitoring, precision feeding, and disease prevention. However, underwater fish recognition faces challenges in complex aquatic environments, which hinder accurate detection and behavioral analysis. To address these issues, we propose a novel image instance segmentation framework based on a deep learning neural network, defined as the AASNet (Agricultural Aqua Segmentation Network). In order to improve the accuracy and real-time availability of fine-grained fish recognition, we introduce a Linear Correlation Attention (LCA) mechanism, which uses Pearson correlation coefficients to capture linear correlations between features. This helps resolve inconsistencies caused by lighting changes and color variations, significantly improving the extraction of semantic information for similar objects. Additionally, Dynamic Adaptive Focal Loss (DAFL) is designed to improve classification under extreme data imbalance conditions. Abundant experiments on two underwater datasets demonstrated that the proposed AASNet obtains an optimal balance between segmentation performance and efficiency. Concretely, AASNet achieves mAP scores of 31.7 and 47.4, respectively, on the UIIS and USIS dataset, significantly outperforming existing state-of-the-art methods. Moreover, AASNet achieves an inference image recognition speed of up to 28.9 ms/per, which is suitable for practical agricultural applications of smart fish farming. Full article
Show Figures

Figure 1

25 pages, 10446 KB  
Article
Designing an Adaptive Underwater Visible Light Communication System
by Sana Rehman, Yue Rong and Peng Chen
Sensors 2025, 25(6), 1801; https://doi.org/10.3390/s25061801 - 14 Mar 2025
Cited by 2 | Viewed by 1658
Abstract
The Internet of Underwater Things (IoUT) has attracted significant attention from researchers due to the fact that seventy percent of the Earth’s surface is covered by water. Reliable underwater communication is the enabler of IoUT. Different carriers, such as electromagnetic waves, sound, and [...] Read more.
The Internet of Underwater Things (IoUT) has attracted significant attention from researchers due to the fact that seventy percent of the Earth’s surface is covered by water. Reliable underwater communication is the enabler of IoUT. Different carriers, such as electromagnetic waves, sound, and light, are used to transmit data through the water. Among these, optical waves are considered promising due to their high data rates and relatively good bandwidth efficiency, as water becomes transparent to light in the visible spectrum (400–700 nm). However, limitations such as link range, path loss, and turbulence lead to low power and, consequently, a low signal-to-noise ratio (SNR) at the receiver. In this article, we present the design of a smart transceiver for bidirectional communication. The system adapts the divergence angle of the optical beam from the transmitter based on the power of the signal received. This paper details the real-time data transmission process, where the transmitting station consists of a light fidelity (Li-Fi) transmitter with a 470 nm blue-light-emitting diode (LED) and a software-defined radio (SDR) for underwater optical communication. The receiving station is equipped with a Li-Fi receiver, which includes a photodetector with a wide field of view and an SDR. Furthermore, we use pulse position modulation (PPM), which demonstrates promising results for real-time transmission. A key innovation of this paper is the integration of the Li-Fi system with the SDR, while the system adapts dynamically using a servo motor and an Arduino microcontroller assembly. The experimental results show that this approach not only increases throughput but also enhances the robustness and efficiency of the system. Full article
(This article belongs to the Special Issue Wireless Sensor Networks: Signal Processing and Communications)
Show Figures

Figure 1

21 pages, 4465 KB  
Article
Modified Ant Colony Optimization to Improve Energy Consumption of Cruiser Boundary Tour with Internet of Underwater Things
by Hadeel Mohammed, Mustafa Ibrahim, Ahmed Raoof, Amjad Jaleel and Ayad Q. Al-Dujaili
Computers 2025, 14(2), 74; https://doi.org/10.3390/computers14020074 - 17 Feb 2025
Cited by 4 | Viewed by 1122
Abstract
The Internet of Underwater Things (IoUT) holds significant promise for developing a smart ocean. In recent years, there has been swift progress in data collection methods using autonomous underwater vehicles (AUVs) within underwater acoustic sensor networks (UASNs). One of the key challenges in [...] Read more.
The Internet of Underwater Things (IoUT) holds significant promise for developing a smart ocean. In recent years, there has been swift progress in data collection methods using autonomous underwater vehicles (AUVs) within underwater acoustic sensor networks (UASNs). One of the key challenges in the IoUT is improving both the energy consumption (EC) of underwater vehicles and the value of information (VoI) necessary for completing missions while gathering sensing data. In this paper, a hybrid optimization technique is proposed based on boundary tour modified ant colony optimization (BTMACO). The proposed optimization algorithm was developed to solve the challenging problem of determining the optimal path of an AUV visiting all sensor nodes with minimum energy consumption. The optimization algorithm specifies the best order in which to visit all the sensor nodes, while it also works to adjust the AUV’s information-gathering locations according to the permissible data transmission range. Compared with the related works in the literature, the proposed method showed better performance, and it can find the best route through which to collect sensor information with minimum power consumption and a 6.9% better VoI. Full article
Show Figures

