Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = international marine transportation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6084 KiB  
Article
Intelligent Route Planning for Transport Ship Formations: A Hierarchical Global–Local Optimization and Collaborative Control Framework
by Zilong Guo, Mei Hong, Yunying Li, Longxia Qian, Yongchui Zhang and Hanlin Li
J. Mar. Sci. Eng. 2025, 13(8), 1503; https://doi.org/10.3390/jmse13081503 - 5 Aug 2025
Abstract
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive [...] Read more.
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive system. Global planning often neglects multi-ship collaborative constraints, while local methods disregard vessel maneuvering characteristics and formation stability. This paper proposes GLFM, a three-layer hierarchical framework (global optimization–local adjustment-formation collaboration module) for intelligent route planning of transport ship formations. GLFM integrates an improved multi-objective A* algorithm for global path optimization under dynamic meteorological and oceanographic (METOC) conditions and International Maritime Organization (IMO) safety regulations, with an enhanced Artificial Potential Field (APF) method incorporating ship safety domains for dynamic local obstacle avoidance. Formation, structural stability, and coordination are achieved through an improved leader–follower approach. Simulation results demonstrate that GLFM-generated trajectories significantly outperform conventional routes, reducing average risk level by 38.46% and voyage duration by 12.15%, while maintaining zero speed and period violation rates. Effective obstacle avoidance is achieved, with the leader vessel navigating optimized global waypoints and followers maintaining formation structure. The GLFM framework successfully balances global optimality with local responsiveness, enhances formation transportation efficiency and safety, and provides a comprehensive solution for intelligent route optimization in multi-constrained marine convoy operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 6356 KiB  
Article
Tectonic Rift-Related Manganese Mineralization System and Its Geophysical Signature in the Nanpanjiang Basin
by Daman Cui, Zhifang Zhao, Wenlong Liu, Haiying Yang, Yun Liu, Jianliang Liu and Baowen Shi
Remote Sens. 2025, 17(15), 2702; https://doi.org/10.3390/rs17152702 - 4 Aug 2025
Viewed by 226
Abstract
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several [...] Read more.
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several medium to large deposits such as Dounan, Baixian, and Yanzijiao. However, the geological processes that control manganese mineralization in this region remain insufficiently understood. Understanding the tectonic evolution of the basin is therefore essential to unravel the mechanisms of Middle Triassic metallogenesis. This study investigates how rift-related tectonic activity influences manganese ore formation. This study integrates global gravity and magnetic field models (WGM2012, EMAG2v3), audio-frequency magnetotelluric (AMT) profiles, and regional geological data to investigate ore-controlling structures. A distinct gravity low–magnetic high belt is delineated along the basin axis, indicating lithospheric thinning and enhanced mantle-derived heat flow. Structural interpretation reveals a rift system with a checkerboard pattern formed by intersecting NE-trending major faults and NW-trending secondary faults. Four hydrothermal plume centers are identified at these fault intersections. AMT profiles show that manganese ore bodies correspond to stable low-resistivity zones, suggesting fluid-rich, hydrothermally altered horizons. These findings demonstrate a strong spatial coupling between hydrothermal activity and mineralization. This study provides the first identification of the internal rift architecture within the Nanpanjiang Basin. The basin-scale rift–graben system exerts first-order control on sedimentation and manganese metallogenesis, supporting a trinity model of tectonic control, hydrothermal fluid transport, and sedimentary enrichment. These insights not only improve our understanding of rift-related manganese formation in southeastern Yunnan but also offer a methodological framework applicable to similar rift basins worldwide. Full article
Show Figures

