Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = interdisciplinary rehabilitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1173 KiB  
Review
Pregnancy-Related Spinal Biomechanics: A Review of Low Back Pain and Degenerative Spine Disease
by Ezra T. Yoseph, Rukayat Taiwo, Ali Kiapour, Gavin Touponse, Elie Massaad, Marinos Theologitis, Janet Y. Wu, Theresa Williamson and Corinna C. Zygourakis
Bioengineering 2025, 12(8), 858; https://doi.org/10.3390/bioengineering12080858 - 10 Aug 2025
Viewed by 421
Abstract
Pregnancy induces substantial anatomical, hormonal, and biomechanical changes in the spine and pelvis to accommodate fetal growth and maintain postural adaptation. This narrative review synthesizes peer-reviewed evidence regarding pregnancy-related spinal biomechanics, with a particular focus on low back pain, spinopelvic alignment, sacroiliac joint [...] Read more.
Pregnancy induces substantial anatomical, hormonal, and biomechanical changes in the spine and pelvis to accommodate fetal growth and maintain postural adaptation. This narrative review synthesizes peer-reviewed evidence regarding pregnancy-related spinal biomechanics, with a particular focus on low back pain, spinopelvic alignment, sacroiliac joint dysfunction, and potential contributions to degenerative spinal conditions. A systematic search of PubMed, Embase, and Google Scholar was conducted using Boolean operators and relevant terms, yielding 1050 unique records, with 53 peer-reviewed articles ultimately cited. The review reveals that increased lumbar lordosis, ligamentous laxity, altered gait mechanics, and muscular deconditioning elevate mechanical load on the lumbar spine, predisposing up to 56% of pregnant individuals to low back pain. These changes are often associated with sacroiliac joint laxity, anterior pelvic tilt, and multiparity. Long-term risks may include degenerative disc disease and spondylolisthesis. Conservative interventions such as pelvic floor muscle training, prenatal exercise, and surface topography monitoring offer symptom relief and support early rehabilitation, although standardized protocols and longitudinal outcome data remain limited. Pregnancy-related spinal changes are multifactorial and clinically relevant; an interdisciplinary approach involving spinal biomechanics, physical therapy, and obstetric care is critical for optimizing maternal musculoskeletal health. Full article
(This article belongs to the Special Issue Spine Biomechanics)
Show Figures

Figure 1

45 pages, 5594 KiB  
Article
Integrated Medical and Digital Approaches to Enhance Post-Bariatric Surgery Care: A Prototype-Based Evaluation of the NutriMonitCare System in a Controlled Setting
by Ruxandra-Cristina Marin, Marilena Ianculescu, Mihnea Costescu, Veronica Mocanu, Alina-Georgiana Mihăescu, Ion Fulga and Oana-Andreia Coman
Nutrients 2025, 17(15), 2542; https://doi.org/10.3390/nu17152542 - 2 Aug 2025
Viewed by 598
Abstract
Introduction/Objective: Post-bariatric surgery patients require long-term, coordinated care to address complex nutritional, physiological, and behavioral challenges. Personalized smart nutrition, combining individualized dietary strategies with targeted monitoring, has emerged as a valuable direction for optimizing recovery and long-term outcomes. This article examines how traditional [...] Read more.
Introduction/Objective: Post-bariatric surgery patients require long-term, coordinated care to address complex nutritional, physiological, and behavioral challenges. Personalized smart nutrition, combining individualized dietary strategies with targeted monitoring, has emerged as a valuable direction for optimizing recovery and long-term outcomes. This article examines how traditional medical protocols can be enhanced by digital solutions in a multidisciplinary framework. Methods: The study analyzes current clinical practices, including personalized meal planning, physical rehabilitation, biochemical marker monitoring, and psychological counseling, as applied in post-bariatric care. These established approaches are then analyzed in relation to the NutriMonitCare system, a digital health system developed and tested in a laboratory environment. Used here as an illustrative example, the NutriMonitCare system demonstrates the potential of digital tools to support clinicians through real-time monitoring of dietary intake, activity levels, and physiological parameters. Results: Findings emphasize that medical protocols remain the cornerstone of post-surgical management, while digital tools may provide added value by enhancing data availability, supporting individualized decision making, and reinforcing patient adherence. Systems like the NutriMonitCare system could be integrated into interdisciplinary care models to refine nutrition-focused interventions and improve communication across care teams. However, their clinical utility remains theoretical at this stage and requires further validation. Conclusions: In conclusion, the integration of digital health tools with conventional post-operative care has the potential to advance personalized smart nutrition. Future research should focus on clinical evaluation, real-world testing, and ethical implementation of such technologies into established medical workflows to ensure both efficacy and patient safety. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

