Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (25,164)

Search Parameters:
Keywords = interaction proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 2019 KB  
Review
Non-Electrophilic Activation of NRF2 in Neurological Disorders: Therapeutic Promise of Non-Pharmacological Strategies
by Chunyan Li, Keren Powell, Luca Giliberto, Christopher LeDoux, Cristina d’Abramo, Daniel Sciubba and Yousef Al Abed
Antioxidants 2025, 14(9), 1047; https://doi.org/10.3390/antiox14091047 (registering DOI) - 25 Aug 2025
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) serves as a master transcriptional regulator of cellular antioxidant responses through orchestration of cytoprotective gene expression, establishing its significance as a therapeutic target in cerebral pathophysiology. Classical electrophilic NRF2 activators, despite potent activation potential, exhibit paradoxically [...] Read more.
Nuclear factor erythroid 2-related factor 2 (NRF2) serves as a master transcriptional regulator of cellular antioxidant responses through orchestration of cytoprotective gene expression, establishing its significance as a therapeutic target in cerebral pathophysiology. Classical electrophilic NRF2 activators, despite potent activation potential, exhibit paradoxically reduced therapeutic efficacy relative to single antioxidants, attributable to concurrent oxidative stress generation, glutathione depletion, mitochondrial impairment, and systemic toxicity. Although emerging non-electrophilic pharmacological activators offer therapeutic potential, their utility remains limited by bioavailability and suboptimal potency, underscoring the imperative for innovative therapeutic strategies to harness this cytoprotective pathway. Non-pharmacological interventions, including neuromodulation, physical exercise, and lifestyle modifications, activate NRF2 through non-canonical, non-electrophilic pathways involving protein–protein interaction inhibition, KEAP1 degradation, post-translational and transcriptional modulation, and protein stabilization, though mechanistic characterization remains incomplete. Such interventions utilize multi-mechanistic approaches that synergistically integrate multiple non-electrophilic NRF2 pathways or judiciously combine electrophilic and non-electrophilic mechanisms while mitigating electrophile-induced toxicity. This strategy confers neuroprotective effects without the contraindications characteristic of classical electrophilic activators. This review comprehensively examines the mechanistic underpinnings of non-pharmacological NRF2 modulation, highlighting non-electrophilic activation pathways that bypass the limitations inherent to electrophilic activators. The evidence presented herein positions non-pharmacological interventions as viable therapeutic approaches for achieving non-electrophilic NRF2 activation in the treatment of cerebrovascular and neurodegenerative pathologies. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Figure 1

