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Abstract: Smart fisheries, integrating advanced technologies such as the Internet of Things
(IoT), artificial intelligence (Al), and image processing, are pivotal in enhancing aquaculture
efficiency, sustainability, and resource management by enabling real-time environmental
monitoring, precision feeding, and disease prevention. However, underwater fish recogni-
tion faces challenges in complex aquatic environments, which hinder accurate detection
and behavioral analysis. To address these issues, we propose a novel image instance seg-
mentation framework based on a deep learning neural network, defined as the AASNet
(Agricultural Aqua Segmentation Network). In order to improve the accuracy and real-time
availability of fine-grained fish recognition, we introduce a Linear Correlation Attention
(LCA) mechanism, which uses Pearson correlation coefficients to capture linear correlations
between features. This helps resolve inconsistencies caused by lighting changes and color
variations, significantly improving the extraction of semantic information for similar objects.
Additionally, Dynamic Adaptive Focal Loss (DAFL) is designed to improve classification
under extreme data imbalance conditions. Abundant experiments on two underwater
datasets demonstrated that the proposed AASNet obtains an optimal balance between
segmentation performance and efficiency. Concretely, AASNet achieves mAP scores of
31.7 and 47 4, respectively, on the UIIS and USIS dataset, significantly outperforming exist-
ing state-of-the-art methods. Moreover, AASNet achieves an inference image recognition
speed of up to 28.9 ms/per, which is suitable for practical agricultural applications of smart
fish farming.

Keywords: digital agriculture; intelligent fish farming system; deep learning neural network;
underwater image segmentation; fine-grained visual recognition

1. Introduction

Smart fishery aquaculture is becoming the core direction of modern fisheries, aiming
to achieve intelligence, automation, and informatization in fishery production through
the deep integration of the Internet of Things (IoT), big data, and artificial intelligence
technologies [1]. It allows for real-time monitoring of water quality indicators (e.g., pH,
dissolved oxygen, ammonia, and nitrogen content) and enables automatic adjustments to
the aquaculture environment to support the healthy growth of aquatic organisms. This ap-
proach also reduces labor costs, improves production efficiency, and enhances product
quality [2]. Furthermore, smart fisheries minimize feed waste and pollutant discharge,
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protect the ecological environment, and promote the sustainable use of fishery resources
through precise feeding and water quality management [3].

Instance segmentation [4-6], as one of the key tasks in computer vision, has made
significant progress. The goal of instance segmentation is to assign each pixel in an image to
a specific object instance, enabling precise recognition and segmentation of different objects
within complex scenes. With the growing demand for automation and precise monitoring
in aquaculture, the deep learning community has increasingly focused on the development
and application of underwater vision tasks. Underwater vision involves the analysis and
interpretation of underwater images, which is critical for robotic vision systems and the
navigation of autonomous underwater vehicles. In agricultural fish farming, underwater
image instance segmentation plays a pivotal role in effectively identifying and detecting
fish and their behaviors, thereby assisting in monitoring the farming environment and
optimizing management decisions. This process is essential for applications such as health
monitoring [7], population management, and stocking density control in aquaculture. De-
spite its significance, agricultural underwater image instance segmentation faces numerous
challenges, making this task particularly complex.

Firstly, variations in lighting and color in underwater scenes significantly affect the
accuracy of image segmentation. Due to the scattering and absorption properties of
underwater light, objects at different depths show varying colors and brightness levels [8].
These factors lead to inconsistencies in feature representation, making it difficult to maintain
semantic consistency in the segmentation model under changing lighting conditions [9].
This inconsistency poses a major challenge to accurate object recognition and differentiation.
Additionally, objects at greater depths appear darker and less distinguishable due to light
scattering, further complicating the segmentation process. The changes in the appearance
of objects, driven by fluctuating lighting conditions, result in a notable decrease in the
performance of segmentation models, which often struggle to adapt to the dynamic nature
of underwater images.

Secondly, underwater image data are often highly imbalanced, which presents another
critical challenge. In many natural underwater environments, large schools of fish tend to
gather around coral reefs or other structures, resulting in a much higher number of fish
instances compared to other objects such as plants, rocks, or debris. This uneven distribu-
tion of object categories creates a skewed training dataset, where the model encounters
an overwhelming frequency of fish instances in contrast to less common objects. As a
result, the model prioritizes the detection of more frequent objects while neglecting or
misclassifying rarer ones. This data imbalance negatively impacts segmentation perfor-
mance, especially for less frequent objects, as the model struggles to learn to recognize them
accurately. The problem becomes more complex when infrequent objects appear alongside
more common ones in the same frame, further challenging the model’s ability to correctly
segment these rare instances.

In this work, we propose a novel deep learning segmentation model, defined as the
AASNet (Agricultural Aqua Segmentation Network), which incorporates a Linear Cor-
relation Attention mechanism and a Dynamic Adaptive Focal Loss, that is specifically
optimized to address challenges such as lighting variations, complex backgrounds, and ex-
treme data imbalance in underwater scenes. The model’s performance has been extensively
evaluated on the UIIS [8] and USIS10K [10] datasets. To summarize, our main contributions
are listed as follows:

1.  We design a novel Agricultural Underwater Image Instance Segmentation Model,
AASNet, which integrates detection and segmentation functions. This model is
specifically optimized to address the challenges of lighting variations and extreme
data imbalance in underwater scenes.
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2. In AASNet, we introduce the Linear Correlation Attention (LCA) mechanism and a
dynamic adaptive loss function. The LCA mechanism captures feature correlations,
enhancing the model’s ability to adapt to variations in lighting and complex back-
grounds. At the same time, the dynamic adaptive loss function addresses the issue
of data imbalance, improving classification accuracy and ensuring that the model
maintains high performance across diverse underwater scenarios.

3. Our method achieves state-of-the-art performance on the UIIS and USIS datasets, sur-
passing current mainstream methods in accuracy, parameter efficiency, and inference
speed. The experimental results demonstrate that AASNet excels in handling complex
underwater scenes, showcasing its superior performance.

The remainder of the paper is organized as follows: Section 2 reviews the related
work in underwater image instance segmentation, discussing key approaches and their
limitations in addressing the challenges posed by underwater environments. Section 3
presents the methodology behind AASNet, detailing the innovative components of the
Linear Correlation Attention mechanism and the Dynamic Adaptive Focal Loss. Section 4
outlines the experimental setup and results, comparing AASNet’s performance with state-
of-the-art methods on the UIIS and USIS10K datasets. Section 5 discusses the results,
emphasizing the advantages of AASNet and its potential applications in smart fisheries,
and provides suggestions for future research directions.

