Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Keywords = interconnected mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 349 KiB  
Article
Reconsidering the Word–Sacrament and Scripture–Liturgy Debate: A Patristic Perspective
by Ciprian Ioan Streza
Religions 2025, 16(7), 895; https://doi.org/10.3390/rel16070895 - 12 Jul 2025
Viewed by 213
Abstract
The relationship between Scripture and the Liturgy remains one of the most extensively debated subjects in theological discourse. In the wake of the Protestant Reformation and the Catholic Counter-Reformation, a divided Christendom witnessed the rise of a dichotomy between Scripture and Liturgy, as [...] Read more.
The relationship between Scripture and the Liturgy remains one of the most extensively debated subjects in theological discourse. In the wake of the Protestant Reformation and the Catholic Counter-Reformation, a divided Christendom witnessed the rise of a dichotomy between Scripture and Liturgy, as well as between the Word and the Sacrament. This dichotomy, however, is absent from the patristic thought, which perceives the unity and complementarity between Scripture and Liturgy, owing to their shared belonging to the one life of the Church—broadly defined as Tradition—and to the way they are understood and experienced as interconnected modes through which the singular Mystery of Jesus Christ is communicated to the faithful. The present study aims to demonstrate this unity by drawing on a substantial body of patristic writings, highlighting the fact that the life of the Church is one and is lived both as the rule of faith and the rule of prayer, and that through it, one and the same Christ communicates Himself to the faithful both through the Word and through the Holy Sacraments. For the Church Fathers, the Christian faith is not an abstract doctrine about Christ, but a real and personal encounter and communion with Him in the life of the Church. This patristic approach may offer a starting point for contemporary Christianity in addressing the current liturgical crisis and in rethinking and renewing future ecumenical dialogue. Such renewal presupposes a movement beyond secular formalism and nominalism, which have fostered excessive conceptualization and an antithetical view of Scripture and Liturgy, Word and Sacrament. Full article
19 pages, 949 KiB  
Article
Modeling Sustainable Development of Transport Logistics Under Climate Change, Ecosystem Dynamics, and Digitalization
by Ilona Jacyna-Gołda, Nadiia Shmygol, Lyazzat Sembiyeva, Olena Cherniavska, Aruzhan Burtebayeva, Assiya Uskenbayeva and Mariusz Salwin
Appl. Sci. 2025, 15(13), 7593; https://doi.org/10.3390/app15137593 - 7 Jul 2025
Viewed by 192
Abstract
This article examines the modeling of sustainable development in transport logistics, focusing on the impact of climate factors, changing weather conditions, and digitalization processes. The study analyzes the complex influence of adverse weather phenomena, such as fog, rain, snow, extreme temperatures, and strong [...] Read more.
This article examines the modeling of sustainable development in transport logistics, focusing on the impact of climate factors, changing weather conditions, and digitalization processes. The study analyzes the complex influence of adverse weather phenomena, such as fog, rain, snow, extreme temperatures, and strong winds, whose frequency and intensity are increasing due to climate change, on the efficiency, safety, and reliability of transport systems across all modes except pipelines. Special attention is paid to the integration of weather-resilient sensor technologies, including LiDAR, thermal imaging, and advanced monitoring systems, to strengthen infrastructure resilience and ensure uninterrupted transport operations under environmental stress. The methodological framework combines comparative analytical methods with economic–mathematical modeling, particularly Leontief’s input–output model, to evaluate the mutual influence between the transport sector and sustainable economic growth within an interconnected ecosystem of economic and technological factors. The findings confirm that data-driven management strategies, the digital transformation of logistics, and the strengthening of centralized hubs contribute significantly to increasing the resilience and flexibility of transport systems, mitigating the negative economic impacts of climate risks, and promoting long-term sustainable development. Practical recommendations are proposed to optimize freight flows, adapt infrastructure to changing weather risks, and support the integration of innovative digital technologies as part of an evolving ecosystem. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