25 pages, 2335 KB  
Article
FGF14 Peptide Derivative Differentially Regulates Nav1.2 and Nav1.6 Function
by Parsa Arman, Zahra Haghighijoo, Carmen A. Lupascu, Aditya K. Singh, Nana A. Goode, Timothy J. Baumgartner, Jully Singh, Yu Xue, Pingyuan Wang, Haiying Chen, Dinler A. Antunes, Marijn Lijffijt, Jia Zhou, Michele Migliore and Fernanda Laezza
Life 2025, 15(9), 1345; https://doi.org/10.3390/life15091345 (registering DOI) - 25 Aug 2025
Abstract
Voltage-gated Na+ channels (Nav) are the molecular determinants of action potential initiation and propagation. Among the nine voltage-gated Na+ channel isoforms (Nav1.1–Nav1.9), Nav1.2 and Nav1.6 are of particular interest because of their developmental expression profile throughout the central nervous system (CNS) [...] Read more.
Voltage-gated Na+ channels (Nav) are the molecular determinants of action potential initiation and propagation. Among the nine voltage-gated Na+ channel isoforms (Nav1.1–Nav1.9), Nav1.2 and Nav1.6 are of particular interest because of their developmental expression profile throughout the central nervous system (CNS) and their association with channelopathies. Although the α-subunit coded by each of the nine isoforms can sufficiently confer transient Na+ currents (INa), in vivo these channels are modulated by auxiliary proteins like intracellular fibroblast growth factor (iFGFs) through protein–protein interaction (PPI), and probes developed from iFGF/Nav PPI complexes have been shown to precisely modulate Nav channels. Previous studies identified ZL0177, a peptidomimetic derived from a short peptide sequence at the FGF14/Nav1.6 PPI interface, as a functional modulator of Nav1.6-mediated INa+. However, the isoform specificity, binding sites, and putative physiological impact of ZL0177 on neuronal excitability remain unexplored. Here, we used automated planar patch-clamp electrophysiology to assess ZL0177’s functional activity in cells stably expressing Nav1.2 or Nav1.6. While ZL0177 was found to suppress INa in both Nav1.2- and Nav1.6-expressing cells, ZL0177 elicited functionally divergent effects on channel kinetics that were isoform-specific and supported by differential docking of the compound to AlphaFold structures of the two channel isoforms. Computational modeling predicts that ZL0177 modulates Nav1.2 and Nav1.6 in an isoform-specific manner, eliciting phenotypically divergent effects on action potential discharge. Taken together, these results highlight the potential of PPI derivatives for isoform-specific regulation of Nav channels and the development of therapeutics for channelopathies. Full article
(This article belongs to the Special Issue Ion Channels and Neurological Disease: 2nd Edition)
16 pages, 895 KB  
Article
Functional Investigation of Mutant Vespa tropica Hyaluronidase Produced in Pichia pastoris: In Silico Studies and Potential Applications
by Piyapon Janpan, Bernhard Schmelzer, Anuwatchakij Klamrak, Jaran Nabnueangsap, Yutthakan Saengkun, Shaikh Shahinur Rahman, Prapenpuksiri Rungsa, Diethard Mattanovich and Sakda Daduang
Fermentation 2025, 11(9), 497; https://doi.org/10.3390/fermentation11090497 (registering DOI) - 25 Aug 2025
Abstract
The hyaluronidase enzyme derived from Vespa tropica (VesT2a) venom contains two putative catalytic residues. Herein, a double mutation was introduced into VesT2a at its catalytic sites by substituting Asp107 and Glu109 with Asn and Gln, respectively, to assess their essential roles in enzymatic [...] Read more.
The hyaluronidase enzyme derived from Vespa tropica (VesT2a) venom contains two putative catalytic residues. Herein, a double mutation was introduced into VesT2a at its catalytic sites by substituting Asp107 and Glu109 with Asn and Gln, respectively, to assess their essential roles in enzymatic function. We used Pichia pastoris to produce the mutated version of the VesT2a (mVesT2a) protein, and the process was more efficient when employing the methanol-inducible promoter (PAOX1) compared to the constitutive promoter (PGAP). In bioreactor scale-up, P. pastoris harboring the pAOX1-αMF-mVesT2a plasmid secreted 34.03 ± 2.31 mg/L of mVesT2a, with an apparent molecular mass of 46.6 kDa, retaining only 2.9% of hyaluronidase activity, thus indicating successful mutation. The newly developed indirect ELISA-based method using mVesT2a demonstrated its potential as an alternative approach for measuring hyaluronic acid (HA) at low concentrations and was also used to confirm HA-binding capacity. In silico docking and molecular dynamics simulations further supported the stable interaction of the mVesT2a–HA complex while suggested other surrounded acidic amino acid residues, which may play a minor role in HA degradation, supporting the remaining activity observed in the in vitro experiments. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
16 pages, 3190 KB  
Article
Lipin-1 Drives Browning of White Adipocytes via Promotion of Brown Phenotype Markers
by Siti Sarah Hamzah, Liyana Ahmad Zamri, Siti Azrinnah Abdul Azar, Siti Mastura Abdul Aziz, Shazana Rifham Abdullah and Norhashimah Abu Seman
Biomedicines 2025, 13(9), 2069; https://doi.org/10.3390/biomedicines13092069 (registering DOI) - 25 Aug 2025
Abstract
Background: Enhancing adipose tissue functionality is a promising cellular-level approach to combating obesity. White adipose tissue (WAT) can acquire beige or brown adipose tissue (BAT)-like properties, characterized by increased thermogenesis and energy dissipation. While the SIRT1-SRSF10–Lipin-1 axis has been identified in hepatocytes, where [...] Read more.
Background: Enhancing adipose tissue functionality is a promising cellular-level approach to combating obesity. White adipose tissue (WAT) can acquire beige or brown adipose tissue (BAT)-like properties, characterized by increased thermogenesis and energy dissipation. While the SIRT1-SRSF10–Lipin-1 axis has been identified in hepatocytes, where Lipin-1 regulates triglyceride metabolism, its role in adipocytes remains unclear. This study aimed to investigate the function of Lipin-1 in 3T3-L1 preadipocytes and its interaction with SIRT1, SRSF10, and PPARγ in promoting browning-like transcriptional responses. Methods: Mouse 3T3-L1 preadipocytes were treated during differentiation with either rosiglitazone (RGZ), the SIRT1 activator SRT1720, or the SIRT1 inhibitor EX527. Gene expression was assessed by real-time PCR, and protein levels were measured using the Simple Western blot system. Data were compared with untreated controls and analyzed using GraphPad Prism. Results: Lipin-1 expression was significantly upregulated by RGZ treatment, alongside increased transcription of Sirt1 and Srsf10, supporting the presence of this regulatory axis in adipocytes. Elevated Srsf10 favored the production of the Lipin-1b isoform, whereas SIRT1 inhibition reversed these effects, confirming its upstream role. Pathway activation further enhanced the expression of browning markers, including Ucp1, Pgc1a, PRDM16, and CIDEA. Conclusions: These findings demonstrate that Lipin-1 interacts with the SIRT1–PPARγ–SRSF10 axis in adipocytes and contributes to the acquisition of beige/brown-like characteristics in WAT. This regulatory pathway may represent a potential target for improving lipid metabolism and metabolic health. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