30 pages, 1737 KiB  
Review
Current Perspectives on Rehabilitation Following Return of Spontaneous Circulation After Sudden Cardiac Arrest: A Narrative Review
by Kamil Salwa, Karol Kaziród-Wolski, Dorota Rębak and Janusz Sielski
Healthcare 2025, 13(15), 1865; https://doi.org/10.3390/healthcare13151865 - 30 Jul 2025
Viewed by 634
Abstract
Background/Objectives: Sudden cardiac arrest (SCA) is a major global health concern with high mortality despite advances in resuscitation techniques. Achieving return of spontaneous circulation (ROSC) represents merely the initial step in the extensive rehabilitation journey. This review highlights the critical role of structured, [...] Read more.
Background/Objectives: Sudden cardiac arrest (SCA) is a major global health concern with high mortality despite advances in resuscitation techniques. Achieving return of spontaneous circulation (ROSC) represents merely the initial step in the extensive rehabilitation journey. This review highlights the critical role of structured, multidisciplinary rehabilitation following ROSC, emphasizing the necessity of integrated physiotherapy, neurocognitive therapy, and psychosocial support to enhance quality of life and societal reintegration in survivors. Methods: This narrative review analyzed peer-reviewed literature from 2020–2025, sourced from databases such as PubMed, Scopus, Web of Science, and Google Scholar. Emphasis was on clinical trials, expert guidelines (e.g., European Resuscitation Council 2021, American Heart Association 2020), and high-impact journals, with systematic thematic analysis across rehabilitation phases. Results: The review confirms rehabilitation as essential in addressing Intensive Care Unit–acquired weakness, cognitive impairment, and post-intensive care syndrome. Early rehabilitation (0–7 days post-ROSC), focusing on parameter-guided mobilization and cognitive stimulation, significantly improves functional outcomes. Structured interdisciplinary interventions encompassing cardiopulmonary, neuromuscular, and cognitive domains effectively mitigate long-term disability, facilitating return to daily activities and employment. However, access disparities and insufficient randomized controlled trials limit evidence-based standardization. Discussion: Optimal recovery after SCA necessitates early and continuous interdisciplinary engagement, tailored to individual physiological and cognitive profiles. Persistent cognitive fatigue, executive dysfunction, and emotional instability remain significant barriers, underscoring the need for holistic and sustained rehabilitative approaches. Conclusions: Comprehensive, individualized rehabilitation following cardiac arrest is not supplementary but fundamental to meaningful recovery. Emphasizing early mobilization, neurocognitive therapy, family involvement, and structured social reintegration pathways is crucial. Addressing healthcare disparities and investing in rigorous randomized trials are imperative to achieving standardized, equitable, and outcome-oriented rehabilitation services globally. Full article
(This article belongs to the Section Critical Care)
Show Figures