2. Related Work
2.1. Vision Instance Segmentation Technology

Current instance segmentation methods fall into two categories: two-stage and one-
stage approaches. Two-stage methods, like the classic Mask R-CNN [5], first generate
region proposals or bounding boxes, followed by Rol pooling to align features and pre-
dict pixel-level masks. PointRend [11] builds on Mask R-CNN by adaptively selecting
key points to recover fine details, generating higher-quality masks. Similarly, BMask R-
CNN [12] improves mask precision by fusing object boundary and instance mask features,
enhancing contour prediction. In contrast, Self-Balanced R-CNN [13] tackles the issue of
IoU distribution imbalance. It introduces a new Rol feature aggregation method. Addition-
ally, it incorporates feature pooling and attention layers to boost accuracy and efficiency.
This approach focuses on broader architectural improvements rather than just mask refine-
ment [14]. Although two-stage methods achieve promising performance in segmentation
accuracy, they often suffer from slower computation speeds and longer inference times;
these limitations hinder their applicability in scenarios requiring fast decision-making, such
as underwater monitoring systems.

In contrast, one-stage methods unify detection and segmentation tasks within a single
network, thereby improving processing speed and efficiency. InstanceCut [15] addresses
the instance segmentation problem by combining semantic segmentation with bound-
ary detection. SGN [16] simplifies the process by employing neural networks for pixel
grouping, while Bai et al. [17] integrate deep learning with watershed transformation to
generate pixel-level energy maps for improved inference. These approaches demonstrate
significant advantages in computational speed over two-stage algorithms. Furthermore,
one-stage methods have achieved notable improvements in accuracy, with performance
now approaching that of many two-stage approaches. For example, YOLOv9 [18], which
incorporates the GELAN backbone and Programmable Gradient Information (PGI), main-
tains the efficiency of the YOLO series while enhancing both object detection and instance
segmentation accuracy. However, these models may still face challenges in complex en-
vironments such as underwater scenes, particularly due to lighting variations, object
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occlusions, and extreme class imbalance in underwater datasets, all of which can adversely
affect segmentation performance.

2.2. Underwater Fish Recognition Technology

As the demand for underwater environment exploration continues to grow, under-
water visual tasks have become an increasingly significant research direction in computer
vision. Substantial progress has been made across various aspects of underwater vision.
For example, Islam et al. [19] developed the EUVP dataset to advance underwater im-
age enhancement and color correction, offering both paired and unpaired image samples.
Zhuang et al. [20] focused on underwater object detection using the WishFish dataset,
which includes images of diverse fish and marine life. Additionally, Islam et al. [21] estab-
lished IRVLab, the first underwater semantic segmentation dataset, containing 1500 images.
Nahuel et al. [22] created the DeepFish dataset for fine-grained fish detection and instance
segmentation, supporting species classification. While these datasets provide valuable
resources for underwater vision, methods based on them still face challenges when dealing
with lighting inconsistencies and objects at varying depths. In recent studies, the Water-
Mask method performs well on the UIIS dataset, effectively handling complex boundaries,
but still struggles in instance dense underwater scenes, where the extreme class imbalance
of underwater instances reduces segmentation accuracy. Similarly, the USIS-SAM method
achieves strong segmentation performance on the USIS10K dataset, but its high model com-
plexity limits real-time applications, particularly in large-scale underwater environments.
These limitations highlight the need for further optimization in real-time processing and
model efficiency.

Recent advancements in underwater agriculture, particularly aquaculture, have led
to significant progress in underwater image processing and biological detection. Imada
et al. [23] applied the YOLOX algorithm for underwater target detection in near-shore
aquaculture, improving the detection speed and accuracy of objects such as farmed nets
and fish. However, challenges remain in detecting small objects in complex underwa-
ter environments. Dai Li et al. [24] proposed an enhanced soft attention-based method
for underwater fish segmentation, integrating deep learning with attention mechanisms.
This method performs well in complex aquaculture settings and can effectively handle dy-
namic underwater changes. Yet, real-time processing capabilities still require improvement.
Overall, these studies provide valuable insights and technological solutions for intelligent
monitoring and management in underwater agriculture, including image enhancement,
target detection, and segmentation. However, challenges related to real-time monitoring
and algorithm adaptability remain significant hurdles for future research [25].

With the growing development of underwater agriculture, numerous technologies and
methods have been proposed to improve the efficiency and sustainability of aquaculture.
Khudoyberdiev et al. [26] introduced a predictive optimization-based water quality control
method, which enhances fish growth efficiency and yield through predictive modeling.
Despite its promise, it still requires advancements in real-time data processing and large-
scale farm equipment integration. Kaur et al. [27] reviewed deep learning frameworks
for precision fish farming, emphasizing their potential for health monitoring, behavioral
analysis, and early disease detection. However, challenges related to computational power
and data processing remain, especially in large-scale farm applications. These studies
highlight various technological avenues for smart fish farming, but key issues such as
real-time data processing, system adaptability, and model deployment require further
exploration [28].
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3. Methods

We propose the AASNet, a network specifically designed to address the challenges
of complex underwater environments and extreme data imbalance. The entire model
integrates detection and segmentation modules, leveraging specialized loss functions
to optimize performance. This network architecture consists of three components: the
backbone, head, and loss modules, as illustrated in Figure 1, which work in concert to
achieve precise object localization and instance segmentation.

Dynamic Adaptive
Focal Loss

Mask Loss

Mask .

Box Loss

== pred | B

(b)Head . (c)Loss |

| (a)Backbone

Figure 1. AASNet consists of three main parts: the backbone network, the head network, and the loss
module. In the backbone network, we integrate the LCA module at the P4 layer of the GELAN [18]
architecture to optimize semantic feature extraction for similar objects. The head network performs
multi-scale predictions to generate refined segmentation results. The final output includes class
predictions for 7 instance categories, predicted bounding boxes, and instance segmentation masks.
The loss module computes the overall network loss, with the classification loss utilizing our designed
DAFL to address the extreme data imbalance in underwater datasets.

To begin, the backbone extracts rich feature information from the input image through
a series of convolutional layers, progressively enhancing the expression of high-level
semantic information. During this process, the spatial resolution is reduced while the
number of channels in the feature map increases. This enables the network to better capture
object features within the image and provides multi-scale feature maps for subsequent
detection and segmentation tasks.

Next, the head network receives the feature maps output by the backbone and pro-
cesses them for detection and segmentation tasks. Although these two tasks have different
output objectives, they share features and some structural components through an inheri-
tance relationship, enabling effective collaboration. The detection task localizes objects by
regressing their bounding boxes, while the segmentation task refines the target regions and
generates precise segmentation masks. Both tasks share the high-level features extracted
by the backbone and use independent modules to perform task-specific processing. Specifi-
cally, the detection part regresses the object locations, while the segmentation part extracts
pixel-level information from the bounding boxes to generate segmentation masks. This de-
sign not only enhances computational efficiency but also optimizes overall performance,
allowing the network to effectively handle instance segmentation tasks.