Figure 1

24 pages, 8636 KiB  
Article
Oil Film Segmentation Method Using Marine Radar Based on Feature Fusion and Artificial Bee Colony Algorithm
by Jin Xu, Bo Xu, Xiaoguang Mou, Boxi Yao, Zekun Guo, Xiang Wang, Yuanyuan Huang, Sihan Qian, Min Cheng, Peng Liu and Jianning Wu
J. Mar. Sci. Eng. 2025, 13(8), 1453; https://doi.org/10.3390/jmse13081453 - 29 Jul 2025
Viewed by 183
Abstract
In the wake of the continuous development of the international strategic petroleum reserve system, the tonnage and quantity of oil tankers have been increasing. This trend has driven the expansion of offshore oil exploration and transportation, resulting in frequent incidents of ship oil [...] Read more.
In the wake of the continuous development of the international strategic petroleum reserve system, the tonnage and quantity of oil tankers have been increasing. This trend has driven the expansion of offshore oil exploration and transportation, resulting in frequent incidents of ship oil spills. Catastrophic impacts have been exerted on the marine environment by these accidents, posing a serious threat to economic development and ecological security. Therefore, there is an urgent need for efficient and reliable methods to detect oil spills in a timely manner and minimize potential losses as much as possible. In response to this challenge, a marine radar oil film segmentation method based on feature fusion and the artificial bee colony (ABC) algorithm is proposed in this study. Initially, the raw experimental data are preprocessed to obtain denoised radar images. Subsequently, grayscale adjustment and local contrast enhancement operations are carried out on the denoised images. Next, the gray level co-occurrence matrix (GLCM) features and Tamura features are extracted from the locally contrast-enhanced images. Then, the generalized least squares (GLS) method is employed to fuse the extracted texture features, yielding a new feature fusion map. Afterwards, the optimal processing threshold is determined to obtain effective wave regions by using the bimodal graph direct method. Finally, the ABC algorithm is utilized to segment the oil films. This method can provide data support for oil spill detection in marine radar images. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 3283 KiB  
Review
Impact of Internal Solitary Waves on Marine Suspended Particulate Matter: A Review
by Zhengrong Zhang, Xuezhi Feng, Xiuyao Fan, Yuchen Lin and Chaoqi Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1433; https://doi.org/10.3390/jmse13081433 - 27 Jul 2025
Viewed by 206
Abstract
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of [...] Read more.
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of suspended particles, enhance lateral transport above the pycnocline, and generate nepheloid layers nearshore. Meanwhile, intense turbulent mixing induced by ISWs accumulates large quantities of SPM at both the leading surface and trailing bottom of the waves, thereby altering the structure and dynamics of the intermediate nepheloid layers. This review synthesizes recent advances in the in situ observational techniques for SPM under the influence of ISWs and highlights the key mechanisms governing their interactions. Particular attention is given to representative field cases in the SCS, where topographic complexity and strong stratification amplify ISWs–sediment coupling. Finally, current limitations in observational and modeling approaches are discussed, with suggestions for future interdisciplinary research directions that better integrate hydrodynamic and sediment transport processes. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

31 pages, 2143 KiB  
Article
Alternative Fuels in the Maritime Industry: Emissions Evaluation of Bulk Carrier Ships
by Diego Díaz-Cuenca, Antonio Villalba-Herreros, Teresa J. Leo and Rafael d’Amore-Domenech
J. Mar. Sci. Eng. 2025, 13(7), 1313; https://doi.org/10.3390/jmse13071313 - 8 Jul 2025
Viewed by 821
Abstract
The maritime industry remains a significant contributor to global greenhouse gas (GHG) emissions. In this article, a systematic study has been performed on the alternative fuel emissions of large cargo ships under different route scenarios and propulsion systems. For this purpose, a set [...] Read more.
The maritime industry remains a significant contributor to global greenhouse gas (GHG) emissions. In this article, a systematic study has been performed on the alternative fuel emissions of large cargo ships under different route scenarios and propulsion systems. For this purpose, a set of key performance indicators (KPIs) are evaluated, including total equivalent CO2 emissions (CO2eq), CO2eq emissions per unit of transport mass and CO2eq emissions per unit of transport mass per distance. The emissions analysis demonstrates that Liquified Natural Gas (LNG) paired with Marine Gas Oil (MGO) emerges as the most viable short-term solution in comparison with the conventional fuel oil propulsion. Synthetic methanol (eMeOH) paired with synthetic diesel (eDiesel) is identified as the most promising long-term fuel combination. When comparing the European Union (EU) emission calculation system (FuelEU) with the International Maritime Organization (IMO) emission metrics, a discrepancy in emissions reduction outcomes has been observed. The IMO approach appears to favor methanol (MeOH) and liquefied natural gas (LNG) over conventional fuel oil. This is attributed to the fact that the IMO metrics do not consider unburned methane emissions (methane slip) and emissions in the production of fuels (Well-to-Tank). Full article
Show Figures