Figure 1

37 pages, 804 KiB  
Review
Precision Recovery After Spinal Cord Injury: Integrating CRISPR Technologies, AI-Driven Therapeutics, Single-Cell Omics, and System Neuroregeneration
by Răzvan-Adrian Covache-Busuioc, Corneliu Toader, Mugurel Petrinel Rădoi and Matei Șerban
Int. J. Mol. Sci. 2025, 26(14), 6966; https://doi.org/10.3390/ijms26146966 - 20 Jul 2025
Viewed by 1101
Abstract
Spinal cord injury (SCI) remains one of the toughest obstacles in neuroscience and regenerative medicine due to both severe functional loss and limited healing ability. This article aims to provide a key integrative, mechanism-focused review of the molecular landscape of SCI and the [...] Read more.
Spinal cord injury (SCI) remains one of the toughest obstacles in neuroscience and regenerative medicine due to both severe functional loss and limited healing ability. This article aims to provide a key integrative, mechanism-focused review of the molecular landscape of SCI and the new disruptive therapy technologies that are now evolving in the SCI arena. Our goal is to unify a fundamental pathophysiology of neuroinflammation, ferroptosis, glial scarring, and oxidative stress with the translation of precision treatment approaches driven by artificial intelligence (AI), CRISPR-mediated gene editing, and regenerative bioengineering. Drawing upon advances in single-cell omics, systems biology, and smart biomaterials, we will discuss the potential for reprogramming the spinal cord at multiple levels, from transcriptional programming to biomechanical scaffolds, to change the course from an irreversible degeneration toward a directed regenerative pathway. We will place special emphasis on using AI to improve diagnostic/prognostic and inferred responses, gene and cell therapies enabled by genomic editing, and bioelectronics capable of rehabilitating functional connectivity. Although many of the technologies described below are still in development, they are becoming increasingly disruptive capabilities of what it may mean to recover from an SCI. Instead of prescribing a particular therapeutic fix, we provide a future-looking synthesis of interrelated biological, computational, and bioengineering approaches that conjointly chart a course toward adaptive, personalized neuroregeneration. Our intent is to inspire a paradigm shift to resolve paralysis through precision recovery and to be grounded in a spirit of humility, rigor, and an interdisciplinary approach. Full article
(This article belongs to the Special Issue Molecular Research in Spinal Cord Injury)
Show Figures

Figure 1

16 pages, 6475 KiB  
Review
Fully Digital Workflow in Full-Arch Implant Rehabilitation: A Descriptive Methodological Review
by Chantal Auduc, Thomas Douillard, Emmanuel Nicolas and Nada El Osta
Prosthesis 2025, 7(4), 85; https://doi.org/10.3390/prosthesis7040085 - 16 Jul 2025
Viewed by 724
Abstract
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains [...] Read more.
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains an emerging and underexplored area in the literature. Objective. This article presents a comprehensive methodological review of the digital workflow in full-arch implant-supported rehabilitation. It follows a structured literature exploration and synthesizes relevant technological processes from patient assessment to prosthetic delivery. Methods. The relevant literature was retrieved from the PubMed database on 20 June 2024, to identify the most recent and relevant studies. A total of 22 articles met the eligibility criteria and were included in the review. The majority included case and technical reports. Results. The review illustrates the integration and application of digital tools in implant dentistry, including cone-beam computed tomography (CBCT) exposure, intraoral scanning, digital smile design, virtual patients, guided surgery, and digital scanning. The key findings demonstrate multiple advantages of a fully digital workflow, such as reduced treatment time and cost, increased patient satisfaction, and improved interdisciplinary communication. Conclusions. Despite these benefits, limitations persist due to the low level of evidence, technological challenges, and the lack of standardized protocols. Further randomized controlled trials and long-term clinical evaluations are essential to validate the effectiveness and feasibility of a fully digital workflow for full-arch implant-supported rehabilitation. Full article
Show Figures

