Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (235)

Search Parameters:
Keywords = interface constitutive models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 432 KB  
Review
Changing Antibiotic Prescribing Cultures: A Comprehensive Review of Social Factors in Outpatient Antimicrobial Stewardship and Lessons Learned from the Local Initiative AnTiB
by Janina Soler Wenglein, Reinhard Bornemann, Johannes Hartmann, Markus Hufnagel and Roland Tillmann
Antibiotics 2025, 14(11), 1068; https://doi.org/10.3390/antibiotics14111068 (registering DOI) - 24 Oct 2025
Abstract
Antimicrobial resistance (AMR) constitutes a major global health challenge, driven significantly by inappropriate antibiotic use in human medicine. Despite the existence of evidence-based guidelines, variability in antibiotic prescribing persists, influenced by psychosocial factors, diagnostic uncertainty, patient expectations, and local prescribing cultures. Outpatient care, [...] Read more.
Antimicrobial resistance (AMR) constitutes a major global health challenge, driven significantly by inappropriate antibiotic use in human medicine. Despite the existence of evidence-based guidelines, variability in antibiotic prescribing persists, influenced by psychosocial factors, diagnostic uncertainty, patient expectations, and local prescribing cultures. Outpatient care, the setting in which most antibiotics are prescribed, is particularly affected by such challenges. Traditional top-down interventions, such as national guidelines, often fail to achieve sustained behavioral change among prescribers. In this comprehensive review, we provide an overview of the psychological and behavioral factors influencing antimicrobial stewardship (AMS) implementation, as well as describe a bottom-up project working to meet these challenges: the “Antibiotic Therapy in Bielefeld” (AnTiB) initiative. AnTiB employs a cross-sectoral strategy aimed at developing rational prescribing culture by means of locally developed consensus guidelines, interdisciplinary collaboration, and regularly held trainings. By addressing both the organizational and psychological aspects of prescribing practices, AnTiB has facilitated a harmonization of antibiotic use across specialties and care interfaces at the local level. The initiative’s success has led to its expansion within Germany, including through the creation of the AMS-Network Westphalia Lippe and the development of AnTiB-based national pediatric recommendations. These projects are all grounded in social structures designed to strengthen the long-term establishment of AMS measures. Our efforts underscore the importance of considering local social norms, professional network, and real-world practice conditions in AMS interventions. Integrating behavioral and social science approaches into outpatient antimicrobial stewardship—exemplified by the practitioner-led AnTiB model—improves acceptability and alignment with stewardship principles; wider adoption will require local adaptation, routine outpatient resistance surveillance, structured evaluation, and sustainable support. Full article
(This article belongs to the Special Issue Antimicrobial Stewardship—from Projects to Standard of Care)
Show Figures

Figure 1

20 pages, 1574 KB  
Article
Analysis of Torsional Vibration of Single Pile in Orthotropic Layered Soil
by Zixin Lian, Yanzhi Zhu and Yongzhi Jiu
Buildings 2025, 15(21), 3834; https://doi.org/10.3390/buildings15213834 - 23 Oct 2025
Abstract
To address the difficulty in obtaining analytical solutions for the torsional vibration response of pile foundations in orthotropic layered soil foundations subjected to torsional excitation at the pile top, this study investigates a layered recursive algorithm based on the Hankel transform. An integral [...] Read more.
To address the difficulty in obtaining analytical solutions for the torsional vibration response of pile foundations in orthotropic layered soil foundations subjected to torsional excitation at the pile top, this study investigates a layered recursive algorithm based on the Hankel transform. An integral transformation method is employed to reduce the dimensionality of the coupled pile–soil torsional vibration equations, converting the three-dimensional system of partial differential equations into a set of ordinary differential equations. Combining the constitutive properties of transversely anisotropic strata with interlayer contact conditions, a transfer matrix model is established. Employing inverse transformation coupled with the Gauss–Kronrod integration method, an explicit frequency-domain solution for the torsional dynamic impedance at the pile top is derived. The research findings indicate that the anisotropy coefficient of the foundation significantly influences both the real and imaginary parts of the impedance magnitude. The sequence of soil layer distribution and the bonding state at interfaces jointly affect the nonlinear transmission characteristics of torque along the pile shaft. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 4306 KB  
Article
Numerical Investigation of the Bond–Slip Mechanism Between Deformed CFRP Bars and Ultra-High Performance Concrete
by Junling Jiang, Nachuan Liu and Changren Ke
Appl. Sci. 2025, 15(20), 11066; https://doi.org/10.3390/app152011066 - 15 Oct 2025
Viewed by 218
Abstract
To further investigate the bond behavior between carbon fiber-reinforced polymer (CFRP) bars and ultra-high-performance concrete (UHPC) under monotonic loading, a finite element model was established in ABAQUS based on existing experimental data. The material parameters, constitutive models, and interface contact definitions were verified [...] Read more.
To further investigate the bond behavior between carbon fiber-reinforced polymer (CFRP) bars and ultra-high-performance concrete (UHPC) under monotonic loading, a finite element model was established in ABAQUS based on existing experimental data. The material parameters, constitutive models, and interface contact definitions were verified through numerical simulation. Utilizing this modeling strategy, 36 center-pull finite element models with dimensions of 150 mm × 150 mm × 150 mm were analyzed. By systematically varying the geometric parameters of the CFRP bars, the effects of surface configuration, bar diameter, and rib spacing on the bond performance between CFRP bars and UHPC were analyzed. The results demonstrate that uniform-ribbed bars exhibit the highest bond performance, followed by helical-ribbed bars, whereas dented-ribbed bars show the lowest bond strength. The ultimate bond strength decreases with increasing bar diameter. For uniform-ribbed bars, the optimal rib spacing is 1.2D (where D is the bar diameter), resulting in the highest peak bond strength. Full article
Show Figures