23 pages, 4929 KiB  
Article
Low Phase Noise, Dual-Frequency Pierce MEMS Oscillators with Direct Print Additively Manufactured Amplifier Circuits
by Liguan Li, Di Lan, Xu Han, Tinghung Liu, Julio Dewdney, Adnan Zaman, Ugur Guneroglu, Carlos Molina Martinez and Jing Wang
Micromachines 2025, 16(7), 755; https://doi.org/10.3390/mi16070755 - 26 Jun 2025
Viewed by 301
Abstract
This paper presents the first demonstration and comparison of two identical oscillator circuits employing piezoelectric zinc oxide (ZnO) microelectromechanical systems (MEMS) resonators, implemented on conventional printed-circuit-board (PCB) and three-dimensional (3D)-printed acrylonitrile butadiene styrene (ABS) substrates. Both oscillators operate simultaneously at dual frequencies (260 [...] Read more.
This paper presents the first demonstration and comparison of two identical oscillator circuits employing piezoelectric zinc oxide (ZnO) microelectromechanical systems (MEMS) resonators, implemented on conventional printed-circuit-board (PCB) and three-dimensional (3D)-printed acrylonitrile butadiene styrene (ABS) substrates. Both oscillators operate simultaneously at dual frequencies (260 MHz and 437 MHz) without the need for additional circuitry. The MEMS resonators, fabricated on silicon-on-insulator (SOI) wafers, exhibit high-quality factors (Q), ensuring superior phase noise performance. Experimental results indicate that the oscillator packaged using 3D-printed chip-carrier assembly achieves a 2–3 dB improvement in phase noise compared to the PCB-based oscillator, attributed to the ABS substrate’s lower dielectric loss and reduced parasitic effects at radio frequency (RF). Specifically, phase noise values between −84 and −77 dBc/Hz at 1 kHz offset and a noise floor of −163 dBc/Hz at far-from-carrier offset were achieved. Additionally, the 3D-printed ABS-based oscillator delivers notably higher output power (4.575 dBm at 260 MHz and 0.147 dBm at 437 MHz). To facilitate modular characterization, advanced packaging techniques leveraging precise 3D-printed encapsulation with sub-100 μm lateral interconnects were employed. These ensured robust packaging integrity without compromising oscillator performance. Furthermore, a comparison between two transistor technologies—a silicon germanium (SiGe) heterojunction bipolar transistor (HBT) and an enhancement-mode pseudomorphic high-electron-mobility transistor (E-pHEMT)—demonstrated that SiGe HBT transistors provide superior phase noise characteristics at close-to-carrier offset frequencies, with a significant 11 dB improvement observed at 1 kHz offset. These results highlight the promising potential of 3D-printed chip-carrier packaging techniques in high-performance MEMS oscillator applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

15 pages, 1673 KiB  
Article
Smart Grid Self-Healing Enhancement E-SOP-Based Recovery Strategy for Flexible Interconnected Distribution Networks
by Wanjun Li, Zhenzhen Xu, Meifeng Chen and Qingfeng Wu
Energies 2025, 18(13), 3358; https://doi.org/10.3390/en18133358 - 26 Jun 2025
Viewed by 269
Abstract
With the development of modern power systems, AC distribution networks face increasing demands for supply flexibility and reliability. Energy storage-based soft open points (E-SOPs), which integrate energy storage systems into the DC side of traditional SOP connecting AC distribution networks, not only maintain [...] Read more.
With the development of modern power systems, AC distribution networks face increasing demands for supply flexibility and reliability. Energy storage-based soft open points (E-SOPs), which integrate energy storage systems into the DC side of traditional SOP connecting AC distribution networks, not only maintain power flow control capabilities but also enhance system supply performance, providing a novel approach to AC distribution network fault recovery. To fully leverage the advantages of E-SOPs in handling faults in flexible interconnected AC distribution networks (FIDNs), this paper proposes an E-SOP-based FIDN islanding recovery method. First, the basic structure and control modes of SOPs for AC distribution networks are elaborated, and the E-SOP-based AC distribution network structure is analyzed. Second, with maximizing total load recovery as the objective function, the constraints of E-SOPs are comprehensively considered, and recovery priorities are established based on load importance classification. Then, a multi-dimensional improvement of the dung beetle optimizer (DBO) algorithm is implemented through Logistic chaotic mapping, adaptive parameter adjustment, elite learning mechanisms, and local search strategies, resulting in an efficient solution for AC distribution network power supply restoration. Finally, the proposed FIDN islanding partitioning and fault recovery methods are validated on a double-ended AC distribution network structure. Simulation results demonstrate that the improved DBO (IDBO) algorithm exhibits a superior optimization performance and the proposed method effectively enhances the load recovery capability of AC distribution networks, significantly improving the self-healing ability and operational reliability of AC distribution systems. Full article
(This article belongs to the Special Issue Digital Modeling, Operation and Control of Sustainable Energy Systems)
Show Figures