Figure 1

28 pages, 556 KiB  
Review
Healthcare Interventions in the Management of Rheumatic Diseases: A Narrative Analysis of Effectiveness and Emerging Strategies
by Gabriela Isabela Verga (Răuță), Alexia Anastasia Ștefania Baltă, Diana-Andreea Ciortea, Carmen Loredana Petrea (Cliveți), Mariana Șerban (Grădinaru), Mădălina Nicoleta Matei, Gabriela Gurău, Victoria-Cristina Șuța and Doina Carina Voinescu
Healthcare 2025, 13(14), 1691; https://doi.org/10.3390/healthcare13141691 - 14 Jul 2025
Viewed by 708
Abstract
Background and aims: Rheumatic diseases are chronic, progressive conditions associated with severe pain, joint damage, disability, and even death. Healthcare interventions play a critical role in symptom management, patient education, and adherence to treatment plans. This study evaluates the role of healthcare interventions [...] Read more.
Background and aims: Rheumatic diseases are chronic, progressive conditions associated with severe pain, joint damage, disability, and even death. Healthcare interventions play a critical role in symptom management, patient education, and adherence to treatment plans. This study evaluates the role of healthcare interventions in the management of patients with rheumatic diseases, focusing on pain management, functional rehabilitation, patient education, and multidisciplinary collaboration. In addition, barriers to optimal care and potential solutions, including digital health technologies, are explored. Materials and methods: We conducted a narrative review of the scientific literature. Studies published between 2014 and 2025 were selected from PubMed, Scopus, Web of Science, Elsevier, Springer, Frontiers, and Wiley Online Library. Key areas of review included nurse-led pain management, education programs, and the impact of interdisciplinary care on patient outcomes. Results: Nursing interventions significantly improve pain control, treatment adherence, and self-management skills in patients with rheumatic diseases. Multidisciplinary approaches improve functional rehabilitation and increase quality of life in patients with rheumatic conditions. However, barriers such as insufficient health care resources, lack of patient awareness, and disparities in the availability of services hinder effective care delivery. Conclusions: A structured, multidisciplinary approach integrating healthcare interventions, digital health solutions, and patient-centered education is essential to optimize the management of rheumatic diseases. Future research should focus on improving access to non-pharmacological therapies and standardizing healthcare protocols for better patient outcomes. Full article
(This article belongs to the Special Issue Clinical Healthcare and Quality of Life of Chronically Ill Patients)
Show Figures

Graphical abstract

37 pages, 618 KiB  
Systematic Review
Interaction, Artificial Intelligence, and Motivation in Children’s Speech Learning and Rehabilitation Through Digital Games: A Systematic Literature Review
by Chra Abdoulqadir and Fernando Loizides
Information 2025, 16(7), 599; https://doi.org/10.3390/info16070599 - 12 Jul 2025
Viewed by 678
Abstract
The integration of digital serious games into speech learning (rehabilitation) has demonstrated significant potential in enhancing accessibility and inclusivity for children with speech disabilities. This review of the state of the art examines the role of serious games, Artificial Intelligence (AI), and Natural [...] Read more.
The integration of digital serious games into speech learning (rehabilitation) has demonstrated significant potential in enhancing accessibility and inclusivity for children with speech disabilities. This review of the state of the art examines the role of serious games, Artificial Intelligence (AI), and Natural Language Processing (NLP) in speech rehabilitation, with a particular focus on interaction modalities, engagement autonomy, and motivation. We have reviewed 45 selected studies. Our key findings show how intelligent tutoring systems, adaptive voice-based interfaces, and gamified speech interventions can empower children to engage in self-directed speech learning, reducing dependence on therapists and caregivers. The diversity of interaction modalities, including speech recognition, phoneme-based exercises, and multimodal feedback, demonstrates how AI and Assistive Technology (AT) can personalise learning experiences to accommodate diverse needs. Furthermore, the incorporation of gamification strategies, such as reward systems and adaptive difficulty levels, has been shown to enhance children’s motivation and long-term participation in speech rehabilitation. The gaps identified show that despite advancements, challenges remain in achieving universal accessibility, particularly regarding speech recognition accuracy, multilingual support, and accessibility for users with multiple disabilities. This review advocates for interdisciplinary collaboration across educational technology, special education, cognitive science, and human–computer interaction (HCI). Our work contributes to the ongoing discourse on lifelong inclusive education, reinforcing the potential of AI-driven serious games as transformative tools for bridging learning gaps and promoting speech rehabilitation beyond clinical environments. Full article
Show Figures