Finally, the loss calculation module measures the discrepancy between the network’s
predictions and the ground truth labels, guiding the network training through loss op-
timization. The inputs to the loss module primarily include the predicted classification
results, bounding box regression outcomes, segmentation masks, and their corresponding
target labels. Specifically, the classification loss is calculated based on the error between the
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predicted class scores and the true object categories, the bounding box loss is derived from
the difference between the predicted and true bounding boxes, and the segmentation loss
measures the discrepancy between the predicted segmentation masks and the ground truth
masks, ensuring pixel-level accuracy. These losses are weighted using different strategies
and collectively contribute to the network’s optimization process, enabling the model to
effectively improve the accuracy of object detection and segmentation during training.

3.1. Preprocessing Techniques

We perform data preprocessing during the data loading phase to ensure that the
image instance segmentation model can efficiently process and learn from the input data.
The process begins with reading each image and its corresponding labels. All images are
resized to a standard input dimension of 640 x 640 while preserving their original aspect
ratios. If an image does not naturally fit the target dimensions, padding or scaling is applied
to ensure consistency across the dataset and compatibility with model architecture.

Next, data augmentation techniques are applied. The first enhancement method
employed is Mosaic augmentation with a probability of 1.0. Mosaic combines four images
into one large image, increasing the diversity of training samples. This augmentation
increases the variety of training data, making the model more robust by presenting it
with combinations of different input images. Furthermore, to further augment the data,
the MixUp technique is applied with a probability of 0.15. This technique combines two
images and their respective labels with weighted combinations, which helps to create more
diverse data and improve the model’s generalization ability. During the data augmentation
process, we also perform color space augmentation using the HSV (hue, saturation, value)
enhancement technique. The hue is adjusted by up to 1.5%, saturation is varied by up to
70%, and brightness is varied by up to 40%. These modifications simulate different lighting
and environmental conditions, thereby improving the model’s adaptability to real-world
scenarios.

Once augmentation is complete, label formats are converted to facilitate training.
The original format, which encodes bounding boxes using normalized width, height, and
center coordinates, is transformed into a format defined by the coordinates of the top-left
and bottom-right corners. This format is more appropriate for detection and segmentation
tasks. For segmentation specifically, polygonal annotations are converted into binary masks
by filling the interior regions defined by the polygons. These masks may be down-sampled
to reduce memory consumption during training.

Finally, spatial transformations are applied to further increase data variability. Im-
ages are randomly flipped horizontally with a probability of 0.5, while vertical flipping is
disabled. These transformations enable the model to learn orientation-invariant representa-
tions of objects.

3.2. Linear Correlation Attention Module

The backbone is based on the Generalized Efficient Layer Aggregation Network
(GELAN) from the YOLOV9 model; it is shown in Figure 2. GELAN employs a modular de-
sign that integrates advanced convolution operations, feature fusion, and down-sampling
strategies, ensuring efficient feature extraction and fusion across different scales, thereby
enhancing feature extraction capabilities. RepNCSPELAN4 is a deep learning module that
combines the ideas of CSP (cross-stage partial) and ELAN (Efficient Layer Aggregation
Network), designed to enhance the efficiency of feature extraction and fusion, particularly
in handling complex and multi-scale visual tasks. This module optimizes the network’s
expressiveness and computational efficiency through multiple bottleneck structures (such
as RepNCSP) and efficient convolution operations. As a core submodule, RepNCSP ef-
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fectively extracts multi-level feature information and enhances the model’s performance
across different scales by utilizing cross-stage partial connections and feature fusion. In the
workflow of RepNCSPELAN4, the input is first passed through a 1 x 1 convolution layer
for channel conversion, followed by feature extraction and processing through multiple
RepNCSP modules. Subsequently, the processed features are fused through concatenation
and down-sampling, improving the model’s performance in complex visual tasks. Ulti-
mately, RepNCSPELAN4 efficiently extracts multi-level feature information and provides
more accurate feature representations for specific tasks.
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Figure 2. The architecture of GELAN backbone network.

To better adapt to underwater instance segmentation tasks, we introduce a Linear
Correlation Attention (LCA) module, which captures linear correlations between features
to enhance the model’s ability to handle lighting variations and color differences in complex
underwater environments [29,30]. With this design, the backbone generates rich feature
representations with consistent semantic information, providing a solid foundation for
subsequent detection and segmentation tasks.

In instance segmentation tasks, the diversity in object shapes and sizes, especially the
significant differences among objects of the same category, demands extremely high preci-
sion and robustness from segmentation algorithms. Non-local attention mechanisms [31]
assist models in capturing important contextual information by accounting for long-range
dependencies across different positions in the feature map. However, this mechanism relies
on dot-product operations to compute the similarity between feature vectors, focusing pri-
marily on the angular relationship between vectors while failing to fully capture the linear
correlations between features. This limitation is particularly pronounced in underwater
environments. Due to the absorption and scattering effects of water, objects of the same
category can exhibit significant color differences at various depths. For example, fish of
the same species may show different hues and brightness levels due to changes in lighting
underwater. These variations result in inconsistent feature representations of the same
objects within images, thereby impacting the performance of segmentation algorithms.

To address these challenges, we propose the Linear Correlation Attention (LCA)
module, which replaces the traditional dot-product operation with Pearson correlation
coefficients. This approach better captures the linear correlations between features, helping
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the model maintain semantic consistency when processing objects of the same category.
Even in complex underwater scenes, where object colors change due to light scattering and
absorption, Pearson correlation coefficients are more effective than dot-product similarity
in unifying these variations into consistent target features. By accurately capturing the
relationships between features, the LCA module enhances the model’s ability to extract
semantically relevant features in complex environments, ensuring consistent target repre-
sentation. This mechanism significantly improves segmentation performance in underwater
scenarios, particularly under conditions of drastic lighting changes.

Through ablation experiments, we find that applying the LCA module to the P4 layer
of the backbone network GELAN achieves the best results. The LCA module, by leveraging
Pearson correlation, enhances the model’s understanding of complex relationships between
features, particularly in maintaining semantic consistency when handling variations in the
color tones of similar objects. This leads to a significant improvement in the accuracy and
stability of instance segmentation. The specific structure is illustrated in Figure 3, and the
computational process is as follows.
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Figure 3. The architecture of Linear Correlation Attention Module, the * denotes multiplication.