Figure 1

20 pages, 2211 KiB  
Article
Cascade Nonlinear Observer-Based Speed-Sensorless Adaptive Twisting Sliding Mode Control of Linear Induction Motor
by Lei Zhang, Xiaodong Xie, Dabiao Wu, Zicheng Wang, Jianli Wang, Jiaxin Jing, Huazhen Deng, Junkai Li, Jie Huang and Jingli Huang
Actuators 2025, 14(7), 318; https://doi.org/10.3390/act14070318 - 25 Jun 2025
Viewed by 256
Abstract
This paper presents a novel adaptive twisting sliding mode control strategy combined with a speed-sensorless cascade nonlinear observer for the high-performance control of linear induction motors (LIMs). The primary objective is to achieve accurate speed and rotor flux tracking without relying on mechanical [...] Read more.
This paper presents a novel adaptive twisting sliding mode control strategy combined with a speed-sensorless cascade nonlinear observer for the high-performance control of linear induction motors (LIMs). The primary objective is to achieve accurate speed and rotor flux tracking without relying on mechanical sensors, thereby enhancing system reliability and reducing hardware complexity. For this purpose, a cascade nonlinear observer is designed and applied to the class of nonlinear affine systems representing LIM dynamics. Based on the interconnected form of the LIM mathematical model, the observer simultaneously reconstructs both the motor speed and rotor fluxes in real time. The stability of the proposed cascade observer is analyzed using Lyapunov theory, ensuring the convergence of the estimation errors under bounded disturbances. Complementing the observer, two adaptive gain twisting sliding mode controllers are developed: one for speed tracking and another for flux regulation. These controllers are robust against external disturbances and parameter uncertainties, even when the bounds of such disturbances are unknown. This feature significantly enhances the practical applicability of the control system in real-world industrial environments. To validate the performance and robustness of the proposed control scheme, a hardware-in-the-loop (HIL) experiment was conducted. Comparative studies with existing state-of-the-art sensorless control methods demonstrate that the proposed cascade nonlinear observer-based approach achieves faster convergence, higher estimation accuracy, and better disturbance rejection capabilities, while requiring less computational effort. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

26 pages, 5112 KiB  
Article
Mixed Halide Isothiocyanate Tin(II) Compounds, SnHal(NCS): Signs of Tetrel Bonds as Bifurcated Extensions of Long-Range Asymmetric 3c-4e Bonds
by Hans Reuter
Molecules 2025, 30(13), 2700; https://doi.org/10.3390/molecules30132700 - 23 Jun 2025
Viewed by 357
Abstract
As part of a systematic study on the structures of the mixed halide isothiocyanates, SnIIHal(NCS), their single crystals were grown and structurally characterized. For Hal = F (1), the SnClF structure type was confirmed, while with Hal = Cl [...] Read more.
As part of a systematic study on the structures of the mixed halide isothiocyanates, SnIIHal(NCS), their single crystals were grown and structurally characterized. For Hal = F (1), the SnClF structure type was confirmed, while with Hal = Cl (2), Br (3), and I (4), there are three isostructural compounds of a new structure type, and for Hal = Cl (5), there is a second modification of a third structure type. These structure types have been described with respect to the composition and coordination geometry of the first, second, and van der Waals crust coordination spheres and their dependence on the halogen size and thiocyanate binding modes. With respect to the first coordination spheres, all three structure types constitute one-dimensional coordination polymers. In 1, “ladder”-type double chains result from μ3-bridging fluorine atoms, and in 24, single-chains built up from μ2-halogen atoms are pairwise “zipper”-like interconnected via κ2NS-bridging NCS ligands, which manage the halogen-linked chain assembly in the double chains of 5. Based on the octet rule, short atom distances are interpreted in terms of 2c-2e and various (symmetrical, quasi-symmetrical, and asymmetrical) kinds of 3c-4e bonds. Weak contacts, the topology of which suggests the extension of the latter bonding concept, are identified as electron-deficient, bifurcated tetrel bonds. Full article
Show Figures