Figure 1

25 pages, 1357 KiB  
Article
Techno-Economic Analysis of Multi-Purpose Heavy-Lift Vessels Using Methanol as Fuel
by Qingguo Zheng, Liping Sun, Shengdai Chang and Hui Xing
J. Mar. Sci. Eng. 2025, 13(7), 1234; https://doi.org/10.3390/jmse13071234 - 26 Jun 2025
Viewed by 566
Abstract
With the global maritime industry accelerating toward carbon neutrality, the adoption of alternative marine fuels has emerged as a pivotal pathway for achieving net-zero emissions. To identify the most promising fuel transition solution for multi-purpose heavy-lift vessels (MPHLVs), which are widely used for [...] Read more.
With the global maritime industry accelerating toward carbon neutrality, the adoption of alternative marine fuels has emerged as a pivotal pathway for achieving net-zero emissions. To identify the most promising fuel transition solution for multi-purpose heavy-lift vessels (MPHLVs), which are widely used for transporting large and complex industrial equipment and have specialized structural requirements, this study conducted a comprehensive techno-economic analysis based on a fleet of 12 MPHLVs. An eight-dimensional technical adaptability framework was established, and six types of marine fuel were evaluated. Concurrently, a total cost assessment model was developed using 2024 operational data of the fleet, incorporating the fuel procurement, the carbon allowances under the EU ETS, the FuelEU Maritime compliance costs, and the IMO Net-Zero penalties. The results show that methanol as an alternative fuel is the most compatible decarbonization pathway for this specialized vessel type. A case study of a 38,000 DWT methanol-fueled MPHLV further demonstrates engineering feasibility with minimal impact on cargo capacity, and validates methanol’s potential as a technically viable and strategically transitional fuel for MPHLVs, particularly in the context of stricter international decarbonization regulations. The proposed evaluation framework and engineering application offer practical guidance for fuel selection, ship design, and retrofit planning, supporting the broader goal of accelerating low-carbon development in heavy-lift shipping sector. Full article
Show Figures

Figure 1

16 pages, 1780 KiB  
Article
A TransUNet-Based Intelligent Method for Identifying Internal Solitary Waves in the South China Sea
by Zubiao Wan, Yuhang Zhu, Shiqiu Peng, Jieshuo Xie, Shaotian Li and Tao Song
J. Mar. Sci. Eng. 2025, 13(6), 1154; https://doi.org/10.3390/jmse13061154 - 11 Jun 2025
Viewed by 407
Abstract
Internal Solitary Waves (ISWs) play a crucial role in energy transfer among multi-scale oceanic motions. They also have a significant impact on marine transportation and underwater communication. To date, the identification of ISWs has been primarily developed based on Synthetic Aperture Radar (SAR) [...] Read more.
Internal Solitary Waves (ISWs) play a crucial role in energy transfer among multi-scale oceanic motions. They also have a significant impact on marine transportation and underwater communication. To date, the identification of ISWs has been primarily developed based on Synthetic Aperture Radar (SAR) imagery. However, under severe sea conditions, the characteristics of ISWs at the ocean surface are generally disrupted, complicating their detection through satellite imagery. To mitigate the disturbances caused by severe weather, it is essential to account for ocean thermocline variability. In this study, we propose an automatic identification method for ISWs, utilizing the LLC4320 dataset from the South China Sea region for model training. The main innovations include: (1) The use of model data that incorporates both sea surface and underwater features, enabling accurate identification under rough sea conditions; (2) By incorporating the underwater features of ISWs, a TransUNet-based automatic identification method with some modifications, such as Dynamic Snake Convolution, is developed. The experimental results demonstrate that the model accurately identifies ISWs, achieving a Dice coefficient of 66.32%, Hausdorff_95 (HD95) of 5.27, Mean Pixel Accuracy (MPA) of 85.42%, and Mean Intersection over Union (MIoU) of 73.74% on our dataset, outperforming the other methods. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