Figure 1

17 pages, 4604 KB  
Article
Modulation of Antimicrobial Peptide–Membrane Interactions by Lysyl-Phosphatidylglycerol in Staphylococcus aureus: An FTIR Spectroscopy Study
by Andrea Vásquez, Sofía Echeverri-Gaviria and Marcela Manrique-Moreno
Sci. Pharm. 2025, 93(4), 49; https://doi.org/10.3390/scipharm93040049 - 15 Oct 2025
Viewed by 318
Abstract
Changes in membrane lipid composition constitute a key bacterial resistance mechanism. In Staphylococcus aureus, phosphatidylglycerol undergoes lysine modification to form lysyl-phosphatidylglycerol, a cationic lipid that reduces the net negative surface charge and thereby enhances resistance to cationic antimicrobial peptides. In this study, [...] Read more.
Changes in membrane lipid composition constitute a key bacterial resistance mechanism. In Staphylococcus aureus, phosphatidylglycerol undergoes lysine modification to form lysyl-phosphatidylglycerol, a cationic lipid that reduces the net negative surface charge and thereby enhances resistance to cationic antimicrobial peptides. In this study, we examined the influence of lysyl-PG on the membrane activity of three antimicrobial peptides with distinct physicochemical characteristics: LL-37, F5W Magainin II, and NA-CATH:ATRA-1-ATRA-1. Model membranes composed of phosphatidylglycerol and cardiolipin were supplemented with increasing molar fractions of lysyl-phosphatidylglycerol, and peptide–membrane interactions were characterized using Fourier-transform infrared spectroscopy. Membrane fluidity was evaluated through shifts in the symmetric methylene stretching bands, while changes in interfacial polarity were assessed via the carbonyl and phosphate asymmetric stretching bands. LL-37 induced pronounced disruption of anionic bilayers, an effect progressively attenuated by lysyl-phosphatidylglycerol, particularly within the hydrophobic core. F5W Magainin perturbed both hydrophobic and interfacial regions across a broader range of lysyl-phosphatidylglycerol concentrations, whereas NA-CATH:ATRA-1-ATRA-1 primarily targeted interfacial domains, with minimal disruption of acyl chain order. Increasing lysyl-PG content modulated the extent of bilayer disorder and dehydration at the hydrophobic–hydrophilic interface, with each peptide exhibiting a distinct interaction profile. Collectively, these findings provide mechanistic insights into lysyl-PG-mediated modulation of peptide activity and highlight the role of lipid remodeling as a bacterial defense strategy. Full article
Show Figures