Graphical abstract

16 pages, 755 KiB  
Review
Hip Fracture as a Systemic Disease in Older Adults: A Narrative Review on Multisystem Implications and Management
by Silvia Andaloro, Stefano Cacciatore, Antonella Risoli, Rocco Maria Comodo, Vincenzo Brancaccio, Riccardo Calvani, Simone Giusti, Mathias Schlögl, Emanuela D’Angelo, Matteo Tosato, Francesco Landi and Emanuele Marzetti
Med. Sci. 2025, 13(3), 89; https://doi.org/10.3390/medsci13030089 - 11 Jul 2025
Viewed by 1059
Abstract
Hip fractures are among the most serious health events in older adults, frequently leading to disability, loss of independence, and elevated mortality. In 2019, an estimated 9.6 million new cases occurred globally among adults aged ≥ 55 years, with an incidence rate of [...] Read more.
Hip fractures are among the most serious health events in older adults, frequently leading to disability, loss of independence, and elevated mortality. In 2019, an estimated 9.6 million new cases occurred globally among adults aged ≥ 55 years, with an incidence rate of 681 per 100,000. Despite improved surgical care, one-year mortality remains high (15–30%), and fewer than half of survivors regain their pre-fracture functional status. Traditionally regarded as mechanical injuries, hip fractures are now increasingly recognized as systemic events reflecting and accelerating biological vulnerability and frailty progression. We synthesize evidence across biological, clinical, and social domains to explore the systemic implications of hip fracture, from the acute catabolic response and immune dysfunction to long-term functional decline. The concept of intrinsic capacity, introduced by the World Health Organization, offers a resilience-based framework to assess the multidimensional impact of hip fracture on physical, cognitive, and psychological function. We highlight the importance of orthogeriatric co-management, early surgical intervention, and integrated rehabilitation strategies tailored to the individual’s functional reserves and personal goals. Innovations such as digital health tools, biological aging biomarkers, and personalized surgical approaches represent promising avenues to enhance recovery and autonomy. Ultimately, we advocate for a shift toward interdisciplinary, capacity-oriented models of care that align with the goals of healthy aging and enable recovery that transcends survival, focusing instead on restoring function and quality of life. Full article
Show Figures

Figure 1

12 pages, 2233 KiB  
Opinion
Prosthodontic Considerations for Customized Subperiosteal Implants: A Consensus Report
by Álvaro Tofé-Povedano, Javier Herce-López, Mariano del Canto-Pingarrón, Ramón Sieira-Gil, Carlos Rodado-Alonso, Pablo Garrido-Martínez, Jorge Reyes-Minguillán, Octavi Camps-Font, Alba Sánchez-Torres and Rui Figueiredo
Appl. Sci. 2025, 15(14), 7633; https://doi.org/10.3390/app15147633 - 8 Jul 2025
Viewed by 437
Abstract
(1) Background: The present study was carried out to provide a state-of-the-art review of the prosthodontic factors related to customized subperiosteal implants (CSIs), and to offer clinical guidelines in this regard. (2) Methods: An expert consensus meeting was held in July 2024 in [...] Read more.
(1) Background: The present study was carried out to provide a state-of-the-art review of the prosthodontic factors related to customized subperiosteal implants (CSIs), and to offer clinical guidelines in this regard. (2) Methods: An expert consensus meeting was held in July 2024 in Santpedor (Manresa, Spain) to establish the most relevant clinical guidelines. (3) Results and (4) Conclusions: An interdisciplinary approach including surgeons, prosthodontists, bio-medical engineers and dental technicians, integrating both biological and mechanical considerations when designing CSI rehabilitations, is very important. While the reported survival rate of CSIs appears promising, their long-term performance beyond 5 years remains insufficiently documented. Thus, CSIs are a viable treatment option for patients with insufficient bone to place conventional implants, but there is a clear need to identify and analyze delayed-onset complications associated with these devices. The findings and their broader implications should be thoroughly examined, and potential future research directions should be highlighted. Full article
(This article belongs to the Special Issue Novel Technologies in Oral and Maxillofacial Surgery)
Show Figures