Figure 1

32 pages, 12908 KB  
Article
Energy-Efficient and Trust-Based Autonomous Underwater Vehicle Scheme for 6G-Enabled Internet of Underwater Things
by Altaf Hussain, Shuaiyong Li, Tariq Hussain, Razaz Waheeb Attar, Ahmed Alhomoud, Reem Alsagri and Khalid Zaman
Sensors 2025, 25(1), 286; https://doi.org/10.3390/s25010286 - 6 Jan 2025
Cited by 3 | Viewed by 2211
Abstract
This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy [...] Read more.
This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes. Furthermore, a 6G communication module is deployed to reduce network delay and enhance packet delivery, contributing to more efficient data transmission. Leveraging Autonomous Underwater Vehicles (AUVs), the EETAUV protocol offers a lightweight approach for node discovery, identification, and verification while ensuring a high data transmission rate through a risk-aware strategy including at low computational cost. The protocol’s performance is evaluated through extensive simulations and compared against state-of-the-art methods across various metrics, including network lifetime, throughput, residual energy, packet delivery ratio, mean square error, routing overhead, path loss, network delay, trust, distance, velocity, Computational Cost of Routing, and data security. The results demonstrate the superior cumulative performance of the proposed EETAUV scheme, making it a robust solution for secure, efficient, and reliable communication in UASNs. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

30 pages, 1489 KB  
Review
Underwater Communication Systems and Their Impact on Aquatic Life—A Survey
by Feliciano Pedro Francisco Domingos, Ahmad Lotfi, Isibor Kennedy Ihianle, Omprakash Kaiwartya and Pedro Machado
Electronics 2025, 14(1), 7; https://doi.org/10.3390/electronics14010007 - 24 Dec 2024
Cited by 3 | Viewed by 4026
Abstract
Approximately 75% of the Earth’s surface is covered by water, and 78% of the global animal kingdom resides in marine environments. Furthermore, algae and microalgae in marine ecosystems contribute up to 75% of the planet’s oxygen supply, underscoring the critical need for conservation [...] Read more.
Approximately 75% of the Earth’s surface is covered by water, and 78% of the global animal kingdom resides in marine environments. Furthermore, algae and microalgae in marine ecosystems contribute up to 75% of the planet’s oxygen supply, underscoring the critical need for conservation efforts. This review systematically evaluates the impact of underwater communication systems on aquatic ecosystems, focusing on both wired and wireless technologies. It highlights the applications of these systems in Internet of Underwater Things (IoUT), Underwater Wireless Sensor Networks (UWSNs), remote sensing, bathymetry, and tsunami warning systems, as well as their role in reducing the ecological footprint of human activities in aquatic environments. The main contributions of this work include: a benchmark of various underwater communication systems, comparing their advantages and limitations; an in-depth analysis of the adverse effects of anthropogenic emissions associated with communication systems on marine life; and a discussion of the potential for underwater communication technologies, such as remote sensing and passive monitoring, to aid in the preservation of biodiversity and the protection of fragile ecosystems. Full article
Show Figures