22 pages, 2246 KiB  
Article
Modeling of Historical Marine Casualty on S-100 Electronic Navigational Charts
by Seojeong Lee, Hyewon Jeong and Changui Lee
Appl. Sci. 2025, 15(12), 6432; https://doi.org/10.3390/app15126432 - 7 Jun 2025
Viewed by 542
Abstract
With the increasing digitalization of maritime transportation, the demand for structured and interoperable data has grown. While the S-100 framework developed by the International Hydrographic Organization (IHO) provides a foundation for standardizing maritime information, a data model for representing marine casualties has not [...] Read more.
With the increasing digitalization of maritime transportation, the demand for structured and interoperable data has grown. While the S-100 framework developed by the International Hydrographic Organization (IHO) provides a foundation for standardizing maritime information, a data model for representing marine casualties has not yet been developed. As a result, past incident data—such as collisions or groundings—remain fragmented in unstructured formats and are excluded from electronic navigational systems, limiting their use in safety analysis and route planning. To address this gap, this paper proposes a data model for structuring and visualizing marine casualty information within the S-100 standard. The model was designed by defining an application schema, constructing a machine-readable feature catalogue, and developing a portrayal catalogue and custom symbology for integration into Electronic Navigational Charts (ENCs). A case study using actual casualty records was conducted to examine whether the model satisfies the structural and portrayal requirements of the S-100 framework. The proposed model enables previously unstructured casualty data to be standardized and spatially integrated into digital chart systems. This approach allows accident information to be used alongside other S-100-based data models, contributing to risk-aware route planning and future applications in smart ship operations and maritime safety services. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation)
Show Figures

Figure 1

35 pages, 21941 KiB  
Article
Explore the Ultra-High Density Urban Waterfront Space Form: An Investigation of Macau Peninsula Pier District via Point of Interest (POI) and Space Syntax
by Yue Huang, Yile Chen, Junxin Song, Liang Zheng, Shuai Yang, Yike Gao, Rongyao Li and Lu Huang
Buildings 2025, 15(10), 1735; https://doi.org/10.3390/buildings15101735 - 20 May 2025
Viewed by 752
Abstract
High-density cities have obvious characteristics of compact urban spatial form and intensive land use in terms of spatial environment, and have always been a topic of academic focus. As a typical coastal historical district, the Macau Peninsula pier district (mainly the Macau Inner [...] Read more.
High-density cities have obvious characteristics of compact urban spatial form and intensive land use in terms of spatial environment, and have always been a topic of academic focus. As a typical coastal historical district, the Macau Peninsula pier district (mainly the Macau Inner Harbour) has a high building density and a low average street width, forming a vertical coastline development model that directly converses with the ocean. This area is adjacent to Macau’s World Heritage Site and directly related to the Marine trade functions. The distribution pattern of cultural heritage linked by the ocean has strengthened Macau’s unique positioning as a node city on the Maritime Silk Road. This text is based on the theory of urban development, integrates spatial syntax and POI analysis techniques, and combines the theories of waterfront regeneration, high-density urban form and post-industrial urbanism to integrate and deepen the theoretical framework, and conduct a systematic study on the urban spatial characteristics of the coastal area of the Macau Peninsula. This study found that (1) Catering and shopping facilities present a dual agglomeration mechanism of “tourism-driven + commercial core”, with Avenida de Almeida Ribeiro as the main axis and radiating to the Ruins of St. Paul’s and Praça de Ponte e Horta, respectively. Historical blocks and tourist hotspots clearly guide the spatial center of gravity. (2) Residential and life service facilities are highly coupled, reflecting the spatial logic of “work-residence integration-service coordination”. The distribution of life service facilities basically overlaps with the high-density residential area, forming an obvious “living circle + community unit” structure with clear spatial boundaries. (3) Commercial and transportation facilities form a “functional axis belt” organizational structure along the main road, with the Rua das Lorchas—Rua do Almirante Sérgio axis as the skeleton, constructing a “functional transmission chain”. (4) The spatial system of the Macau Peninsula pier district has transformed from a single center to a multi-node, network-linked structure. Its internal spatial differentiation is not only constrained by traditional land use functions but is also driven by complex factors such as tourism economy, residential migration, historical protection, and infrastructure accessibility. (5) Through the analysis of space syntax, it is found that the core integration of the Macau Peninsula pier district is concentrated near Pier 16 and the northern area. The two main roads have good accessibility for motor vehicle travel, and the northern area of the Macau Peninsula pier district has good accessibility for long and short-distance walking. Full article
(This article belongs to the Special Issue Digital Management in Architectural Projects and Urban Environment)
Show Figures