Figure 1

16 pages, 1655 KB  
Article
A Circular Land Use Model for Reconciling Industrial Expansion with Agricultural Heritage in Italian Industrial Parks
by Carlotta D’Alessandro, Antonio Licastro, Roberta Arbolino, Grazia Calabrò and Giuseppe Ioppolo
Sustainability 2025, 17(19), 8830; https://doi.org/10.3390/su17198830 - 2 Oct 2025
Viewed by 368
Abstract
Industrial park (IP) expansions in Mediterranean peri-urban areas can generate conflicts between economic development and agricultural heritage preservation. This paper develops a theoretically derived circular land use symbiosis model based on Hubs for Circularity (H4C) principles, using Fosso Imperatore IP in southern Italy [...] Read more.
Industrial park (IP) expansions in Mediterranean peri-urban areas can generate conflicts between economic development and agricultural heritage preservation. This paper develops a theoretically derived circular land use symbiosis model based on Hubs for Circularity (H4C) principles, using Fosso Imperatore IP in southern Italy as an illustrative case. This model proposes a transferable three-zone gradient design that enables the transformation of industrial–agricultural boundaries when combined with appropriate governance mechanisms and stakeholder engagement. Zone A concentrates vertical industrial development with rooftop agriculture; Zone B creates mixed agro-industrial interfaces; and Zone C enhances agricultural productivity through industrial resources. The model’s components (gradient zonation, temperature–cascade matching, and bidirectional resource flows) constitute generalizable design principles. When applied to Fosso Imperatore, where farmers oppose expansion that threatens culturally significant San Marzano tomato production, the model shows how 547 tons of organic waste could generate 87,520 m3 of methane, while industrial waste heat cascades from 150–200 °C to 25–40 °C of greenhouse heating across distances of 3 km. Implementation constraints include regulatory gaps and limited empirical data. This study operationalizes H4C through spatial design, showing how benefit-sharing mechanisms can transform stakeholder conflicts into collaboration. The model provides a replicable framework for Mediterranean contexts where industrial expansion encounters agricultural heritage. Full article
Show Figures

Figure 1

31 pages, 5071 KB  
Article
Feasibility of an AI-Enabled Smart Mirror Integrating MA-rPPG, Facial Affect, and Conversational Guidance in Realtime
by Mohammad Afif Kasno and Jin-Woo Jung
Sensors 2025, 25(18), 5831; https://doi.org/10.3390/s25185831 - 18 Sep 2025
Viewed by 818
Abstract
This paper presents a real-time smart mirror system combining multiple AI modules for multimodal health monitoring. The proposed platform integrates three core components: facial expression analysis, remote photoplethysmography (rPPG), and conversational AI. A key innovation lies in transforming the Moving Average rPPG (MA-rPPG) [...] Read more.
This paper presents a real-time smart mirror system combining multiple AI modules for multimodal health monitoring. The proposed platform integrates three core components: facial expression analysis, remote photoplethysmography (rPPG), and conversational AI. A key innovation lies in transforming the Moving Average rPPG (MA-rPPG) model—originally developed for offline batch processing—into a real-time, continuously streaming setup, enabling seamless heart rate and peripheral oxygen saturation (SpO2) monitoring using standard webcams. The system also incorporates the DeepFace facial analysis library for live emotion, age detection, and a Generative Pre-trained Transformer 4o (GPT-4o)-based mental health chatbot with bilingual (English/Korean) support and voice synthesis. Embedded into a touchscreen mirror with Graphical User Interface (GUI), this solution delivers ambient, low-interruption interaction and real-time user feedback. By unifying these AI modules within an interactive smart mirror, our findings demonstrate the feasibility of integrating multimodal sensing (rPPG, affect detection) and conversational AI into a real-time smart mirror platform. This system is presented as a feasibility-stage prototype to promote real-time health awareness and empathetic feedback. The physiological validation was limited to a single subject, and the user evaluation constituted only a small formative assessment; therefore, results should be interpreted strictly as preliminary feasibility evidence. The system is not intended to provide clinical diagnosis or generalizable accuracy at this stage. Full article
(This article belongs to the Special Issue Sensors and Sensing Technologies for Social Robots)
Show Figures