Figure 1

18 pages, 15213 KB  
Article
A Feasibility Study of Cross-Medium Direct Acoustic Communication Between Underwater and Airborne Nodes
by Shaojian Yang, Yi Lu, Yan Wei, Jiang Zhu, Xingbin Tu, Yimu Yang and Fengzhong Qu
J. Mar. Sci. Eng. 2024, 12(12), 2340; https://doi.org/10.3390/jmse12122340 - 20 Dec 2024
Viewed by 1558
Abstract
With the rapid advancement of underwater communication and unmanned aerial vehicle (UAV) technologies, the potential applications of cross-medium communication in environmental monitoring, maritime Internet of Things (IoTs), and rescue operations, in particular, have attracted great attention. This study explores the feasibility of achieving [...] Read more.
With the rapid advancement of underwater communication and unmanned aerial vehicle (UAV) technologies, the potential applications of cross-medium communication in environmental monitoring, maritime Internet of Things (IoTs), and rescue operations, in particular, have attracted great attention. This study explores the feasibility of achieving cross-medium direct acoustic communication through the air–water interface. Specifically, it investigates challenges such as acoustic impedance mismatches and signal attenuation caused by energy loss during interface transmission, aiming to understand their impact on communication performance. Experimental tests employed underwater acoustic transducers as signal transmitters to propagate sound waves directly into the air, attempting to establish communication links with aerial UAV nodes. Preliminary experimental results indicate that even conventional underwater acoustic transducers can achieve information exchange between underwater nodes and UAVs, laying a foundation for further research and application of cross-medium communication systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 4244 KB  
Article
Edge Computing Architecture for the Management of Underwater Cultural Heritage
by Jorge Herrera-Santos, Marta Plaza-Hernández, Sebastián López-Florez, Vladimir Djapic, Javier Prieto Tejedor and Emilio Santiago Corchado-Rodríguez
J. Mar. Sci. Eng. 2024, 12(12), 2250; https://doi.org/10.3390/jmse12122250 - 7 Dec 2024
Viewed by 2525
Abstract
Underwater cultural heritage (UCH) is a valuable resource that preserves humanity’s historical legacy, offering insights into traditions and civilisations. Despite its significance, UCH faces threats from inadequate regulatory frameworks, insufficient conservation technologies, and climate-induced environmental changes. This paper proposes an innovative platform combining [...] Read more.
Underwater cultural heritage (UCH) is a valuable resource that preserves humanity’s historical legacy, offering insights into traditions and civilisations. Despite its significance, UCH faces threats from inadequate regulatory frameworks, insufficient conservation technologies, and climate-induced environmental changes. This paper proposes an innovative platform combining the internet of underwater things and edge computing technologies to enhance UCH’s real-time monitoring, localisation, and management. The platform processes data through a central unit installed on a buoy near heritage sites, enabling efficient data analysis and decision making without relying on cloud connectivity. Integrating acoustic communication systems, LoRa technology, and nonterrestrial networks supports a robust multilayered communication infrastructure for continuous operation, even in remote maritime areas. The platform’s edge node deploys artificial intelligence models for real-time risk assessment, focusing on key environmental parameters to predict and mitigate corrosion rates and climate-related threats. A case study illustrates the system’s capabilities in underwater localisation, demonstrating how edge computing and acoustic triangulation techniques enable precise tracking. Full article
Show Figures

Figure 1

28 pages, 1185 KB  
Review
Integrating Blockchains with the IoT: A Review of Architectures and Marine Use Cases
by Andreas Polyvios Delladetsimas, Stamatis Papangelou, Elias Iosif and George Giaglis
Computers 2024, 13(12), 329; https://doi.org/10.3390/computers13120329 - 6 Dec 2024
Cited by 3 | Viewed by 3387
Abstract
This review examines the integration of blockchain technology with the IoT in the Marine Internet of Things (MIoT) and Internet of Underwater Things (IoUT), with applications in areas such as oceanographic monitoring and naval defense. These environments present distinct challenges, including a limited [...] Read more.
This review examines the integration of blockchain technology with the IoT in the Marine Internet of Things (MIoT) and Internet of Underwater Things (IoUT), with applications in areas such as oceanographic monitoring and naval defense. These environments present distinct challenges, including a limited communication bandwidth, energy constraints, and secure data handling needs. Enhancing BIoT systems requires a strategic selection of computing paradigms, such as edge and fog computing, and lightweight nodes to reduce latency and improve data processing in resource-limited settings. While a blockchain can improve data integrity and security, it can also introduce complexities, including interoperability issues, high energy consumption, standardization challenges, and costly transitions from legacy systems. The solutions reviewed here include lightweight consensus mechanisms to reduce computational demands. They also utilize established platforms, such as Ethereum and Hyperledger, or custom blockchains designed to meet marine-specific requirements. Additional approaches incorporate technologies such as fog and edge layers, software-defined networking (SDN), the InterPlanetary File System (IPFS) for decentralized storage, and AI-enhanced security measures, all adapted to each application’s needs. Future research will need to prioritize scalability, energy efficiency, and interoperability for effective BIoT deployment. Full article
(This article belongs to the Special Issue When Blockchain Meets IoT: Challenges and Potentials)
Show Figures