10 pages, 1168 KB  
Article
Gas-Binding Studies of Class 1 Sugar Beet Phytoglobin and C86A Mutant Using Isothermal Spectral Shifts in High-Precision Microliter Assay
by Leonard Groth and Leif Bülow
Int. J. Mol. Sci. 2025, 26(17), 8240; https://doi.org/10.3390/ijms26178240 (registering DOI) - 25 Aug 2025
Abstract
Phytoglobins (Pgbs) are plant hemoglobin-like proteins with key roles in nitric oxide (NO) scavenging, oxygen sensing, and hypoxic stress responses. Their typical hexacoordination results in unusually high affinities for gaseous ligands such as NO and carbon monoxide (CO), complicating measurement using conventional methods. [...] Read more.
Phytoglobins (Pgbs) are plant hemoglobin-like proteins with key roles in nitric oxide (NO) scavenging, oxygen sensing, and hypoxic stress responses. Their typical hexacoordination results in unusually high affinities for gaseous ligands such as NO and carbon monoxide (CO), complicating measurement using conventional methods. Standard assays often require large sample volumes and lack sensitivity for high-affinity, low-abundance proteins like hexacoordinated Pgbs. Here, we present a microscale capillary-based fluorescence assay for the high-precision measurement of protein–gas binding. Fluorophore-labeled proteins are loaded into gas-saturated capillaries and analyzed via dual-wavelength fluorescence to monitor isothermal spectral shifts upon ligand binding. Phosphate-buffered saline with Tween20 (PBS-T20) ensures gas stability and minimizes nonspecific adsorption. Using this approach, we characterized CO and NO binding to the recombinant wildtype (rWT) of Beta vulgaris Pgb 1.2 (BvPgb 1.2) and its C86A mutant. CO titrations revealed biphasic binding, with EC50 ~400 nM and ~700 μM (rWT) and ~500 nM and ~400 μM (C86A). NO binding showed KD values of ~1600 nM (rWT) and ~400 nM (C86A), implicating Cys86 in ligand affinity. This assay provides a robust, low-volume method for high-affinity protein–gas studies and shows biphasic dynamics in BvPgbs. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