Figure 1

18 pages, 1298 KB  
Article
Improving Dynamic Material Characterization in SHPB Tests Through Optimized Friction Correction
by Alexis Rusinek, Tomasz Jankowiak and Amine Bendarma
Materials 2025, 18(18), 4327; https://doi.org/10.3390/ma18184327 - 16 Sep 2025
Viewed by 542
Abstract
This study examines the influence of friction at the specimen–bar interface on the macroscopic response of materials during dynamic compression tests using the split Hopkinson Pressure Bar (SHPB) under high-deformation-rate conditions. A mesoscale model is employed to simulate and compare results with experimental [...] Read more.
This study examines the influence of friction at the specimen–bar interface on the macroscopic response of materials during dynamic compression tests using the split Hopkinson Pressure Bar (SHPB) under high-deformation-rate conditions. A mesoscale model is employed to simulate and compare results with experimental data, and a finite element model of cylindrical specimens with varying slenderness ratios is developed in Abaqus/Explicit. Numerical analyzes show that both specimen geometry and boundary conditions, particularly friction, have a decisive impact on the accuracy and reliability of SHPB measurements. A friction correction method based on barreling factor and plastic deformation demonstrates closer agreement with experimental observations than conventional approaches, revealing that the widely used Avitzur model may overestimate friction by 34–39%. The results highlight the importance of accurate friction correction and the selection of optimal specimen dimensions to minimize testing errors. These findings improve the precision of dynamic material characterization and support the development of more reliable constitutive models to predict material behavior across a broad range of strain rates. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

28 pages, 6245 KB  
Article
Time Response of Delaminated Active Sensory Composite Beams Assuming Non-Linear Interfacial Effects
by Nikolaos A. Chrysochoidis, Christoforos S. Rekatsinas and Dimitris A. Saravanos
J. Compos. Sci. 2025, 9(9), 500; https://doi.org/10.3390/jcs9090500 - 15 Sep 2025
Viewed by 432
Abstract
A layerwise laminate FE model capable of predicting the dynamic response of delaminated composite beams with piezoelectric actuators and sensors encompassing local non-linear contact and sliding at the delamination interfaces was formulated. The kinematic assumptions of the layerwise model enabled the representation of [...] Read more.
A layerwise laminate FE model capable of predicting the dynamic response of delaminated composite beams with piezoelectric actuators and sensors encompassing local non-linear contact and sliding at the delamination interfaces was formulated. The kinematic assumptions of the layerwise model enabled the representation of opening and sliding of delamination interfaces as generalized strains, thereby allowing the introduction of interfacial contact and sliding effects through constitutive relations at the interface. This realistic FE model, assisted by representative experiments, was used to study the time response of delaminated active sensory composite beams with predefined delamination extents. The time response was measured and simulated for narrowband actuation signals at two distinct frequency levels using a surface-bonded piezoceramic actuator, while signal acquisition was performed with a piezopolymer sensor. Four different composite specimens, each containing a different delamination size, were used for this study. Experimental results were directly compared with model predictions to evaluate the performance of the proposed analytical approach. Damage signatures were identified in both the signal amplitude and the time of flight, and the sensitivity to delamination size was examined. Finally, the distributions of axial and interlaminar stresses at various time snapshots of the transient analysis are presented, along with contour plots across the structure’s thickness, which illustrate the delamination location and wave propagation patterns. Full article
Show Figures

Figure 1

29 pages, 11755 KB  
Article
Influence of Additive Manufacturing Printing Parameters via LPBF on the Mechanical Strength of Metallic Materials: Numerical Analysis by Gurson-Based Model
by Vinícius dos Santos Gonçalves, Omid Emadinia, Francisco Matos, Déborah De Oliveira, José Alexander Araújo and Lucival Malcher
Appl. Sci. 2025, 15(18), 10004; https://doi.org/10.3390/app151810004 - 12 Sep 2025
Viewed by 402
Abstract
This paper investigates the influence of initial porosity and its evolution on the mechanical behavior of metallic materials manufactured by additive manufacturing (AM), using the Gurson model to predict the initiation and propagation of damage in specimens produced via Laser Powder Bed Fusion [...] Read more.
This paper investigates the influence of initial porosity and its evolution on the mechanical behavior of metallic materials manufactured by additive manufacturing (AM), using the Gurson model to predict the initiation and propagation of damage in specimens produced via Laser Powder Bed Fusion (LPBF). The methodology combines experimental uniaxial tensile tests, numerical simulations based on the Gurson model, and the parametric identification method (PIP) to calibrate constitutive parameters (σy0, σ, δ, ξ). The specimens, made of AlSi10Mg with different printing directions (horizontal and vertical) and porosity levels, were evaluated to determine the relationship between density, anisotropy, and mechanical properties. The experimental results revealed that vertical printing accelerates fracture due to the concentration of stresses at the interfaces between layers, while the numerical simulations, compared with the von Mises model, showed greater accuracy of the Gurson model in predicting damage in porous materials. The analysis of porosity evolution highlighted the impact of void size and spacing on coalescence and ductility. The proposed methodology was validated, establishing a useful approach for evaluating the mechanical behavior of materials manufactured by AM. This work contributes to the advancement of the design of lightweight and resistant components, with applications in sectors such as aerospace and automotive, and suggests directions for future studies, including the investigation of other alloys and dynamic loading conditions. Full article
(This article belongs to the Special Issue Advances in Solid Mechanics and Its Applications)
Show Figures