Firstly, the input feature map X undergoes feature transformation. Specifically, X is
transformed into lower-dimensional feature representations through two 1 x 1 convolution
layers, generating the feature representations 6(X) and &(X), which are defined as follows:

0(X) = WpX )

I(X) = WgX 2

Here, Wy and Wy are |x| convolution kernels used to reduce the dimensionality of the
input feature map and extract semantic feature representations.
At the same time, the input feature map undergoes a linear transformation to generate
the feature map g(X):
§(X) = WX ®)

where W, is also a |x| convolution kernel used for further processing of the input feature
map.
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Next, we compute the similarity matrix. First, we calculate the average values of the
feature maps 6(X) and @(X) as follows:

0 1%9

avg — 37 Xi 4

¢ = L0 @
1 N

gavg = N;Q(Xl) (5)

Here, N represents the total number of pixels in the feature map, and X; represents
the i-th pixel in the input feature map X.
Then, we compute the centered representations of the feature maps by subtracting
their respective mean values:
9/(X) = B(X) - Gavg (6)

&' (X) = B(X) — Bavg 7)

Here, 6'(X) and @’ (X) represent the centered feature maps, which are normalized by
removing the mean to prepare for subsequent correlation calculations.
The Pearson correlation coefficient matrix f(i, j) is then computed as follows:

9/(Xi>'®/ (X])

1D = o) e (%] i

where i and j represent the indices of pixels or positions in the feature map, and X; and
X; represent the pixel values at the i-th and j-th positions in the input feature map X.
This equation measures the Pearson correlation between the feature vectors at positions
i and j. Next, we normalize the Pearson correlation coefficients to obtain the normalized
similarity matrix:

frorm(i,j) = 05405 x f(i,]) )

Here, the constant 0.5 is used to linearly scale the Pearson correlation coefficients from
the range of [-1, 1] to [0, 1]. This transformation ensures that all similarity values are non-
negative, making them suitable for subsequent processing steps. The use of 0.5 effectively
maps the negative correlations to a positive scale, thus preventing potential issues that
could arise from negative similarity values and ensuring the stability of the subsequent
operations.

Then, the normalized similarity matrix fyorm (7, j) is used to compute a weighted sum
over the feature map g(X), yielding the augmented feature Y;:

N
Y; =Y fuorm(i,]) ® g(X;) (10)
j=1

Here, the symbol “®” represents matrix multiplication, which is used to multiply
the normalized similarity matrix fomm (i, j) with the feature map g(Xj) ; then, a weighted
summation is performed over all positions to generate the enhanced feature Y;.

Finally, the weighted feature map Y is obtained through a |x| convolutional layer,
denoted as W. A residual connection is introduced by directly adding the input feature
map X to the output, ensuring that no information is lost.

Y = W(Y;) + X (11)
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Through these steps, we enhance the input feature map by leveraging Pearson corre-
lation to more accurately capture the relationships between features, thus improving the
instance segmentation performance.

3.3. Segmentation Head Module

In the head module, the network processes feature maps generated by the backbone
at different scales. These feature maps undergo a series of operations before being passed
to the detection and segmentation modules for final predictions. The detection module is
responsible for target classification and bounding box regression, while the segmentation
module generates segmentation masks for the targets. This design allows the network
to perform both target detection and instance segmentation tasks. To handle targets of
varying sizes and complexities, the network employs a multi-scale prediction mechanism,
processing feature maps at three different depths. Deeper feature maps are used for
detecting and segmenting larger targets, while shallower feature maps focus on smaller,
detail-rich targets. This approach leverages the advantages of feature maps at different
scales, ensuring high accuracy when handling multi-scale targets.

For network structure, feature representation is further enhanced by merging feature
maps of different scales using upsampling and feature fusion techniques. For instance, the
network combines shallow and deep features through Upsample and Concat operations to
improve target detection and segmentation at various scales. Additionally, the network
incorporates the RepNCSPELAN4 module, an efficient feature extraction structure that in-
tegrates the attention mechanism and convolution operation to optimize feature extraction.
Finally, the segmentation module generates segmentation masks for each target, enabling
pixel-level segmentation. This parallel multi-scale design enables the network to achieve
accurate target detection and high-quality segmentation in complex visual tasks, ensuring
precise localization and clear, detailed segmentation results. The specific process of instance
segmentation is as follows:

We use Pig, P19, and Py, for multi-scale predictions. These feature maps contain rich
spatial information, which is crucial for detecting and segmenting objects of varying sizes.
The model generates bounding box regression values and class scores using different
ModuleList modules for each scale. Each scale’s feature map P; is passed through the corre-
sponding module to produce bounding box regression values and class scores. Specifically,
for each feature map P;, the detection branch generates the output D;:

D; = DetectBranch(P;), i € {16, 19, 22} (12)

Here, DetectBranch(-) refers to the process that extracts bounding box regression
values and class scores from the feature map. The detection outputs from each scale are
then decoded to generate the final detection results, including bounding boxes and class
scores:

Box = BoxDecoder(D14, D19, D7) (13)

Cls = ClassDecoder (D14, D19, D22) (14)

Next, the outputs from all scales are concatenated to form the final detection result. In
the instance segmentation task, the model first extracts the shallowest feature map Pj¢ and
uses it to generate prototype masks Pyot. This feature map is passed through a dedicated
branch for mask generation. For each feature map P;, we compute the corresponding mask
coefficients C;:

C;= MaskCoeff (P;), i € {16, 19, 22} (15)



Appl. Sci. 2025, 15, 3986

11 of 25

These mask coefficients have dimensions [Batch size, ny,, H;-W;], where ny,, denotes
the number of mask coefficients per target, and H; and W; correspond to the spatial
dimensions of each scale’s feature map. The mask coefficients from different scales are
concatenated to form the final mask coefficient tensor:

C = Concat(Cyq, C19, C22) (16)

Finally, the segmentation output consists of the detection result, which includes
bounding box locations and class scores, and the mask coefficients C and prototype masks
Pyroto- The mask for each target is generated by multiplying the mask coefficients with the
prototype masks. This design allows the model to generate a binary segmentation mask for
each target by this multiplication.

3.4. Dynamic Adaptive Focal Loss

In instance segmentation models, Focal Loss [32] is commonly used as the classification
loss. Focal Loss is a loss function designed to improve the performance of classification
models when dealing with highly imbalanced datasets. The formula for Focal Loss is as
follows:

FL(pt) = —a x (1 — pi)" * log(p:) (17)

Here, p; is the predicted probability for the true class, a; is a weighting factor that
balances the impact of positive and negative samples, and 1; is a tuning factor that controls
the weight assigned to hard-to-classify samples.

Although Focal Loss can enhance classification accuracy in situations with class imbal-
ance, it presents certain challenges in practical applications. Focal Loss uses fixed a; and
7t coefficients during training. Even though these parameters may be optimized prior to
training, they remain unchanged throughout the entire process. As a result, Focal Loss is
unable to dynamically adjust its parameters in response to varying sample distributions in
each training batch. This static parameter configuration may lead to insufficient focus on
hard-to-classify samples in some batches or excessive emphasis on easy-to-classify samples,
thereby limiting the model’s ability to handle data imbalance effectively.