Figure 1

13 pages, 8971 KiB  
Case Report
The Role of Digital Workflow in Creating a New, Esthetic and Functional Smile in a Periodontally Compromised Patient: A Case Report
by Carlotta Cacciò, Marco Tallarico, Aurea Immacolata Lumbau, Francesco Mattia Ceruso and Milena Pisano
Reports 2025, 8(3), 105; https://doi.org/10.3390/reports8030105 - 8 Jul 2025
Viewed by 526
Abstract
Background and Clinical Significance: Prosthetic rehabilitation in the aesthetic zone of periodontally compromised patients presents a complex clinical challenge, requiring a careful coordination of aesthetic, functional, and biological demands. This case highlights the benefits of digital dentistry, interdisciplinary collaboration, and regular maintenance in [...] Read more.
Background and Clinical Significance: Prosthetic rehabilitation in the aesthetic zone of periodontally compromised patients presents a complex clinical challenge, requiring a careful coordination of aesthetic, functional, and biological demands. This case highlights the benefits of digital dentistry, interdisciplinary collaboration, and regular maintenance in achieving long-term success in complex rehabilitations of periodontally compromised patients. Case Presentation: This case report describes the digital minimally invasive rehabilitation of a 39-year-old male patient with Stage III periodontitis, occlusal discrepancies, tooth mobility, and an interincisal diastema. A fully digital workflow—including intraoral scanning, aesthetic previewing, and mandibular motion analysis—was employed to guide diagnosis, treatment planning, and prosthetic execution. Conservative tooth preparations using a biologically oriented approach (BOPT) were combined with customised provisional restorations to support soft tissue conditioning and functional control throughout the provisional phases. Mandibular motion tracking facilitated the design of a personalised anterior guidance to improve occlusion and correct the deep bite. The interincisal diastema was initially maintained then closed during the advanced phase of treatment based on aesthetic simulations and patient preference. One unplanned endodontic treatment was required during the provisional phase, but no other complications occurred. Conclusions: At the four-year follow-up, the patient demonstrated stable periodontal and occlusal conditions, improved clinical indices, and high satisfaction with the aesthetic outcome. Full article
(This article belongs to the Section Dentistry/Oral Medicine)
Show Figures

Figure 1

16 pages, 302 KiB  
Review
Advances in Neuromodulation and Digital Brain–Spinal Cord Interfaces for Spinal Cord Injury
by Phillip Jaszczuk, Denis Bratelj, Crescenzo Capone, Marcel Rudnick, Tobias Pötzel, Rajeev K. Verma and Michael Fiechter
Int. J. Mol. Sci. 2025, 26(13), 6021; https://doi.org/10.3390/ijms26136021 - 23 Jun 2025
Viewed by 1274
Abstract
Spinal cord injury (SCI) results in a significant loss of motor, sensory, and autonomic function, imposing substantial biosocial and economic burdens. Traditional approaches, such as stem cell therapy and immune modulation, have faced translational challenges, whereas neuromodulation and digital brain–spinal cord interfaces combining [...] Read more.
Spinal cord injury (SCI) results in a significant loss of motor, sensory, and autonomic function, imposing substantial biosocial and economic burdens. Traditional approaches, such as stem cell therapy and immune modulation, have faced translational challenges, whereas neuromodulation and digital brain–spinal cord interfaces combining brain–computer interface (BCI) technology and epidural spinal cord stimulation (ESCS) to create brain–spine interfaces (BSIs) offer promising alternatives by leveraging residual neural pathways to restore physiological function. This review examines recent advancements in neuromodulation, focusing on the future translation of clinical trial data to clinical practice. We address key considerations, including scalability, patient selection, surgical techniques, postoperative rehabilitation, and ethical implications. By integrating interdisciplinary collaboration, standardized protocols, and patient-centered design, neuromodulation has the potential to revolutionize SCI rehabilitation, reducing long-term disability and enhancing quality of life globally. Full article
16 pages, 1117 KiB  
Article
Interprofessional Approaches to the Treatment of Mild Traumatic Brain Injury: A Literature Review and Conceptual Framework Informed by 94 Professional Interviews
by John F. Shelley-Tremblay and Teri Lawton
Med. Sci. 2025, 13(3), 82; https://doi.org/10.3390/medsci13030082 - 23 Jun 2025
Viewed by 479
Abstract
Background/Objectives: Mild traumatic brain injury (mTBI) presents with persistent, heterogeneous symptoms requiring multifaceted care. Although interdisciplinary rehabilitation is increasingly recommended, implementation remains inconsistent. This study aimed to synthesize existing literature and clinician perspectives to construct a practice-informed conceptual framework for interprofessional mTBI rehabilitation. [...] Read more.
Background/Objectives: Mild traumatic brain injury (mTBI) presents with persistent, heterogeneous symptoms requiring multifaceted care. Although interdisciplinary rehabilitation is increasingly recommended, implementation remains inconsistent. This study aimed to synthesize existing literature and clinician perspectives to construct a practice-informed conceptual framework for interprofessional mTBI rehabilitation. Methods: Structured interviews were conducted with 94 clinicians—including neurologists, neuropsychologists, optometrists, occupational and physical therapists, speech-language pathologists, neurosurgeons, and case managers—across academic, private, and community settings in the United States. Interviews followed a semi-structured format adapted for the NIH I-Corps program and were analyzed thematically alongside existing rehabilitation literature. Results: Clinicians expressed strong consensus on the value of function-oriented, patient-centered care. Key themes included the prevalence of persistent cognitive and visual symptoms, emphasis on real-world goal setting, and barriers such as fragmented communication, reimbursement restrictions, and referral delays. Disciplinary differences were noted in perceptions of symptom persistence and professional roles. Rehabilitation technologies were inconsistently adopted due to financial, training, and interoperability barriers. Equity issues included geographic and insurance-based disparities. A four-domain conceptual framework emerged: discipline-specific expertise, coordinated training, technological integration, and care infrastructure, all shaped by systemic limitations. Conclusions: Despite widespread clinician endorsement of interprofessional mTBI care, structural barriers hinder consistent implementation. Targeted reforms—such as embedding interdisciplinary models in clinical education, expanding access to integrated technology, and improving reimbursement mechanisms—may enhance care delivery. The resulting framework provides a foundation for scalable, patient-centered rehabilitation models in diverse settings. Full article
Show Figures