Graphical abstract

13 pages, 3937 KiB  
Article
A 5 Gb/s Optoelectronic Receiver IC in 180 nm CMOS for Short-Distance Optical Interconnects
by Yunji Song and Sung-Min Park
Photonics 2025, 12(6), 624; https://doi.org/10.3390/photonics12060624 - 19 Jun 2025
Viewed by 276
Abstract
This paper presents a CMOS-based optoelectronic receiver integrated circuit (CORIC) realized in a standard 180 nm CMOS technology for the applications of short-distance optical interconnects. The CORIC comprises a spatially modulated P+/N-well on-chip avalanche photodiode (P+/NW APD) for optical-to-electrical [...] Read more.
This paper presents a CMOS-based optoelectronic receiver integrated circuit (CORIC) realized in a standard 180 nm CMOS technology for the applications of short-distance optical interconnects. The CORIC comprises a spatially modulated P+/N-well on-chip avalanche photodiode (P+/NW APD) for optical-to-electrical conversion, a dummy APD at the differential input for enhanced common-mode noise rejection, a cross-coupled differential transimpedance amplifier (CCD-TIA) for current-to-voltage conversion, a 3-bit continuous-time linear equalizer (CTLE) for adaptive equalization by using NMOS registers, and a fT-doubler output buffer (OB). The CTLE and fT-doubler OB combination not only compensates the frequency-dependent signal loss, but also provides symmetric differential output signals. Post-layout simulations of the proposed CORIC reveal a transimpedance gain of 53.2 dBΩ, a bandwidth of 4.83 GHz even with a 490 fF parasitic capacitance from the on-chip P+/NW APD, a dynamic range of 60 dB that handles the input photocurrents from 1 μApp to 1 mApp, and a DC power consumption of 33.7 mW from a 1.8 V supply. The CORIC chip core occupies an area of 260 × 101 μm2. Full article
(This article belongs to the Special Issue New Insights in Low-Dimensional Optoelectronic Materials and Devices)
Show Figures

Figure 1

17 pages, 3255 KiB  
Article
Novel Aerogel Structure of β-Eucryptite: Featuring Low Density, High Specific Surface Area, and Negative Thermal Expansion Coefficient
by Haoren Ma, Sijia Liu, Jinyi Ren, Xiaochan Liu, Weiyi Zhang, Ying Zhu, Zhipeng Yuan, Jinxu Zhu and Xibin Yi
Gels 2025, 11(6), 440; https://doi.org/10.3390/gels11060440 - 9 Jun 2025
Viewed by 862
Abstract
Traditional β-eucryptite (LiAlSiO4) is renowned for its unique characteristics of low thermal expansion and high temperature thermal stability, making it an ideal material for precision instruments and aerospace applications. In this study, β-eucryptite was fabricated into an aerogel structure through the [...] Read more.
Traditional β-eucryptite (LiAlSiO4) is renowned for its unique characteristics of low thermal expansion and high temperature thermal stability, making it an ideal material for precision instruments and aerospace applications. In this study, β-eucryptite was fabricated into an aerogel structure through the sol–gel process and supercritical drying method and using alumina sol as a cost-effective precursor. The synthesized β-eucryptite aerogel demonstrated unique properties including a negative thermal expansion coefficient (−7.85 × 10−6 K−1), low density (0.60 g/cm3), and high specific surface area (18.1 m2/g). X-ray diffraction (XRD) and transmission electron microscopy (TEM) mutually corroborated the crystalline structure of β-eucryptite, with XRD confirming the phase purity and TEM imaging revealing well-defined crystal lattice characteristics. Combined nitrogen adsorption–desorption analysis and scanning electron microscopy observations supported the hierarchical porous microstructure, with SEM visualizing interconnected nanoporous networks and nitrogen sorption data verifying the porosity. The negative thermal expansion behavior was directly linked to the β-eucryptite crystal structure, as collectively validated by thermal expansion measurements. Additionally, Fourier transform infrared spectroscopy (FTIR) independently confirmed the aluminosilicate framework structure through characteristic vibrational modes. This research shows the innovation in the synthesis of β-eucryptite aerogel, especially its application potential in precision instruments and building materials that need low thermal expansion and high stability, and the use of aluminum sol as an aluminum source has simplified the preparation steps and reduced production costs. Full article
Show Figures