In underwater environments, the presence of large schools of fish often gathering
around coral reefs results in a much higher number of images of marine life compared to
other categories. This data imbalance causes the model to be biased towards frequently
appearing categories during training while neglecting fewer common objects, thereby
affecting the overall performance of the segmentation algorithm. To address this issue, we
propose the Dynamic Adaptive Focal Loss (DAFL) method. DAFL introduces label smooth-
ing and dynamically adjusts the a; and ; parameters, enabling the model to adaptively
adjust its focus on hard-to-classify samples across different training batches. This dynamic
adjustment mechanism not only further mitigates the impact of class imbalance on model
performance but also improves segmentation accuracy on extremely imbalanced datasets.
The label smoothing is applied to the true label y, defined as

€
Ysmooth = Y X (1 - 6) + E (18)

where y is the true label, taking values of 0 or 1, indicating whether the sample belongs
to a given class. € is the smoothing coefficient. The purpose of label smoothing is to
prevent the model from becoming overly confident in the training data, thereby improving
generalization.

Next, based on the smoothed label y,5011,, We calculate the global mean of the labels,
denoted as Ygy01,- The smoothed label y,,001 is a three-dimensional tensor, consisting
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of batch size, number of samples, and number of classes. To compute the mean, these
dimensions are flattened into a one-dimensional vector, where the total number n is the
product of these three dimensions:

n=BxSxC (19)

where B is the batch size, S is the number of samples, and C is the number of classes. Then,
the global mean of the smoothed labels is calculated:

1 n
Ysmooth = Ezysmooth,i (20
i=1

This mean reflects the class distribution in the current training batch, helping to capture
the balance between all classes and mitigate the impact of class imbalance. It also provides
insights into the ratio of positive and negative samples and the difficulty of classification.
Subsequently, we dynamically adjust the parameter « as follows:

& = Qinitial X Fomooth + (1 = Tsmootn) X (1 = initiar) (21)

In this equation, ¥,,,,,,;, represents the proportion of positive samples. When the
proportion of positive samples is high, the value of a} increases, approaching «;,;s, giving
lower weight to the positive samples and reducing the penalty on easy samples. When
the proportion of positive samples is low, «; decreases, approaching 1 — ;,;tis, assign-
ing higher weight to the positive samples and increasing the focus on difficult samples.
This dynamic adjustment effectively balances the weights between positive and negative
samples, allowing the model to learn effectively even in the presence of class imbalance.
The formula for dynamically adjusting the parameter « is

Yt = Yinitial X (1 = Yspootn) (22)

This equation adjusts -y} based on the change in the proportion of positive samples
Ysmootn When the proportion of positive samples is low, indicating that there are more
difficult-to-classify samples in the current batch, the value of v} increases, approaching
Yinitial, Which gives higher weight to these difficult samples. When the proportion of
positive samples is high, v} decreases, approaching zero, thus reducing the penalty on
easy-to-classify samples. Through this dynamic adjustment, the modified Focal Loss can
adaptively increase the loss weight for difficult samples in class-imbalanced situations,
significantly improving the model’s classification performance. The dynamic Focal Loss
calculation is designed as follows:

DAFL(pt) = —tx; x (1— pt)% x log(pt) (23)

Finally, the overall loss function for the AASNet network is divided into three parts
and can be expressed as

Ltotul = )‘cls * Lcls + Abox * Lbox + )‘mask * Lmask (24)

where A5, Apoy, and Apy,q are the weighting factors for the classification, bounding box
regression, and segmentation losses, respectively. In our experiments, we assign a weight
of 0.5 to the A, 7.5 to the Ay,,, and 0.2 to the A, k-

To address the extreme imbalance in underwater instance segmentation datasets,
the classification loss Ljs uses our proposed Dynamic Adaptive Focal Loss (DAFL); the
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Dynamic Adaptive Focal Loss schematic illustration diagram is shown in Figure 4. For the

bounding box regression loss Ly,,, we adopt the CloU loss [33] and Distribution Focal

Loss [34] to enhance the prediction accuracy and alignment between the predicted and

ground truth boxes. The segmentation loss L,,,;x employs binary cross-entropy loss to

measure the difference between the predicted and ground truth masks. These two loss

functions are designed to be consistent with the original YOLOvV9 approach.

Label smoothing Global mean

E|:'>ES<|:000.7500 Ds{oo‘;;’ou

Dynamic adjustment

' i’ Calculate Loss \'i
5 — | DAFL@)=—a X (1 — p)Y X log®y) |
5 § /
\ay oy

Figure 4. Schematic illustration of Dynamic Adaptive Focal Loss.

4. Results and Discussion

4.1. Dataset Sources

@

@)

UIIS dataset: This is the first general underwater image instance segmentation dataset,
released in 2023. This dataset includes seven challenging categories, such as fish,
divers, reefs, and more. The UIIS dataset consists of 4628 images, divided into training,
validation, and test sets with a ratio of 7.4:1.3:1.3. The images in the dataset vary in
resolution, including 240 x 320 pixel images captured by low-resolution handheld
cameras, and 720 x 1280 pixel images taken by medium- to high-resolution industrial
equipment, ensuring diversity and high quality in the dataset. Among the images,
fish constitute a significant proportion. For instance, there are 16,749 fish instances
annotated in images. These annotations are valuable for fish detection and behavioral
analysis in smart fish farming.

USIS10K dataset: This is the first large-scale underwater salient instance segmentation
dataset, released in 2024. This dataset contains 10,632 images with pixel-level annota-
tions from various underwater scenes and is divided into training, validation, and test
sets with a ratio of 7:1.5:1.5. The dataset includes two types of annotations: single-class
annotations, where all labels are marked as foreground, and detailed annotations,
with seven sub-categories such as fish, ruins, aquatic plants, etc. In the USIS10K
dataset, there are 9663 fish instances annotated. This detailed annotation provides
high-quality training resources for tasks such as fish identification, disease detection,
and water quality monitoring in smart fish farming. The diversity of fish annotations
in the dataset supports both single-category and multi-category segmentation tasks,
enhancing the model’s adaptability in complex underwater environments.

4.2. Evaluation Metric and Details

The standard mask AP metric is employed as the evaluation criterion, comprehensively

assessing the model’s performance through mAP, AP50, AP75, and a range of different
IoU thresholds. In addition to the newly designed components, all backbone and method
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hyperparameters remain consistent with the original YOLOv9 approach. In the Dynamic
Adaptive Focal Loss, we set the smoothing coefficient e to 0.1, initial alpha to 0.25, and
initial gamma to 1.5. These parameters are determined through a series of experiments
to optimize performance for the current task. The model is trained with a batch size of
12 per GPU using the SGD optimizer, with an initial learning rate of 1 x 10~2. AASNet is
implemented in PyTorch 1.7.1, and all experiments are conducted on an NVIDIA P40 GPU.
Each training cycle consists of 300 epochs.