Figure 1

7 pages, 2582 KB  
Proceeding Paper
Internet of Things (IoT)-Based Smart Agriculture Irrigation and Monitoring System Using Ubidots Server
by Mohammad Mohiuddin, Md. Saiful Islam and Shaila Shanjida
Eng. Proc. 2024, 82(1), 99; https://doi.org/10.3390/ecsa-11-20528 - 26 Nov 2024
Cited by 1 | Viewed by 1790
Abstract
The growing world population necessitates more efficient food production, particularly in agriculture. Traditional irrigation techniques usually result in overwatering or underwatering, which wastes energy and water and reduces agricultural productivity. Smart agriculture optimizes food production, resource management, and labor. This study introduces an [...] Read more.
The growing world population necessitates more efficient food production, particularly in agriculture. Traditional irrigation techniques usually result in overwatering or underwatering, which wastes energy and water and reduces agricultural productivity. Smart agriculture optimizes food production, resource management, and labor. This study introduces an intelligent irrigation and monitoring system that uses the Internet of Things (IoT) to automate water pump management and monitor sunlight, temperature, and humidity levels without human interaction. The system’s hardware components include a soil moisture sensor, a sunlight sensor, temperature and humidity (DHT11) sensors, an ESP32 microcontroller, and a pump motor. The sensors are in charge of gathering the information that the ESP32 microcontroller needs in order to properly operate the pump motor. To operate and monitor data from the sensors remotely, the ESP32 is also integrated with the well-known Ubidots server via a wireless sensor network. Initially, sensors such as the DHT11, soil moisture sensors, and sunlight level sensors collect data from the field and send it to the ESP32 microcontroller. The microcontroller then compares the received data to the previously stored data. If the values are greater than the threshold, the associated devices turn on and update the sensor value and pump motor condition to the Ubidots server. Full article
Show Figures

Figure 1

29 pages, 4178 KB  
Article
Hybridization and Optimization of Bio and Nature-Inspired Metaheuristic Techniques of Beacon Nodes Scheduling for Localization in Underwater IoT Networks
by Umar Draz, Tariq Ali, Sana Yasin, Muhammad Hasanain Chaudary, Muhammad Ayaz, El-Hadi M. Aggoune and Isha Yasin
Mathematics 2024, 12(22), 3447; https://doi.org/10.3390/math12223447 - 5 Nov 2024
Cited by 5 | Viewed by 1583
Abstract
This research introduces a hybrid approach combining bio- and nature-inspired metaheuristic algorithms to enhance scheduling efficiency and minimize energy consumption in Underwater Acoustic Sensor Networks (UASNs). Five hybridized algorithms are designed to efficiently schedule nodes, reducing energy costs compared to existing methods, and [...] Read more.
This research introduces a hybrid approach combining bio- and nature-inspired metaheuristic algorithms to enhance scheduling efficiency and minimize energy consumption in Underwater Acoustic Sensor Networks (UASNs). Five hybridized algorithms are designed to efficiently schedule nodes, reducing energy costs compared to existing methods, and addressing the challenge of unscheduled nodes within the communication network. The hybridization techniques such as Elephant Herding Optimization (EHO) with Genetic Algorithm (GA), Firefly Algorithm (FA), Levy Firefly Algorithm (LFA), Bacterial Foraging Algorithm (BFA), and Binary Particle Swarm Optimization (BPSO) are used for optimization. To implement these optimization techniques, the Scheduled Routing Algorithm for Localization (SRAL) is introduced, aiming to enhance node scheduling and localization. This framework is crucial for improving data delivery, optimizing Route REQuest (RREQ) and Routing Overhead (RO), while minimizing Average End-to-End (AE2E) delays and localization errors. The challenges of node localization, RREQ reconstruction at the beacon level, and increased RO, along with End-to-End delays and unreliable data forwarding, have a significant impact on overall communication in underwater environments. The proposed framework, along with the hybridized metaheuristic algorithms, show great potential in improving node localization, optimizing scheduling, reducing energy costs, and enhancing reliable data delivery in the Internet of Underwater Things (IoUT)-based network. Full article
(This article belongs to the Special Issue Innovations in Optimization and Operations Research)
Show Figures

Figure 1

Back to TopTop