Graphical abstract

14 pages, 287 KiB  
Review
From Conventional to Smart Prosthetics: Redefining Complete Denture Therapy Through Technology and Regenerative Science
by Andrea Bors, Simona Mucenic, Adriana Monea, Alina Ormenisan and Gabriela Beresescu
Medicina 2025, 61(6), 1104; https://doi.org/10.3390/medicina61061104 - 18 Jun 2025
Viewed by 847
Abstract
Background and Objectives: Complete dentures remain a primary solution for oral rehabilitation in aging and medically compromised populations. The integration of digital workflows, regenerative materials, and smart technologies is propelling prosthodontics towards a new era, transcending the limitations of traditional static prostheses. Materials [...] Read more.
Background and Objectives: Complete dentures remain a primary solution for oral rehabilitation in aging and medically compromised populations. The integration of digital workflows, regenerative materials, and smart technologies is propelling prosthodontics towards a new era, transcending the limitations of traditional static prostheses. Materials and Methods: This narrative review synthesizes historical developments, current practices, and future innovations in complete denture therapy. A comprehensive review of literature from PubMed, Scopus, and Web of Science (2000–2025) was conducted, with a focus on materials science, digital design, patient-centered care, artificial intelligence (AI), and sustainable fabrication. Results: Innovations in the field include high-performance polymers, CAD–CAM systems, digital impressions, smart sensors, and bioactive liners. Recent trends in the field include the development of self-monitoring prostheses, artificial intelligence (AI)-driven design platforms, and bioprinted regenerative bases. These advances have been shown to enhance customization, durability, hygiene, and patient satisfaction. However, challenges persist in terms of accessibility, clinician training, regulatory validation, and ethical integration of digital data. Conclusions: The field of complete denture therapy is undergoing a transition toward a new paradigm of prosthetics that are personalized, intelligent, and sustainable. To ensure the integration of these technologies into standard care, ongoing interdisciplinary research, clinical validation, and equitable implementation are imperative. Full article
(This article belongs to the Topic Advances in Dental Materials)
18 pages, 775 KiB  
Review
Cardiovascular Nursing in Rehabilitative Cardiology: A Review
by Carmine Izzo, Valeria Visco, Francesco Loria, Antonio Squillante, Chiara Iannarella, Antonio Guerriero, Alessandra Cirillo, Maria Grazia Barbato, Ornella Ferrigno, Annamaria Augusto, Maria Rosaria Rusciano, Nicola Virtuoso, Eleonora Venturini, Paola Di Pietro, Albino Carrizzo, Carmine Vecchione and Michele Ciccarelli
J. Cardiovasc. Dev. Dis. 2025, 12(6), 219; https://doi.org/10.3390/jcdd12060219 - 11 Jun 2025
Viewed by 1344
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, necessitating comprehensive management and prevention strategies. Rehabilitative cardiology, also known as cardiac rehabilitation (CR), is a multidisciplinary approach aimed at enhancing recovery, reducing the risk of recurrent cardiac events, and improving patients’ quality [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, necessitating comprehensive management and prevention strategies. Rehabilitative cardiology, also known as cardiac rehabilitation (CR), is a multidisciplinary approach aimed at enhancing recovery, reducing the risk of recurrent cardiac events, and improving patients’ quality of life. This review explores the critical role of cardiovascular nursing in CR, highlighting its contributions to patient education, psychosocial support, and care coordination. Through an analysis of current evidence, we outline the core components of CR, including exercise training, risk factor modification, and behavioral interventions. Cardiovascular nurses play a pivotal role in optimizing patient outcomes by conducting assessments, providing tailored education, and addressing psychological challenges such as depression and anxiety, which often accompany CVDs. Despite the well-documented benefits of CR, participation rates remain low due to barriers such as inadequate referral systems, accessibility challenges, and socioeconomic disparities. Emerging solutions, including telemedicine and home-based CR, offer promising alternatives to improve adherence and accessibility. The review underscores the need for expanded nursing roles, interdisciplinary collaboration, and policy advancements to bridge existing gaps in CR utilization. By integrating innovative care models, cardiovascular nursing can further enhance the effectiveness of rehabilitative cardiology and contribute to improved long-term patient outcomes. Full article
(This article belongs to the Special Issue Feature Review Papers in Cardiovascular Clinical Research)
Show Figures