25 pages, 7099 KB  
Article
Tracking of Tobacco Mosaic Virus in Taxonomically Different Plant Fungi
by Natascia Filomena Barnaba, Lorenza Vaccaro, Rita Milvia De Miccolis Angelini, Roberta Spanò, Franco Nigro and Tiziana Mascia
J. Fungi 2025, 11(9), 619; https://doi.org/10.3390/jof11090619 (registering DOI) - 25 Aug 2025
Abstract
Plant viruses have been traditionally considered pathogens restricted to plant hosts. However, recent studies have shown that some plant viruses can infect and replicate in filamentous fungi and oomycetes, suggesting that their host range is broader than previously thought, and that their ecological [...] Read more.
Plant viruses have been traditionally considered pathogens restricted to plant hosts. However, recent studies have shown that some plant viruses can infect and replicate in filamentous fungi and oomycetes, suggesting that their host range is broader than previously thought, and that their ecological interactions are more complex. In this study, we investigated the ability of the well-characterized positive-sense RNA plant virus Tobacco mosaic virus (TMV) to replicate in four major phytopathogenic fungi from different taxonomic groups: Botrytis cinerea, Fusarium oxysporum f. sp. lycopersici, Verticillium dahliae, and Monilinia fructicola. Using a recombinant TMV-based vector expressing a green fluorescent protein (TMV-GFP-1056) as reporter, we demonstrated that TMV can enter, replicate, and persist within the mycelia of B. cinerea and V. dahliae—at least through the first subculture. However, it cannot replicate in F. oxysporum f. sp. lycopersici and M. fructicola. RNA interference (RNAi) is a conserved eukaryotic epigenetic mechanism that provides an efficient defence against viruses. We explored the role of RNAi in the interaction between TMV and the mycelia of V. dahliae and B. cinerea. Our results revealed a strong induction of the Dicer-like 1 and Argonaute 1 genes, which are key compounds of the RNA silencing pathway. This RNAi-based response impaired TMV-GFP replication in both fungi. Notably, despite viral replication and RNAi activation, the virulence of V. dahliae and B. cinerea on their respective host plants remained unaffected. These findings reinforce the emerging recognition of cross-kingdom virus transmission and interactions, which likely play a crucial role in pathogen ecology and viral evolution. Understanding these virus–fungus interactions not only sheds light on RNAi interference silencing mechanisms but also suggests that plant viruses like TMV could serve as simple and effective tools for functional genomic studies in fungi, such as in V. dahliae and B. cinerea. Full article
(This article belongs to the Special Issue Plant Pathogenic Sclerotiniaceae)
Show Figures

Figure 1

25 pages, 1452 KB  
Review
The Complex Interactions of Common Bean (Phaseolus vulgaris L.) with Viruses, Vectors and Beneficial Organisms in the Context of Sub-Saharan Africa
by Trisna D. Tungadi, Francis O. Wamonje, Netsai M. Mhlanga, Alex M. Murphy, Warren Arinaitwe and John P. Carr
Agriculture 2025, 15(17), 1808; https://doi.org/10.3390/agriculture15171808 (registering DOI) - 25 Aug 2025
Abstract
Common bean (Phaseolus vulgaris L.), the world’s most widely grown legume crop, is not only of great commercial importance but is also a vital smallholder crop in low-to-medium-income countries. In sub-Saharan Africa common bean provides consumers with a major proportion of their [...] Read more.
Common bean (Phaseolus vulgaris L.), the world’s most widely grown legume crop, is not only of great commercial importance but is also a vital smallholder crop in low-to-medium-income countries. In sub-Saharan Africa common bean provides consumers with a major proportion of their dietary protein and micronutrients. However, productivity is constrained by viruses, particularly those vectored by aphids and whiteflies, and problems are further compounded by seed-borne transmission. We describe common bean’s major viral threats including the aphid-transmitted RNA viruses bean common mosaic virus and bean common mosaic necrosis virus, and the whitefly-transmitted begomoviruses bean golden mosaic virus and bean golden yellow mosaic virus and discuss how high-throughput sequencing is revealing emerging threats. We discuss how recent work on indirect and direct viral ‘manipulation’ of vector behaviour is influencing modelling of viral epidemics. Viral extended phenotypes also modify legume interactions with beneficial organisms including root-associated microbes, pollinators and the natural enemies of vectors. While problems with common bean tissue culture have constrained transgenic and gene editing approaches to crop protection, topical application of double-stranded RNA molecules could provide a practical protection system compatible with the wide diversity of common bean lines grown in sub-Saharan Africa. Full article
(This article belongs to the Special Issue Advances in the Cultivation and Production of Leguminous Plants)
Show Figures