Figure 1

20 pages, 4719 KB  
Article
Experimental Investigation on the Bonding Performance of Steel Bars in Desert Sand Concrete After Freeze–Thaw Cycles
by Min Li, Zhiqiang Li and Jian Jiao
Materials 2025, 18(17), 3971; https://doi.org/10.3390/ma18173971 - 25 Aug 2025
Viewed by 695
Abstract
Desert sand (DS) serves as a sustainable alternative to river sand in concrete production, delivering environmental and economic benefits. Furthermore, the durability of concrete structures in cold regions is severely affected by freeze–thaw (F-T) cycles. Therefore, this study employed a central pull-out test [...] Read more.
Desert sand (DS) serves as a sustainable alternative to river sand in concrete production, delivering environmental and economic benefits. Furthermore, the durability of concrete structures in cold regions is severely affected by freeze–thaw (F-T) cycles. Therefore, this study employed a central pull-out test to examine the bond performance between desert sand concrete (DSC) and steel bars subjected to F-T cycles, considering the effects of the number of F-T cycles, DS replacement ratios (i.e., the replacement ratio of river sand by DS), and the type of reinforcement. The F-T cycle numbers tested were 0, 25, 50, and 75 cycles. The DS replacement ratios were varied at 0%, 20%, 40%, 60%, 80%, and 100%. The plain and threaded steel bars (PSBs and TSBs) were selected for the experiment. The results indicate a decrease in bond strength for both PSB and TSB specimens with increasing F-T cycle numbers. Regarding the DS replacement ratios, bond strength initially decreased, with an increasing replacement rate, then increased, and eventually reduced again. Notably, significantly improved bonding was observed for steel reinforcement in DSC containing 40% or 60% DS compared to plain concrete. Additionally, the bond strengths of PSB specimens were lower than those of TSB specimens under identical conditions. A calculation formula for the bond–slip characteristic was derived using statistical regression, which considered multiple factors. Eventually, a bond–slip constitutive model was developed for the interface between DSC and reinforced steel, showing a high degree of consistency with the experimental data. Full article
Show Figures

Figure 1

26 pages, 7957 KB  
Article
Elastoplastic Modeling of Kevlar® Composite Laminates: A Cyclic Loading Approach for In-Plane Characterization
by Rene Alejandro Canceco de la Cruz, Luis Adrián Zúñiga Avilés, Gabriel Plascencia Barrera, Alberto Díaz Díaz and José Martin Herrera Ramírez
Polymers 2025, 17(16), 2235; https://doi.org/10.3390/polym17162235 - 17 Aug 2025
Viewed by 846
Abstract
This study investigates the elastoplastic behavior of phenol formaldehyde/polyvinyl butyral matrix (70% PF/30% PVB) reinforced with Kevlar® fibers through comprehensive in-plane tensile testing. Cyclic loading–unloading tests were conducted at a 100%/min strain rate using a universal testing system at room temperature on [...] Read more.
This study investigates the elastoplastic behavior of phenol formaldehyde/polyvinyl butyral matrix (70% PF/30% PVB) reinforced with Kevlar® fibers through comprehensive in-plane tensile testing. Cyclic loading–unloading tests were conducted at a 100%/min strain rate using a universal testing system at room temperature on 04, 904, and ±45s laminates. The experimental results revealed significant nonlinear hardening behavior beyond yield stress, accompanied by yarn stiffening effects during loading cycles. A novel elastoplastic constitutive model was developed, incorporating Hill’s yield criterion adapted for orthotropic materials and an isotropic hardening function that accounts for equivalent plastic strains and progressive yarn stiffening. Laminates with other stacking sequences were also tested and the accuracy of the predictions of the nonlinear behavior was assessed. In these laminates, delaminations took place and the model provided an overestimation of the stress–strain response. Since the model could not predict delamination onset and propagation, an adaptation of the model considering fully delaminated interfaces brought a lower bound of this response. Despite the limitations of the model, it can be used to provide reasonable limits to the stress–strain response of laminates accounting for plastic strains within plies. This study provides essential mechanical properties and constitutive relationships for designing Kevlar® composite structures with tailored stiffness characteristics for impact-resistant applications. Full article
(This article belongs to the Special Issue Constitutive Modeling of Polymer Matrix Composites)
Show Figures