Figure 1

18 pages, 13278 KiB  
Article
Use of Model-Based Weather Forecasting Systems for Validation of Areas for Marine Energy Deployment in Port Service Areas
by Raúl Cascajo, Rafael Molina-Sánchez and Gabriel Diaz-Hernandez
Appl. Sci. 2025, 15(9), 4948; https://doi.org/10.3390/app15094948 - 29 Apr 2025
Viewed by 428
Abstract
Ports function as logistical hubs through which approximately 80% of the world’s goods are transported annually. Recent regulatory frameworks from the International Maritime Organization (IMO) and the European Union require ships and ports to adopt measures aimed at minimizing the environmental impact of [...] Read more.
Ports function as logistical hubs through which approximately 80% of the world’s goods are transported annually. Recent regulatory frameworks from the International Maritime Organization (IMO) and the European Union require ships and ports to adopt measures aimed at minimizing the environmental impact of port activities and mitigate climate change. These measures include investing in renewable energy generation systems to transition from fossil fuel-based energy to renewable electricity. Consequently, to meet increasing energy demands, new energy infrastructure must be developed. However, due to spatial constraints in port environments, there is a growing interest in utilizing port service areas, inner docks, and exterior/adjacent water zones for the deployment of marine renewable energy generation systems. This study applies high-resolution meteorological and oceanographic modelling—incorporating validated wave agitation models—to assess the feasibility of integrating marine renewable energy generation within port service areas. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

20 pages, 6387 KiB  
Review
A Survey on the Design and Mechanical Analysis of Cryogenic Hoses for Offshore Liquid CO2 Ship-to-Ship Transfer
by Hao Cheng, Fangqiu Li, Yufeng Bu, Yuanchao Yin, Hailong Lu, Houbin Mao, Xun Zhou, Zhaokuan Lu and Jun Yan
J. Mar. Sci. Eng. 2025, 13(4), 790; https://doi.org/10.3390/jmse13040790 - 16 Apr 2025
Cited by 1 | Viewed by 886
Abstract
With the increasing severity of climate change, Carbon Capture, Utilization, and Storage (CCUS) technology has become essential for reducing atmospheric CO2. Marine carbon sequestration, which stores CO2 in seabed geological structures, offers advantages such as large storage capacity and high [...] Read more.
With the increasing severity of climate change, Carbon Capture, Utilization, and Storage (CCUS) technology has become essential for reducing atmospheric CO2. Marine carbon sequestration, which stores CO2 in seabed geological structures, offers advantages such as large storage capacity and high stability. Cryogenic hoses are critical for the ship-to-ship transfer of liquid CO2 from transportation vessels to offshore carbon sequestration platforms, but their design methods and mechanical analysis remain inadequately understood. This study reviews existing cryogenic hose designs, including reinforced corrugated hoses, vacuum-insulated hoses, and composite hoses, to assess their suitability for liquid CO2 transfer. Based on CO2’s physicochemical properties, a conceptual composite hose structure is proposed, featuring a double-spring-supported internal composite hose, thermal insulation layer, and outer sheath. Practical recommendations for material selection, corrosion prevention, and monitoring strategies are provided to improve flexibility, pressure resistance, and thermal insulation, enabling reliable long-distance tandem transfer. A mechanical analysis framework is developed to evaluate structural performance under conditions including mechanical loads, thermal stress, and dynamic responses. This manuscript includes an introduction to the background, the methodology for data collection, a review of existing designs, an analysis of CO2 characteristics, the proposed design methods, the mechanical analysis framework, a discussion of challenges, and the conclusions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