Figure 1

18 pages, 3448 KB  
Article
GhSTZ-Mediated Suppression of Metabolic–Immune Coordination Compromises Cotton Defense Against Verticillium Wilt
by Guoshuai Zhang, Xinyu Zhu, Yanqing Bi, W. G. Dilantha Fernando, Xiaodi Lv, Jianfeng Lei, Peihong Dai and Yue Li
Plants 2025, 14(17), 2638; https://doi.org/10.3390/plants14172638 (registering DOI) - 25 Aug 2025
Abstract
Verticillium wilt (VW), caused by Verticillium dahliae, poses a significant threat to global cotton production. Through analysis of public transcriptome databases, this study identified GhSTZ, a C2H2 zinc finger protein transcription factor gene, which was significantly induced by V. dahliae. [...] Read more.
Verticillium wilt (VW), caused by Verticillium dahliae, poses a significant threat to global cotton production. Through analysis of public transcriptome databases, this study identified GhSTZ, a C2H2 zinc finger protein transcription factor gene, which was significantly induced by V. dahliae. Suppressing GhSTZ expression via virus-induced gene silencing significantly enhanced cotton resistance to VW. This resistance manifested as a 1.2-fold increase in lignin deposition, optimized ROS (reactive oxygen species) homeostasis, and a 1.3-fold elevation in glucose levels. Transcriptome analysis revealed 338 differentially expressed genes in GhSTZ-silenced plants, with 97 upregulated and 241 downregulated. Key downregulated genes included PME (pectin methylesterase) and PG1-pec (polygalacturonase) in the pentose phosphate pathway, while the key upregulated genes comprised C4H (cinnamate 4-hydroxylase) and C3H (p-coumarate 3-hydroxylase) in the phenylpropanoid biosynthesis pathway. Notably, in the plant–pathogen interaction signaling pathway, approximately half of the genes exhibited upregulated expression while the other half showed downregulation. Protein–protein interaction network analysis further revealed cooperative interaction between PME and the secoisolariciresinol dehydrogenase SIRD. This study is the first to elucidate GhSTZ as a negative regulator that compromises cotton disease resistance through a tripartite mechanism. These findings offer a novel approach to enhancing crop disease resistance by targeting the negative regulatory genes. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

28 pages, 1198 KB  
Review
A Perspective on the Role of Mitochondrial Biomolecular Condensates (mtBCs) in Neurodegenerative Diseases and Evolutionary Links to Bacterial BCs
by Matteo Calcagnile, Pietro Alifano, Fabrizio Damiano, Paola Pontieri and Luigi Del Giudice
Int. J. Mol. Sci. 2025, 26(17), 8216; https://doi.org/10.3390/ijms26178216 - 24 Aug 2025
Abstract
Biomolecular condensates (BCs), formed through liquid–liquid phase separation (LLPS), are membraneless compartments that dynamically regulate key cellular processes. Beyond their canonical roles in energy metabolism and apoptosis, Mitochondria harbor distinct BCs, including mitochondrial RNA granules (MRGs), nucleoids, and degradasomes, that coordinate RNA processing, [...] Read more.
Biomolecular condensates (BCs), formed through liquid–liquid phase separation (LLPS), are membraneless compartments that dynamically regulate key cellular processes. Beyond their canonical roles in energy metabolism and apoptosis, Mitochondria harbor distinct BCs, including mitochondrial RNA granules (MRGs), nucleoids, and degradasomes, that coordinate RNA processing, genome maintenance, and protein homeostasis. These structures rely heavily on proteins with intrinsically disordered regions (IDRs), which facilitate the transient and multivalent interactions necessary for LLPS. In this review, we explore the composition and function of mitochondrial BCs and their emerging involvement in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, and Huntington’s disease. We provide computational evidence identifying IDR-containing proteins within the mitochondrial proteome and demonstrate their enrichment in BC-related functions. Many of these proteins are also implicated in mitochondrial stress responses, apoptosis, and pathways associated with neurodegeneration. Moreover, the evolutionary conservation of phase-separating proteins from bacteria to mitochondria underscores the ancient origin of LLPS-mediated compartmentalization. Comparative analysis reveals functional parallels between mitochondrial and prokaryotic IDPs, supporting the use of bacterial models to study mitochondrial condensates. Overall, this review underscores the critical role of mitochondrial BCs in health and disease and highlights the potential of targeting LLPS mechanisms in the development of therapeutic strategies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Mitochondrial Neurodegenerative Diseases)
Show Figures