Figure 1

24 pages, 14756 KB  
Article
A Database for Second World War Military Landscapes in Sardinia: Toward an Integrative Strategy of Knowledge, Representation, and Adaptive Reuse
by Giancarlo Sanna, Andrés Martínez-Medina and Andrea Pirinu
Architecture 2025, 5(3), 60; https://doi.org/10.3390/architecture5030060 - 14 Aug 2025
Viewed by 1170
Abstract
This paper presents the development and structure of a geospatial (work in progress), architectural heritage database designed to document, interpret, and valorize Second World War military fortifications in Sardinia. Currently hosting over 1800 georeferenced entries—including bunkers, artillery posts, underground shelters, and camouflage systems—the [...] Read more.
This paper presents the development and structure of a geospatial (work in progress), architectural heritage database designed to document, interpret, and valorize Second World War military fortifications in Sardinia. Currently hosting over 1800 georeferenced entries—including bunkers, artillery posts, underground shelters, and camouflage systems—the database constitutes the analytical core of an interdisciplinary research framework that interprets these remnants as a coherent wartime palimpsest embedded in the contemporary landscape. By integrating spatial data, archival sources, architectural features, conservation status, camouflage typologies, and both analog and digital graphic representations, the system operates as a central infrastructure for multiscale heritage analysis. It reveals the interconnections between dispersed military structures and the wider territorial fabric, thereby laying the groundwork for landscape-based interpretation and site-specific reactivation strategies. More than a cataloging tool, the database serves as an interpretive and decision-making interface—supporting the generation of cultural itineraries, the identification of critical clusters, and the design of adaptive reuse scenarios. While participatory tools and community engagement will be explored in a second phase, the current methodology emphasizes landscape-oriented reuse strategies based on the perception, spatial storytelling, and contextual reading of wartime heritage. The methodological synergy between GIS, 3D modeling, traditional drawing, and archival research (graphic and photographic documents) contributes to a holistic vision of Sardinia’s wartime heritage as both a system of knowledge and a spatial–cultural resource for future generations. Full article
(This article belongs to the Special Issue Strategies for Architectural Conservation and Adaptive Reuse)
Show Figures

Figure 1

27 pages, 7417 KB  
Article
Simulation of Corrosion Cracking in Reinforced Concrete Based on Multi-Phase Multi-Species Electrochemical Phase Field Modeling
by Tianhao Yao, Houmin Li, Keyang Wu, Jie Chen, Zhengpeng Zhou and Yunlong Wu
Materials 2025, 18(16), 3742; https://doi.org/10.3390/ma18163742 - 10 Aug 2025
Viewed by 768
Abstract
Non-uniform corrosion cracking in reinforced concrete buildings constitutes a fundamental difficulty resulting in durability failure. This work develops a microscopic-scale multi-species electrochemical phase field model to tackle this issue. The model comprehensively examines the spatiotemporal coupling mechanisms of the full “corrosion-rust swelling-cracking” process [...] Read more.
Non-uniform corrosion cracking in reinforced concrete buildings constitutes a fundamental difficulty resulting in durability failure. This work develops a microscopic-scale multi-species electrochemical phase field model to tackle this issue. The model comprehensively examines the spatiotemporal coupling mechanisms of the full “corrosion-rust swelling-cracking” process by integrating electrochemical reaction kinetics, multi-ion transport processes, and a unified phase field fracture theory. The model uses local corrosion current density as the primary variable to accurately measure the dynamic interactions among electrochemical processes, ion transport, and rust product precipitation. It incorporates phase field method simulations of fracture initiation and propagation in concrete, establishing a bidirectional link between rust swelling stress and crack development. Experimental validation confirms that the model’s predictions about cracking duration, crack shape, and ion concentration distribution align well with empirical data, substantiating the efficacy of local corrosion current density as an indicator of electrochemical reaction rate. Parametric studies were performed to examine the effects of interface transition zone strength, oxygen diffusion coefficient, protective layer thickness, reinforcing bar diameter, and reinforcing bar configuration on cracking patterns. This model’s multi-physics field coupling framework, influenced by dynamic corrosion current density, facilitates cross-field interactions, offering sophisticated theoretical tools and technical support for the quantitative analysis, durability evaluation, and protective design of corrosion-induced cracking in reinforced concrete structures. Full article
Show Figures