Figure 1

24 pages, 4739 KiB  
Article
Secured Audio Framework Based on Chaotic-Steganography Algorithm for Internet of Things Systems
by Mai Helmy and Hanaa Torkey
Computers 2025, 14(6), 207; https://doi.org/10.3390/computers14060207 - 26 May 2025
Viewed by 403
Abstract
The exponential growth of interconnected devices in the Internet of Things (IoT) has raised significant concerns about data security, especially when transmitting sensitive information over wireless channels. Traditional encryption techniques often fail to meet the energy and processing constraints of resource-limited IoT devices. [...] Read more.
The exponential growth of interconnected devices in the Internet of Things (IoT) has raised significant concerns about data security, especially when transmitting sensitive information over wireless channels. Traditional encryption techniques often fail to meet the energy and processing constraints of resource-limited IoT devices. This paper proposes a novel hybrid security framework that integrates chaotic encryption and steganography to enhance confidentiality, integrity, and resilience in audio communication. Chaotic systems generate unpredictable keys for strong encryption, while steganography conceals the existence of sensitive data within audio signals, adding a covert layer of protection. The proposed approach is evaluated within an Orthogonal Frequency Division Multiplexing (OFDM)-based wireless communication system, widely recognized for its robustness against interference and channel impairments. By combining secure encryption with a practical transmission scheme, this work demonstrates the effectiveness of the proposed hybrid method in realistic IoT environments, achieving high performance in terms of signal integrity, security, and resistance to noise. Simulation results indicate that the OFDM system incorporating chaotic algorithm modes alongside steganography outperforms the chaotic algorithm alone, particularly at higher Eb/No values. Notably, with DCT-OFDM, the chaotic-CFB based on steganography algorithm achieves a performance gain of approximately 30 dB compared to FFT-OFDM and DWT-based systems at Eb/No = 8 dB. These findings suggest that steganography plays a crucial role in enhancing secure transmission, offering greater signal deviation, reduced correlation, a more uniform histogram, and increased resistance to noise, especially in high BER scenarios. This highlights the potential of hybrid cryptographic-steganographic methods in safeguarding sensitive audio information within IoT networks and provides a foundation for future advancements in secure IoT communication systems. Full article
(This article belongs to the Special Issue Edge and Fog Computing for Internet of Things Systems (2nd Edition))
Show Figures

Figure 1

21 pages, 2870 KiB  
Article
Analysis of the Propane Price Oriented Weighted Network Based on the Symbolic Pattern Representation of Time Series
by Guangyong Zhang, Yan Zhu, Jiangtao Yuan and Zifang Qu
Symmetry 2025, 17(6), 821; https://doi.org/10.3390/sym17060821 - 25 May 2025
Viewed by 374
Abstract
As an essential chemical raw material and a cost-effective energy product, fluctuations in propane price has garnered significant attention in the energy market. This paper processes the original time series using a coarse-grained method and employs symbolic representation combined with the sliding window [...] Read more.
As an essential chemical raw material and a cost-effective energy product, fluctuations in propane price has garnered significant attention in the energy market. This paper processes the original time series using a coarse-grained method and employs symbolic representation combined with the sliding window technique to represent fluctuation modes as nodes within a network. The weight and direction of the edges among the nodes are determined by the number and direction of the conversions among the modes, thereby mapping the original sequence of the propane price into the propane price oriented weighted network (PPOWN) by the symbolic patterns, which is an asymmetric network that has evolved from the symmetric network based on symmetry theory. The results indicate that the core fluctuation state of the PPOWN is concentrated in the first 0.96% of the nodes, exhibiting scale-free network characteristics and dynamic asymmetry. Nodes with greater strength are more closely interconnected, but not all early-appearing nodes possess great strength. The PPOWN demonstrates a short-range correlation (L¯=8.5405) and a highly linear growth trend in the cumulative time interval of the new nodes. Additionally, the nodes of the PPOWN display low betweenness, clustering coefficient, and strength, which significantly differ from the random and chaotic networks. The presence of these lower-strength nodes often signifies that the market is undergoing a transformation or transition period. By identifying and analyzing these nodes, subsequent propane price fluctuations can be predicted more effectively, enhancing market responsiveness. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