Figure 1

15 pages, 3628 KB  
Article
Functional Divergence of Two General Odorant-Binding Proteins to Sex Pheromones and Host Plant Volatiles in Adoxophyes orana (Lepidoptera: Tortricidae)
by Shaoqiu Ren, Yuhan Liu, Xiulin Chen, Kun Luo, Jirong Zhao, Guangwei Li and Boliao Li
Insects 2025, 16(9), 880; https://doi.org/10.3390/insects16090880 - 24 Aug 2025
Abstract
Adoxophyes orana (Lepidoptera: Tortricidae) is a significant polyphagous leafroller that damages trees and shrubs in Rosaceae and other families. However, the molecular mechanisms by which this pest recognizes sex pheromones and host plant volatiles remain largely unknown. Tissue expression profiles indicated that two [...] Read more.
Adoxophyes orana (Lepidoptera: Tortricidae) is a significant polyphagous leafroller that damages trees and shrubs in Rosaceae and other families. However, the molecular mechanisms by which this pest recognizes sex pheromones and host plant volatiles remain largely unknown. Tissue expression profiles indicated that two general odorant-binding proteins (AoraGOBP1 and AoraGOBP2) were more abundant in the antennae and wings of both sexes, with AoraGOBP1 being rich in the female head and abdomen. Temporal expression profiles showed that AoraGOBP1 was expressed at the highest level in 5 day-nmated adults, while AoraGOBP2 exhibited high expression in 5 day-unmated, 7 day-unmated, and mated female adults. Fluorescence competitive binding assays of heterologous expressed AoraGOBPs demonstrated that AoraGOBP2 strongly bound to the primary sex pheromone Z9-14:Ac, and two minor sex pheromones Z9-14:OH and Z11-14:OH, whereas AoraGOBP1 only showed a high binding affinity to Z9-14:Ac. What is more, AoraGOBP1 exhibited a broader binding spectrum for host plant volatiles than AoraGOBP2. Molecular dockings, molecular dynamic simulations, and per-residue binding free decompositions indicated that the van der Waals interaction was the predominant contributor to the binding free energy. Electrostatic interactions between aldehydes, or alcohols and AoraGOBPs stabilized the conformational structures. Phe12 from AoraGOBP1, and Phe13 from AoraGOBP2 were identified as the most important residues that contributed to bind free energy. Our findings provide a comprehensive insight into the molecular mechanisms of olfactory recognition in A. orana, facilitating the development of chemical ecology-based approaches for the control. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

12 pages, 2768 KB  
Article
Molecular Mechanisms of Phthalates in Depression: An Analysis Based on Network Toxicology and Molecular Docking
by Ruiqiu Zhang, Hairuo Wen, Zhi Lin, Bo Li, Xiaobing Zhou and Qingli Wang
Int. J. Mol. Sci. 2025, 26(17), 8215; https://doi.org/10.3390/ijms26178215 (registering DOI) - 24 Aug 2025
Abstract
This study investigated the molecular mechanisms by which phthalates induce depression, utilizing network toxicology and molecular docking techniques. By integrating the TargetNet, GeneCards, and PharmMapper databases, 658 potential target genes of phthalates were identified. Additionally, 5433 depression-related targets were retrieved from the GeneCards [...] Read more.
This study investigated the molecular mechanisms by which phthalates induce depression, utilizing network toxicology and molecular docking techniques. By integrating the TargetNet, GeneCards, and PharmMapper databases, 658 potential target genes of phthalates were identified. Additionally, 5433 depression-related targets were retrieved from the GeneCards and OMIM databases. Comparative analysis revealed 360 common targets implicated in both phthalate action and depression. A Protein-Protein Interaction (PPI) network was constructed using the STRING database. Subsequently, the CytoHubba plugin (employing the MCC algorithm) within Cytoscape was used to screen the network, identifying the top 20 hub genes. These core genes include AKT1, CASP3, TNF, TP53, BCL2, and IL6, among others. Validation on the GEO dataset (GSE23848) revealed that the expression of multiple core genes was significantly upregulated in patients with depression (p < 0.05). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that phthalates mainly regulate biological processes such as extracellular stimulus response, lipopolysaccharide metabolism, and chemical synaptic transmission. Depression is mediated by the AGE-RAGE signaling pathway (a complication of diabetes), lipids and atherosclerosis, Endocrine resistance, and the PI3K-Akt signaling pathway. Molecular docking confirmed that phthalates have strong binding activity with key targets (CASP3, TNF, TP53, BCL2, IL6). These findings present a novel paradigm for evaluating the health risks posed by environmental pollutants. Full article
(This article belongs to the Special Issue Molecular Modeling: Latest Advances and Applications, 2nd Edition)
Show Figures