28 pages, 5449 KiB  
Review
The Evolution and Development Trends of LNG Loading and Unloading Arms
by Mingqin Liu, Jiachao Wang, Han Zhang, Yuming Zhang, Jingquan Zhu and Kun Zhu
Appl. Sci. 2025, 15(8), 4316; https://doi.org/10.3390/app15084316 - 14 Apr 2025
Cited by 1 | Viewed by 1065
Abstract
In recent years, the rapid growth in demand for liquefied natural gas (LNG) has brought significant challenges and opportunities to LNG storage and transportation technologies. As critical equipment for LNG loading operations, marine and land-based LNG loading and unloading arms play a vital [...] Read more.
In recent years, the rapid growth in demand for liquefied natural gas (LNG) has brought significant challenges and opportunities to LNG storage and transportation technologies. As critical equipment for LNG loading operations, marine and land-based LNG loading and unloading arms play a vital role in improving LNG storage and transportation efficiency and ensuring safety performance. By extensively collecting relevant domestic and international literature, technical standards, and engineering cases, systematically reviewing and analyzing existing achievements, and engaging with technical personnel from related enterprises, the current development status of marine and land-based LNG loading and unloading arms is introduced from multiple perspectives, including overall structure, sealing technology, safety protection devices, and intelligent and automated development. This paper highlights trajectory planning and image processing involved in the automatic docking technology. Marine loading/unloading arms need to operate in high-humidity, high-corrosion, and even extreme weather conditions. In the future, they should further enhance stability in marine high-corrosion environments and improve anti-overturning capability under extreme conditions by simplifying mechanical structures, developing new balancing systems, and using low-temperature-resistant alloy materials. Land-based loading and unloading arms focus on multi-vehicle parallel operations, improving operational efficiency through simplified mechanical structures, integrated intelligent positioning systems, and adaptive control algorithms. Full article
Show Figures

Figure 1

30 pages, 7457 KiB  
Article
Improving Green Shipping by Using Alternative Fuels in Ship Diesel Engines
by Sergii Sagin, Oleksandr Haichenia, Sergey Karianskyi, Oleksiy Kuropyatnyk, Roman Razinkin, Arsenii Sagin and Oleksandr Volkov
J. Mar. Sci. Eng. 2025, 13(3), 589; https://doi.org/10.3390/jmse13030589 - 17 Mar 2025
Cited by 5 | Viewed by 1056
Abstract
This paper aims to consider the issue of increasing the environmental friendliness of shipping by using alternative fuels in marine diesel engines. It has been determined that marine diesel engines are not only the main heat engines used on ships of sea and [...] Read more.
This paper aims to consider the issue of increasing the environmental friendliness of shipping by using alternative fuels in marine diesel engines. It has been determined that marine diesel engines are not only the main heat engines used on ships of sea and inland waterway transport, but are also sources of emissions of toxic components with exhaust gases. The main compounds whose emissions are controlled and regulated by international organizations are sulfur oxides (SOX) and nitrogen oxides (NOX), as well as carbon dioxide (CO2). Reducing NOX and CO2 emissions while simultaneously increasing the environmental friendliness of shipping is possible by using fuel mixtures in marine diesel engines that include biodiesel fuel. During the research carried out on Wartsila 6L32 marine diesel engines (Shanghai Wartsila Qiyao Diesel Co. Ltd., Shanghai, China), RMG500 and DMA10 petroleum fuels were used, as well as their mixtures with biodiesel fuel FAME. It was found that when using mixtures containing 10–30% of FAME biodiesel, NOX emissions are reduced by 11.20–27.10%; under the same conditions, CO2 emissions are reduced by 5.31–19.47%. The use of alternative fuels in marine diesel engines (one of which is biodiesel and fuel mixtures containing it) is one of the ways to increase the level of environmental sustainability of seagoing vessels and promote ecological shipping. This is of particular relevance when operating vessels in special ecological areas of the World Ocean. The relatively low energy intensity of the method of creating and using such fuel mixtures contributes to the spread of its use on many means of maritime transport. Full article
Show Figures