To evaluate segmentation performance, we utilize mAP (mean Average Precision) as
the primary evaluation metric. mAP represents the average segmentation performance
across multiple classes and is defined as

YN, AP,

AP —
" N

(25)
where N is the number of classes. The Average Precision (AP) for each class is calculated
by integrating the precision-recall (PR) curve:

AP = /01 p(r)dr (26)

Here, p(r) represents the precision at a given recall value, used to evaluate the predic-
tion accuracy of the model, and is defined as
TP
iSioNn = ————— 27
Precision TP+ EP (27)
where TP represents true positive samples, and FP represents false positive samples.
Additionally, recall is another important metric that indicates the proportion of actual
positive samples correctly identified by the model, and is defined as
TP
Recall = ——— 28
= EN+TP (28)
Here, FN represents false negative samples. In addition, we use AP50 and AP75 to
further evaluate the model’s performance under different IoU (Intersection over Union)
thresholds. AP50 measures the Average Precision at an IoU threshold of 0.5, indicating
the model’s performance under more lenient criteria, while AP75 represents the average
precision at an IoU threshold of 0.75, used for stricter evaluation. Together, these metrics
provide a comprehensive assessment of the model’s segmentation performance.

4.3. Comparative Experimental Results

(1) Performance on UIIS: We present the results of our method on the UIIS underwa-
ter image instance segmentation dataset and compare them with other popular in-
stance segmentation methods. As shown in Table 1, our proposed method achieves
a new state-of-the-art on UIIS with an mAP score of 31.7, surpassing USIS-SAM by
2.3 points. In terms of AP50 and AP75, our method exceeds USIS-SAM by 4.5 points
and 2.8 points, respectively. This indicates that our approach provides better un-
derwater instance segmentation with higher localization accuracy. Additionally, the
AASNet model has a parameter count of 27.84 M, demonstrating exceptional perfor-
mance in real-time underwater instance segmentation tasks. We conduct tests on an
NVIDIA P40 GPU with a batch size of 12, where the model achieves an inference time
of only 28.9 ms when processing 640 x 640 resolution images. In comparison, the
WaterMask [8] model has a parameter count of 66.55 M, with an inference time of
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180.5 ms under the same configuration. Clearly, AASNet offers significant advantages
in computational efficiency.

Table 1. Comparison of instance segmentation methods on the UIIS Dataset. Quantitative results
demonstrate that our AASNet model achieves the best segmentation performance. The bold font
indicates the best effect.

Methods Backbone mAP AP50 AP75

Mask RCNN [5] ResNet-101 23.4 40.9 25.3
Mask Scoring R-CNN [35] ResNet-101 24.6 419 26.5
Cascade Mask R-CNN [36] ResNet-101 25.5 42.8 27.8
BMask R-CNN [12] ResNet-101 22.1 36.2 24.4
Point Rend [11] ResNet-101 25.9 434 27.6
SOLOv2 [37] ResNet-101 24.5 40.9 25.1
Querylnst [38] ResNet-101 26.0 42.8 27.3
Mask2Former [39] ResNet-101 25.7 38.0 27.7
RDPNet [40] ResNet-101 20.6 38.7 194

Mask Transfiner [41] ResNet-101 24.6 42.1 26.0
WaterMask [8] ResNet-101 27.2 43.7 29.3
USIS-SAM [10] ViT-H 29.4 45.0 32.3
AASNet GELAN+LCA 31.7 49.5 35.1

Figure 5 presents a visual comparison of our method with existing techniques on the
UIIS dataset. It can be observed that our method excels in segmenting the overall shape of
prominent instances, even in challenging regions. For example, in the second column of
the figure, our method accurately segments the gaps between the tentacles of a jellyfish.
Additionally, our model performs exceptionally well in predicting boundaries and details,
as shown in the third and fifth columns of the figure, where the boundaries of the diver
and the plankton net predicted by our model are much closer to the ground truth masks.

original image

Mask R-CNN

Querylnst

WaterMask

AASNet

Figure 5. The visualization results of fish instance segmentation on the UIIS dataset. First row shows
the original images, and each subsequent row displays the prediction results of different models.

As shown in Figure 6, the training and validation loss curves on the UIIS dataset reveal
the model’s performance during training. The training loss steadily decreases throughout
the epochs, indicating that the model effectively learns and minimizes error on the training
data. Meanwhile, the validation loss remains relatively stable, with only slight fluctuations,
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suggesting that the model is able to generalize well to unseen data without significant
overfitting. Regarding the model’s instance segmentation performance, the steady decline
in training loss and stable validation loss reflect a robust ability to segment instances
accurately. The model shows consistent improvements in both the training and validation
phases, which indicates strong performance in segmenting objects within the UIIS dataset.
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Figure 6. The loss curves on the UIIS dataset.

The analysis of the confusion matrix in Figure 7 shows that the model performs
excellently in handling the “diver” and “fish” categories, with high accuracy and minimal
confusion. However, for the “aquatic plants” and “robots” categories, the model exhibits
some misclassification, particularly with confusion between the “background” class and
other targets. Overall, the model effectively distinguishes most categories, but further
optimization is needed, especially for categories affected by background interference in
complex underwater environments.

Confusion Matrix

fish
°
®

Predicted
human diverswrecks/ruinsaquatic plants  reefs
°

- h B

obots.
s

background  sea-floor
°

fish reefs  aquatic plantswrecks/ruinshuman divers  robots  sea-floor background

Figure 7. The confusion matrix on the UIIS dataset.

(2) Performance on USIS10K: Table 2 shows the performance comparison with state-of-
the-art methods. The results of the histogram visualization of the average accuracy of
each advanced method are shown in Figure 8. The experimental results demonstrate
that our model performs better when the data volume is expanded. Our method
achieves an mAP that is 4.6 points higher than USIS-SAM under multi-label annota-
tions and 6.2 points higher under single-label annotations. In both annotation settings,
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AP50 and AP75 also reach optimal values, further proving the effectiveness of our
approach.