Figure 1

17 pages, 5644 KB  
Article
Mutation Spectrum of GJB2 in Taiwanese Patients with Sensorineural Hearing Loss: Prevalence, Pathogenicity, and Clinical Implications
by Yi-Feng Lin, Che-Hong Chen, Chang-Yin Lee, Hung-Ching Lin and Yi-Chao Hsu
Int. J. Mol. Sci. 2025, 26(17), 8213; https://doi.org/10.3390/ijms26178213 - 24 Aug 2025
Abstract
Hearing loss is often caused by genetic and environmental factors, with inherited mutations responsible for 50–60% of cases. The GJB2 gene, encoding connexin 26, is a major contributor to nonsyndromic sensorineural hearing loss (NSHL) due to its role in cellular communication critical for [...] Read more.
Hearing loss is often caused by genetic and environmental factors, with inherited mutations responsible for 50–60% of cases. The GJB2 gene, encoding connexin 26, is a major contributor to nonsyndromic sensorineural hearing loss (NSHL) due to its role in cellular communication critical for auditory function. In Taiwan, common deafness-associated genes include GJB2, SLC26A4, OTOF, MYO15A, and MTRNR1, which were similar to those found in other populations. The most common pathogenic genes is GJB2 mutations and the hearing level in children with GJB2 p.V37I/p.V37I or p.V37I/c.235delC was estimated to deteriorate at approximately 1 decibel hearing level (dB HL)/year. We found another common mutation in Taiwan Biobank, GJB2 p.I203T, which were identified in our data and individuals carrying this mutation experienced more severe hearing loss, suggesting a synergistic effect of these mutations on auditory impairment. We suggest GJB2 whole genetic screening is recommended for clinical management and prevention strategies in Taiwan. This study used data from the Taiwan Biobank to analyze allele frequencies of GJB2 gene variants. Predictive software (PolyPhen-2 version 2.2, SIFT for missense variants 6.2.1, MutationTaster Ensembl 112 and Alphamissense CC BY-NC-SA 4.0) assessed the pathogenicity of specific mutations. Additionally, 82 unrelated NSHL patients were screened for mutations in these genes using PCR and DNA sequencing. The study explored the correlation between genetic mutations and the severity of hearing loss in patients. Several common GJB2 mutation sites were identified from the Taiwan Biobank, including GJB2 p.V37I (7.7%), GJB2 p.I203T (6%), GJB2 p.V27I (31%), and GJB2 p.E114G (22%). Bioinformatics analysis classified GJB2 p.I203T as pathogenic, while GJB2 p.V27I and GJB2 p.E114G were considered polymorphisms. Patients with GJB2 p.I203T mutation experienced more severe hearing loss, emphasizing the potential interaction between the gene in auditory impairment. The mutation patterns of GJB2 in the Taiwanese population are similar to other East Asian regions. Although GJB2 mutations represent the predominant genetic cause of hereditary hearing loss, the corresponding mutant proteins exhibit detectable aggregation, particularly at cell–cell junctions, suggesting at least partial trafficking to the plasma membrane. Genetic screening for these mutations—especially GJB2 p.I203T (6%), GJB2 p.V27I (31%), and GJB2 p.E114G (22%)—is essential for the effective diagnosis and management of non-syndromic hearing loss (NSHL) in Taiwan. We found GJB2 p.I203T which were identified in our data and individuals carrying this mutation experienced more severe hearing loss, suggesting a synergistic effect of these mutations on auditory impairment. We suggest whole GJB2 gene sequencing in genetic screening is recommended for clinical management and prevention strategies in Taiwan. These findings have significant clinical and public health implications for the development of preventive and therapeutic strategies. Full article
(This article belongs to the Special Issue Hearing Loss: Recent Progress in Molecular Genomics)
Show Figures