28 pages, 4438 KiB  
Article
A Cybersecurity Risk Assessment for Enhanced Security in Virtual Reality
by Rebecca Acheampong, Dorin-Mircea Popovici, Titus C. Balan, Alexandre Rekeraho and Ionut-Alexandru Oprea
Information 2025, 16(6), 430; https://doi.org/10.3390/info16060430 - 23 May 2025
Viewed by 801
Abstract
Our society is becoming increasingly dependent on technology, with immersive virtual worlds such as Extended Reality (XR) transforming how we connect and interact. XR technologies enhance communication and operational efficiency. They have been adopted in sectors such as manufacturing, education, and healthcare. However, [...] Read more.
Our society is becoming increasingly dependent on technology, with immersive virtual worlds such as Extended Reality (XR) transforming how we connect and interact. XR technologies enhance communication and operational efficiency. They have been adopted in sectors such as manufacturing, education, and healthcare. However, the immersive and interconnected nature of XR introduces security risks that span from technical and human to psychological vulnerabilities. In this study, we examined security threats in XR environments through a scenario-driven risk assessment, using a hybrid approach combining Common Vulnerability Scoring System (CVSS) metrics and a custom likelihood model to quantify risks. This methodology provides a comprehensive risk evaluation method, identifying critical vulnerabilities such as Remote Code Execution (RCE), social engineering, excessive permission exploitation, unauthorized access, and data exfiltration. The findings reveal that human vulnerabilities, including users’ susceptibility to deception and excessive trust in familiar interfaces and system prompts, significantly increase attack success rates. Additionally, developer mode, once enabled, remains continuously active, and the lack of authentication requirements for installing applications from unknown sources, coupled with poor permission management on the part of the users, creates security gaps that attackers can exploit. Furthermore, permission management in XR devices is often broad and persistent and lacks real-time notifications, allowing malicious applications to exploit microphone, camera, and location access without the users knowing. By leveraging CVSS scores and a structured likelihood-based risk assessment, we quantified the severity of these threats, with RCE, social engineering, and insecure app installation emerging as the greatest risks. This study highlights the necessity of implementing granular permission controls, formalized developer mode restrictions, and structured user education programs to mitigate XR-specific threats. Full article
(This article belongs to the Special Issue Extended Reality and Cybersecurity)
Show Figures

Figure 1

11 pages, 193 KiB  
Opinion
In the Company of the Unknown: Cultivating Curiosity for Ecological Renewal
by Dragana Favre
Challenges 2025, 16(2), 25; https://doi.org/10.3390/challe16020025 - 20 May 2025
Viewed by 540
Abstract
This article argues that environmental education must move beyond knowledge transmission to become a transformative, psychological, and relational practice. Rooted in the One Health framework, which emphasizes the interconnectedness of human, animal, and ecological well-being, this article positions curiosity as a central catalyst [...] Read more.
This article argues that environmental education must move beyond knowledge transmission to become a transformative, psychological, and relational practice. Rooted in the One Health framework, which emphasizes the interconnectedness of human, animal, and ecological well-being, this article positions curiosity as a central catalyst for ecological and psychological integration. While this article specifically engages with the One Health framework, the same integrative principles apply equally to the closely related Planetary Health perspective, emphasizing interconnected human, ecological, and planetary well-being. Drawing from Jungian and post-Jungian psychology, ecopsychology, and educational theory, it redefines curiosity as a symbolic, ethical, and affective mode of engagement with the Other, both within the psyche and in the more-than-human world. Through boredom, dialogue, narrative, and embodied practices, curiosity creates space for inner movement, narrative reconfiguration, and a relational mode of knowing that can confront ecological crises with imagination, patience, and integrity. This article offers pedagogical strategies to cultivate this deeper form of curiosity as a foundation for lifelong ecological engagement. Full article
(This article belongs to the Section Planetary Health Education and Communication)
25 pages, 6144 KiB  
Article
Comprehensive Modeling of Climate Risk in the Dominican Republic Using a Multivariate Simulator
by Antonio Torres Valle, Juan C. Sala Rosario, Yanelba E. Abreu Rojas and Ulises Jauregui Haza
Sustainability 2025, 17(10), 4638; https://doi.org/10.3390/su17104638 - 19 May 2025
Viewed by 385
Abstract
This study introduces a multivariate simulation framework for assessing climate risks in the Dominican Republic. The simulator operates in two modes—climate risk evaluation and disaster management—using a unified database. This database integrates codified variables associated with global warming, hazards, vulnerabilities (including their interdependencies), [...] Read more.
This study introduces a multivariate simulation framework for assessing climate risks in the Dominican Republic. The simulator operates in two modes—climate risk evaluation and disaster management—using a unified database. This database integrates codified variables associated with global warming, hazards, vulnerabilities (including their interdependencies), and adaptive capacities, facilitating risk assessments across diverse scenarios. Simulations are initiated using predefined variable combinations, interconnected via Boolean algebra, to generate risk levels aligned with the Intergovernmental Panel on Climate Change (IPCC) scales. The key findings underscore the influence of specific variables within the modeled scenarios. For instance, inadequate energy management and insufficient mitigation measures significantly amplify climate risks, particularly in regions with vulnerable infrastructure. Validation against established models, including EN-ROADS and PRECIS, confirms the simulator’s predictive accuracy and reliability. This study highlights the critical role of regionalized risk assessments in developing targeted adaptation and mitigation strategies that address localized vulnerabilities. The proposed simulator provides an innovative tool for real-time climate risk assessment, enabling policymakers to model potential outcomes and optimize decision-making processes. Future improvements should focus on enhancing spatial resolution, integrating real-time data, and refining models of infrastructure interdependencies. This research advances the development of evidence-based climate risk assessment tools, supporting informed policymaking and effective disaster risk management in the Dominican Republic. Full article
Show Figures