Table 2. Comparison of instance segmentation methods on the USIS10K Dataset. Bold values indicate
the best performance in each column. The bold font indicates the best effect.

lass-A. i Multi-Cl
Method Backbone Class-Agnostic ulti-Class
mAP AP50 AP75 mAP AP50 AP75
S4Net [42] ResNet-50 32.8 64.1 27.3 23.9 435 244
RDPNet [40] ResNet-50 53.8 77.8 61.9 379 55.3 427
RDPNet [40] ResNet-101 54.7 78.3 63.0 39.3 55.9 454
OQTR [43] ResNet-50 56.6 79.3 62.6 19.7 30.6 21.9
URank+RDPNet [40] ResNet-101 52.0 77.0 62.0 359 52.5 414
URank+OQTR [43] ResNet-50 49.3 74.3 56.2 32.1 441 23.3
WaterMask [8] ResNet-50 58.3 80.2 66.5 37.7 54.0 425
WaterMask [8] ResNet-101 59.0 80.6 67.2 38.7 54.9 43.2
SAM+BBox [44] ViT-H 45.9 65.9 52.1 26.4 38.9 29.0
SAM-+Mask [44] ViT-H 55.1 80.2 60.9 385 55.4 44.8
RSPrompter [45] ViT-H 58.2 79.9 65.9 38.0 55.0 44.6
URank+RPSrompter [45] ViT-H 50.6 74.4 56.6 385 55.0 433
USIS-SAM [10] ViT-H 59.7 81.6 67.7 43.1 59.0 485
AASNet GELAN+LCA 65.9 86.0 73.1 47.4 62.1 52.2
AASNet
USIS-SAM
URank+RPSrompter
RSPrompter
SAM+Mask
SAM+BBox
WaterMask
URank+0QTR
URank+RDPNet
OQTR
RDPNet
S4Net
0 10 20 30 20 50 60
mAP

Figure 8. Result visualization plots of average accuracy.

The visualization results on the USIS10K dataset, shown in Figure 9, demonstrate the
model’s outstanding performance in handling complex underwater scenes. Despite the
presence of background complexity, color deviation, and the effects of light scattering and
absorption in underwater images, the model accurately identifies and segments multiple
instances, achieving clear separation between foreground and background. Notably, even
when the ground truth labels do not fully annotate all instances, the model successfully
predicts unannotated fish. This is attributed to the Linear Correlation Attention (LCA)
mechanism, which effectively captures linear correlations between features, enabling con-
sistent handling of color variations caused by lighting changes and ensuring semantic
consistency. The LCA module enhances the model’s understanding of target objects in
complex environments, allowing it to accurately identify the contours and details of objects
even under significant lighting variations, thereby significantly improving segmentation
performance.



Appl. Sci. 2025, 15, 3986

18 of 25

Original
Image

Pred Mask

Figure 9. Visualization of the USIS10K dataset: the first row contains original images, the second
shows ground truth masks, and the third presents the model’s predicted masks.

Figure 10 presents a visual comparison of our method with existing techniques on
the USIS10K dataset. The results indicate that Dynamic Adaptive Focal Loss (DAFL)
significantly enhances the ability to handle class-imbalanced data. Unlike some advanced
methods that incorrectly classify divers and bubbles, our approach accurately classifies and
effectively segments instances.

%) i *f\« % : ;‘,.»« 4

GT RDPNet OQTR SAM + Mask RSPrompter WaterMask USIS-SAM AASNet
NG~ ki

".\&,\« t 1’ ‘,,\.

Figure 10. Visual comparison on USIS10K dataset. Each column represents GT, RDPNet [40],
OQTR [43], SAM + Mask [44], RSPrompter [45], WaterMask [8], USIS-SAM [10], and AASNet,
respectively.

)

The loss curves on the USIS10K dataset are shown in Figure 11, revealing that the
model learns effectively across all tasks, as evidenced by the steady decrease in training
losses for box, segmentation, and classification over epochs. This indicates that the model
is successfully minimizing errors and improving its performance during training. The vali-
dation losses for these components also stabilize after a few epochs, suggesting that the
model generalizes well to unseen data. The small gap between training and validation
losses indicates minimal overfitting and strong generalization ability. Overall, the model
demonstrates good performance on the USIS10K dataset, with effective optimization and
minimal overfitting.

The analysis of the confusion matrix in Figure 12 shows that the model performs well
in distinguishing categories such as “wrecks/ruins” and “human divers”, with high accu-
racy and minimal confusion between these categories. However, there are misclassifications
for the “background” category, which is often confused with other classes, particularly
“wrecks/ruins”, “fish”, and “sea-floor”. Additionally, some misclassification occurs be-
tween “fish” and “reefs”. While the model is effective at differentiating most categories,
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further improvements are needed for categories prone to confusion, such as “background”
and “sea-floor”, especially in more complex environments.
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Figure 11. The loss curves on the USIS10K dataset.
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Figure 12. The confusion matrix on the USIS10K dataset.

Notably, the model’s performance on the “fish” category is better in the USIS10K
dataset, with an accuracy of 86%, compared to 60% in the UIIS dataset, demonstrating an
overall improvement in the model’s classification capabilities on the USIS10K dataset.

4.4. Ablation Results and Analysis

To verify the effectiveness of different components of the proposed method, we
conduct several ablation experiments on the UIIS dataset to demonstrate performance.

(1) Overall Ablation Study: To analyze the importance of each proposed component,
we report the overall ablation study in Table 3. We gradually add the LCA module
and Dynamic Adaptive Focal Loss to the YOLOV9 baseline. The results show that
the LCA module improves the mAP by 2.4, demonstrating that the LCA module
effectively enhances the model’s ability to handle lighting variations and color differ-
ences in complex underwater environments, optimizing the consistency of semantic
information and thereby improving instance segmentation accuracy. Additionally,
Dynamic Adaptive Focal Loss further increases the mAP to 31.7, with simultaneous
improvements in the other two metrics, proving that this loss function performs better
in classification, thus enhancing overall segmentation accuracy.
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Table 3. Impact results of different modules in proposed AASNet, the v' denotes the use of this

method.
LCA DAFL mAP AP50 AP75
28.5 459 31.2
v 30.9 48.4 34.3
v v 31.7 49.5 35.1
(2) Ablation study on Linear Correlation Attention Module: We conduct ablation experi-

ments to evaluate the placement of the LCA module at different levels of the backbone,
testing it at None, P1, P2, P3, P4, and P5. As shown in Table 4, placing the module at
the P4 layer yields the best results, with mAP increasing by 2.4 to 30.9 and AP50 and
AP75 reaching 48.4 and 34.3, respectively. This is because the P4 layer achieves an
ideal balance between spatial resolution and semantic information in the feature map.
In shallower layers (such as P1 and P2), although the spatial resolution is high, most
captured features are low-level, making it difficult to support precise segmentation
in complex underwater scenes. In deeper layers (such as P5), while higher-level
abstract features are captured, the significant reduction in spatial resolution results
in insufficient precision in local feature extraction. The P4 layer occupies a critical
intermediate position, effectively capturing advanced levels of abstract features while
maintaining sufficient spatial resolution. Therefore, adding the LCA module at the P4
layer enhances the model’s ability to capture semantic features in complex underwater
environments. It preserves essential detail and improves segmentation performance,
leading to better results when addressing lighting variations, color differences, and
complex backgrounds.