Graphical abstract

29 pages, 15691 KB  
Article
Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact
by Xinke Xiao, Penglei Wang, Anxiao Guo, Linzhuang Han, Yunhao Yang, Yalin He and Xuanming Cai
Materials 2025, 18(15), 3686; https://doi.org/10.3390/ma18153686 - 6 Aug 2025
Viewed by 558
Abstract
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response [...] Read more.
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response characteristics and underlying mechanisms under such conditions is of critical importance for both theoretical development and practical engineering applications. This study proposes an innovative three-dimensional (3D) multiscale constitutive model that comprehensively integrates mesoscopic fiber–matrix interface effects and pore characteristics. To systematically investigate the dynamic response and damage evolution of SFRP under medium strain rate conditions, 3D-printed SFRP porous structures with volume fractions of 25%, 35%, and 45% are designed and subjected to drop hammer impact experiments combined with multiscale numerical simulations. The experimental and simulation results demonstrate that, for specimens with a 25% volume fraction, the strain rate strengthening effect is the primary contributor to the increase in peak stress. In contrast, for specimens with a 45% volume fraction, the interaction between damage evolution and strain rate strengthening leads to a more complex stress–strain response. The specific energy absorption (SEA) of 25% volume fraction specimens increases markedly with increasing strain rate. However, for specimens with 35% and 45% volume fractions, the competition between these two mechanisms results in non-monotonic variations in energy absorption efficiency (EAE). The dominant failure mode under impact loading is shear-dominated compression, with damage evolution becoming increasingly complex as the fiber volume fraction increases. Furthermore, the damage characteristics transition from fiber pullout and matrix folding at lower volume fractions to the coexistence of brittle and ductile behaviors at higher volume fractions. The numerical simulations exhibit strong agreement with the experimental data. Multi-directional cross-sectional analysis further indicates that the initiation and propagation of shear bands are the principal drivers of structural instability. This study offers a robust theoretical foundation for the impact-resistant design and dynamic performance optimization of 3D-printed short fiber-reinforced polymer (SFRP) porous structures. Full article
Show Figures

Figure 1

42 pages, 2643 KB  
Article
Personalized Constitutionally-Aligned Agentic Superego: Secure AI Behavior Aligned to Diverse Human Values
by Nell Watson, Ahmed Amer, Evan Harris, Preeti Ravindra and Shujun Zhang
Information 2025, 16(8), 651; https://doi.org/10.3390/info16080651 - 30 Jul 2025
Viewed by 1036
Abstract
Agentic AI systems, possessing capabilities for autonomous planning and action, show great potential across diverse domains. However, their practical deployment is hindered by challenges in aligning their behavior with varied human values, complex safety requirements, and specific compliance needs. Existing alignment methodologies often [...] Read more.
Agentic AI systems, possessing capabilities for autonomous planning and action, show great potential across diverse domains. However, their practical deployment is hindered by challenges in aligning their behavior with varied human values, complex safety requirements, and specific compliance needs. Existing alignment methodologies often falter when faced with the complex task of providing personalized context without inducing confabulation or operational inefficiencies. This paper introduces a novel solution: a ‘superego’ agent, designed as a personalized oversight mechanism for agentic AI. This system dynamically steers AI planning by referencing user-selected ‘Creed Constitutions’—encapsulating diverse rule sets—with adjustable adherence levels to fit non-negotiable values. A real-time compliance enforcer validates plans against these constitutions and a universal ethical floor before execution. We present a functional system, including a demonstration interface with a prototypical constitution-sharing portal, and successful integration with third-party models via the Model Context Protocol (MCP). Comprehensive benchmark evaluations (HarmBench, AgentHarm) demonstrate that our Superego agent dramatically reduces harmful outputs—achieving up to a 98.3% harm score reduction and near-perfect refusal rates (e.g., 100% with Claude Sonnet 4 on AgentHarm’s harmful set) for leading LLMs like Gemini 2.5 Flash and GPT-4o. This approach substantially simplifies personalized AI alignment, rendering agentic systems more reliably attuned to individual and cultural contexts, while also enabling substantial safety improvements. Full article
(This article belongs to the Special Issue New Information Communication Technologies in the Digital Era)
Show Figures

Graphical abstract

Back to TopTop