Figure 1

36 pages, 9544 KiB  
Article
A Case Study on the Validation of Renewable Energy Grid Code Compliance for a Large-Scale Wind Power Plant Grid-Connected Mode of Operation in Real-Time Simulation
by Sinawo Nomandela, Mkhululi E. S. Mnguni and Atanda K. Raji
Appl. Sci. 2025, 15(10), 5521; https://doi.org/10.3390/app15105521 - 15 May 2025
Viewed by 765
Abstract
In this study, the grid-connected mode of operation was evaluated, considering the renewable energy grid codes. First, the renewable energy grid code specifications have been revisited, focusing mainly on large-scale renewable power plants. An interconnected system has been developed by combining the traditional [...] Read more.
In this study, the grid-connected mode of operation was evaluated, considering the renewable energy grid codes. First, the renewable energy grid code specifications have been revisited, focusing mainly on large-scale renewable power plants. An interconnected system has been developed by combining the traditional electrical power grid with a large-scale wind power plant. The modeling method used in this study and how the evaluation has been conducted can be used for other power system evaluation studies. The results obtained from the interconnected system show a significant improvement in substation (or busbar) voltages. Full article
Show Figures

Figure 1

23 pages, 5306 KiB  
Article
Robust Higher-Order Nonsingular Terminal Sliding Mode Control of Unknown Nonlinear Dynamic Systems
by Quanmin Zhu, Jianhua Zhang, Zhen Liu and Shuanghe Yu
Mathematics 2025, 13(10), 1559; https://doi.org/10.3390/math13101559 - 9 May 2025
Cited by 1 | Viewed by 555
Abstract
In contrast to the majority of model-based terminal sliding mode control (TSMC) approaches that rely on the plant physical model and/or data-driven adaptive pointwise model, this study treats the unknown dynamic plant as a total uncertainty in a black box with enabled control [...] Read more.
In contrast to the majority of model-based terminal sliding mode control (TSMC) approaches that rely on the plant physical model and/or data-driven adaptive pointwise model, this study treats the unknown dynamic plant as a total uncertainty in a black box with enabled control inputs and attainable outputs (either measured or estimated), which accordingly proposes a model-free (MF) nonsingular terminal sliding mode control (MFTSMC) for higher-order dynamic systems to reduce the tedious modelling work and the design complexity associated with the model-based control approaches. The total model-free controllers, derived from the Lyapunov differential inequality, obviously provide conciseness and robustness in analysis/design/tuning and implementation while keeping the essence of the TSMC. Three simulated bench test examples, in which two of them have representatively numerical challenges and the other is a two-link rigid robotic manipulator with two input and two output (TITO) operational mode as a typical multi-degree interconnected nonlinear dynamics tool, are studied to demonstrate the effectiveness of the MFTSMC and employed to show the user-transparent procedure to facilitate the potential applications. The major MFTSMC performance includes (1) finite time (2.5±0.05 s) dynamic stabilization to equilibria in dealing with total physical model uncertainty and disturbance, (2) effective dynamic tracking and small steady state error 0±0.002, (3) robustness (zero sensitivity at state output against the unknown bounded internal uncertainty and external disturbance), (4) no singularity issue in the neighborhood of TSM σ=0, (5) stable chattering with low amplitude (±0.01) at frequency 50 mHz due to high gain used against disturbance d(t)=100+30sin(2πt)). The simulation results are similar to those from well-known nominal model-based approaches. Full article
(This article belongs to the Special Issue New Advances in Nonlinear Dynamics Theory and Applications)
Show Figures

Figure 1

Back to TopTop