Table 4. Position comparison results. Compared to other positions, the P4 layer effectively captures

advanced abstract features while maintaining sufficient spatial resolution, enabling the LCA module

to more effectively handle lighting variations in underwater instance segmentation. The bold font

indicates the best effect.

Position mAP AP50 AP75
None 28.5 45.9 31.2
P1 29.5 48.2 322
P2 29.6 46.1 32.5
P3 30.6 47.7 33.8
P4 30.9 48.4 34.3
P5 30.5 47.6 33.6

®)

Ablation study on Dynamic Adaptive Focal Loss: To analyze the effectiveness of Dy-
namic Adaptive Focal Loss (DAFL), we present the ablation study on the loss function
in Table 5. The results show that introducing label smoothing into Focal Loss improves
mAP by 0.3. This suggests that label smoothing enhances the model’s generalization
ability, especially for hard-to-classify samples, by reducing overfitting. Additionally,
incorporating a dynamic calculation strategy based on the global mean into Focal Loss
improves mAP by an additional 0.5. This demonstrates that the method automatically
adjusts the model’s focus on hard and easy samples, depending on the class distri-
bution within the current training batch, thereby improving classification accuracy.
When both methods are applied together, the model achieves optimal performance.
Overall, Dynamic Adaptive Focal Loss significantly boosts the model’s classification
ability and robustness, particularly in handling highly imbalanced instance segmenta-
tion tasks.
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Table 5. Ablation study of DAFL on loss functions. The results show that the introduction of label
smoothing and global mean achieves the best performance, with a mAP improvement of 0.8 points,
the v* denotes the use of this method.

Label Global Mean mAP AP50 AP75
Smoothing

30.9 48.4 34.3

v 31.2 48.7 34.6

v 31.4 492 35.2

4.5. Extended Experiments and Analysis

In fact, the proposed AASNet model can not only play a good role in smart fishery
applications but can also be transferred to other smart agriculture applications in non-
underwater environments, which can well solve various tasks of image detection and
segmentation. For further verification, our AASNet is again applied to the custom-built
SDD dataset of intelligent agriculture, which is collected through the agricultural Inter-
net of Things and camera equipment to monitor the growth status of strawberries and
symptoms of leaf pests and diseases. The experimental results and visualizations for this
additional dataset are provided below, demonstrating the migration generalization ability
and application potential of the proposed AASNet across different scenarios.

Table 6 presents the detection and segmentation performance of several segmentation
models on a crop disease detection dataset. When using the GELAN+LCA backbone
network, our proposed method achieves suboptimal Average Precision (APm) performance
of 59.1% and 80.5% on two datasets, respectively. On the SDD dataset, it outperforms Mask
R-CNN, TensorMask, CenterMask, BlendMask, MS R-CNN, Bmask R-CNN, and Cascade
Mask by 7.5%, 8.4%, 5.7%, 3.8%, 6.8%, 5.7%, and 6.7%, respectively. On the PVDS dataset,
it outperforms Mask R-CNN, TensorMask, CenterMask, BlendMask, MS R-CNN, Bmask
R-CNN, and Cascade Mask by 10.2%, 10.7%, 6.1%, 5.7%, 9.2%, 7.4%, and 6.3%, respectively.
These results demonstrate that our model can adapt to different application scenarios,
achieving optimal disease segmentation results.

Table 6. Segmentation results on SDD dataset (APm: mAP of mask; APb: mAP of bbox).

Methods Backbone APm APb
Mask R-CNN Resnet50 51.6 52.8
TensorMask Resnet50 50.7 52.9
CenterMask Resnet50 53.4 56.7
BlendMask Resnet50 55.3 57.3
MS R-CNN Resnet50 52.3 52.9
Bmask R-CNN Resnet50 53.4 55.8
Cascade Mask Swint 52.4 53.0
AASNet (ours) GELAN+LCA 59.1 62.2

Figure 13 presents the instance segmentation results of the SDD dataset across six
different scenes. Regardless of whether the target contours are regular or irregular, our
model consistently delivers precise segmentation and accurate class recognition, partic-
ularly in scenarios with simple backgrounds. Even in complex scenes with shadows, as
shown in Figure 13LIII-V, our model maintains the ability to accurately distinguish targets,
demonstrating robust performance. Overall, our model exhibits exceptional performance
in practical detection tasks, with more accurate segmentation results, a lower risk of missed
detections, and the ability to consistently maintain high-quality segmentation in various
environmental conditions. These advantages highlight the significant application value
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of our model in crop disease detection within agricultural environments, validating its
effectiveness in real-world scenarios.
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Figure 13. Disease segmentation results on the SDD dataset in the smart agriculture system. The de-
scriptions of the subfigures are as follows: (I) Gray Mold. (II) Anthracnose Fruit Rot. (III) Leaf Spot.
(IV) Blossom Blight. (V) Powdery Mildew on Fruit. (VI) Powdery Mildew on Leaves.

5. Conclusions

In smart fishery aquaculture, traditional practices face challenges, such as resource con-
straints and environmental pollution, as the demand for aquatic products increases. While
smart fisheries enhance aquaculture efficiency through advanced technologies, underwater
image segmentation still encounters difficulties due to variations in water quality, lighting,
and data imbalance. As a result, underwater fish image segmentation has become a key
technology for improving aquaculture efficiency, monitoring water quality, and increasing
production. It enables accurate identification of fish locations and behaviors, aiding in
underwater environment monitoring, fish health assessment, and disease warning.

To address these challenges, this paper presents a new underwater instance segmenta-
tion model. AASNet introduces the Linear Correlation Attention (LCA) mechanism, which
captures linear correlations between features to effectively handle color inconsistencies
in underwater images, thereby improving segmentation accuracy. Additionally, the pro-
posed Dynamic Adaptive Focus Loss (DAFL) dynamically adjusts the model’s attention to
difficult-to-classify samples, addressing the data imbalance issue and enhancing classifica-
tion performance. Experiments on the UIIS and USIS10K datasets demonstrate that AASNet
outperforms existing methods in both accuracy and inference speed. Specifically, AASNet
achieves a mean Average Precision (mAP) of 31.7 on the UIIS dataset, surpassing USIS-SAM
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by 2.3 points, and a mAP 4.6 points higher on the USIS10K dataset. Moreover, AASNet’s
inference time of 28.9 ms is significantly faster than the 180.5 ms of the WaterMask model.
These results indicate that AASNet effectively addresses lighting changes and background
interference in complex underwater environments, improving both segmentation accuracy
and efficiency.

Despite its success, AASNet still faces some challenges. Future research will focus
on optimizing the model’s real-time processing capabilities, improving segmentation per-
formance for rare objects, enhancing its adaptability to extreme conditions, and exploring
integration with water quality monitoring and automated feeding systems for more com-
prehensive intelligent aquaculture management [46,47].
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