Figure 1

45 pages, 3618 KiB  
Review
Prospects of Solar Energy in the Context of Greening Maritime Transport
by Olga Petrychenko, Maksym Levinskyi, Sergey Goolak and Vaidas Lukoševičius
Sustainability 2025, 17(5), 2141; https://doi.org/10.3390/su17052141 - 1 Mar 2025
Cited by 7 | Viewed by 2213
Abstract
The aim of this article is to examine existing technologies for the use of electrical energy and to develop proposals for their improvement on maritime vessels. As a criterion for evaluating the effectiveness of alternative energy sources on ships, factors such as greenhouse [...] Read more.
The aim of this article is to examine existing technologies for the use of electrical energy and to develop proposals for their improvement on maritime vessels. As a criterion for evaluating the effectiveness of alternative energy sources on ships, factors such as greenhouse gas emissions levels, production and transportation characteristics, onboard storage conditions, and technoeconomic indicators have been proposed. The analysis of fuel types reveals that hydrogen has zero greenhouse gas emissions. However, transportation and storage issues, along with the high investment required for implementation, pose barriers to the widespread use of hydrogen as fuel for maritime vessels. This article demonstrates that solar energy can serve as an alternative to gases and liquid fuels in maritime transport. The technologies and challenges in utilizing solar energy for shipping are analyzed, trends in solar energy for maritime transport are discussed, and future research directions for the use of solar energy in the maritime sector are proposed. The most significant findings include the identification of future research directions in the application of solar energy in the maritime sector, including the adaptation of concentrated solar power (CSP) systems for maritime applications; the development of materials and designs for solar panels specifically tailored to marine conditions; the development of methods for assessing the long-term economic benefits of using solar energy on vessels; and the creation of regulatory frameworks and international standards for the use of solar energy on ships. Furthermore, for hybrid photovoltaic and diesel power systems, promising research directions could include efforts to implement direct torque control systems instead of field-orientated control systems, as well as working on compensating higher harmonics in the phase current spectra of asynchronous motors. Full article
(This article belongs to the Special Issue Transportation and Infrastructure for Sustainability)
Show Figures

Figure 1

28 pages, 4565 KiB  
Article
A Review of Vessel Traffic Services Systems Operating in Poland in Terms of Their Compliance with International Legislation
by Wojciech Durczak and Ludmiła Filina-Dawidowicz
Appl. Sci. 2025, 15(2), 797; https://doi.org/10.3390/app15020797 - 15 Jan 2025
Viewed by 1264
Abstract
Vessel Traffic Services (VTS) systems are complex systems facilitating decision-making processes and integrating technical infrastructure, aiming to ensure the safety of ship traffic and marine environment protection in indicated water areas. Such services are offered in Poland in selected regions. These systems operate [...] Read more.
Vessel Traffic Services (VTS) systems are complex systems facilitating decision-making processes and integrating technical infrastructure, aiming to ensure the safety of ship traffic and marine environment protection in indicated water areas. Such services are offered in Poland in selected regions. These systems operate based on guidelines established by the International Maritime Organization (IMO) and European Parliament; therefore, they should be constantly developed and adjusted to current regulations. The aim of this article is to review and assess the adjustment of VTS systems operating in Poland to current selected regulations introduced by the IMO and European Parliament. A comparative analysis and evaluation of three VTS systems operated in Poland was carried out. In addition, the impact of VTS systems on the development of the trans-European transport network was examined. It was stated that the investigated VTS systems’ current adjustment to analyzed regulations is different depending on the systems’ configuration and possessed infrastructure, parameters of fairways, traffic regulations and other criteria. Based on the achieved research results, recommendations to improve the VTS systems in Poland were proposed. The research outcomes may be interesting for the managers of maritime administrations, ports’ authorities, and other decision-makers responsible for safe navigation and traffic management. Full article
(This article belongs to the Special Issue Research and Estimation of Traffic Flow Characteristics)
Show Figures

Figure 1

Back to TopTop