Figure 1

22 pages, 6009 KiB  
Article
Teaching Bioinspired Design for Assistive Technologies Using Additive Manufacturing: A Collaborative Experience
by Maria Elizete Kunkel, Alexander Sauer, Carlos Isaacs, Thabata Alcântara Ferreira Ganga, Leonardo Henrique Fazan and Eduardo Keller Rorato
Biomimetics 2025, 10(6), 391; https://doi.org/10.3390/biomimetics10060391 - 11 Jun 2025
Viewed by 627
Abstract
Integrating bioinspired design and additive manufacturing into engineering education fosters innovation to meet the growing demand for accessible, personalized assistive technologies. This paper presents the outcomes of an international course, “3D Prosthetics and Orthotics”, offered to undergraduate students in the Biomimetic program at [...] Read more.
Integrating bioinspired design and additive manufacturing into engineering education fosters innovation to meet the growing demand for accessible, personalized assistive technologies. This paper presents the outcomes of an international course, “3D Prosthetics and Orthotics”, offered to undergraduate students in the Biomimetic program at Westfälische Hochschule (Germany), in collaboration with the 3D Orthotics and Prosthetics Laboratory at the Federal University of São Paulo—UNIFESP (Brazil). The course combined theoretical and hands-on modules covering digital modeling (CAD), simulation (CAE), and fabrication (CAM), enabling students to develop bioinspired assistive devices through a Project-based learning approach. Working in interdisciplinary teams, students addressed real-world rehabilitation challenges by translating biological mechanisms into engineered solutions using additive manufacturing. Resulting prototypes included a hand prosthesis based on the Fin Ray effect, a modular finger prosthesis inspired by tendon–muscle antagonism, and a cervical orthosis designed based on stingray morphology. Each device was digitally modeled, mechanically analyzed, and physically fabricated using open-source and low-cost methods. This initiative illustrates how biomimetic mechanisms and design can be integrated into education to generate functional outcomes and socially impactful health technologies. Grounded in the Mao3D open-source methodology, this experience demonstrates the value of combining nature-inspired principles, digital fabrication, Design Thinking, and international collaboration to advance inclusive, low-cost innovations in assistive technology. Full article
Show Figures

Graphical abstract

Back to TopTop