Figure 1

19 pages, 7231 KB  
Article
Genomic Features and Predicted 3D Structures of the CcWOX Transcription Factors in Cinnamomum camphora
by Fengshuo Cui, Kang Wang, Haoran Qi, Tengfei Shen, Caihui Chen, Yongda Zhong and Meng Xu
Int. J. Mol. Sci. 2025, 26(17), 8204; https://doi.org/10.3390/ijms26178204 - 23 Aug 2025
Viewed by 56
Abstract
The WUSCHEL-related homeobox (WOX) gene family is integral to plant growth and development. Here, we identified 14 CcWOX genes from the Cinnamomum camphora genome and analyzed their phylogeny, conserved features, and expression patterns. Phylogenetic inference grouped CcWOX into the Ancient, Intermediate, and WUS [...] Read more.
The WUSCHEL-related homeobox (WOX) gene family is integral to plant growth and development. Here, we identified 14 CcWOX genes from the Cinnamomum camphora genome and analyzed their phylogeny, conserved features, and expression patterns. Phylogenetic inference grouped CcWOX into the Ancient, Intermediate, and WUS clades, consistent with other plant lineages. Expression profiling across seven tissues/organs, together with qRT-PCR validation, revealed tissue-biased expression for several members (e.g., floral or root enrichment), suggesting gene-specific roles during development. Using AlphaFold3, we predicted monomeric structures for CcWOX proteins and an interface model compatible with an interaction between CcWOX3 and CcLBD33. Consistently, bimolecular fluorescence complementation (BiFC) in Nicotiana benthamiana detected nuclear YFP signals for cEYFP-CcWOX3 + nEYFP-CcLBD33 relative to appropriate negative controls, confirming a physical interaction in plant cells. While these findings support a putative WOX–LBD interaction module in C. camphora, the regulatory functions remain to be established. Overall, this work provides a framework for dissecting the CcWOX family in C. camphora and illustrates how AI-assisted structure prediction can be integrated with cell-based assays to accelerate hypothesis generation in plant developmental biology. Full article
(This article belongs to the Special Issue Plant Tolerance to Stress)
Show Figures

Figure 1

34 pages, 8321 KB  
Article
Differential Expression of Erythrocyte Proteins in Patients with Alcohol Use Disorder
by İ. İpek Boşgelmez, Gülin Güvendik, Nesrin Dilbaz and Metin Esen
Int. J. Mol. Sci. 2025, 26(17), 8199; https://doi.org/10.3390/ijms26178199 - 23 Aug 2025
Viewed by 50
Abstract
Alcohol Use Disorder (AUD) poses global health challenges, and causes hematological alterations such as macrocytosis and oxidative stress. Disruption of protein structures by alcohol and/or its metabolites may exacerbate AUDs; proteomics can elucidate the underlying biological mechanisms. This study examined the proteins differentially [...] Read more.
Alcohol Use Disorder (AUD) poses global health challenges, and causes hematological alterations such as macrocytosis and oxidative stress. Disruption of protein structures by alcohol and/or its metabolites may exacerbate AUDs; proteomics can elucidate the underlying biological mechanisms. This study examined the proteins differentially expressed in the cytosol and membrane fractions of erythrocytes obtained from 30 male patients with AUD, comparing them to samples from 15 age- and BMI-matched social drinkers (SDs) and 15 non-drinkers (control). The analysis aimed to identify the molecular differences related to alcohol consumption. The AUD patient subgrouping was based on mean corpuscular volume (MCV), with 16 individuals classified as having a normal MCV and 14 having a high MCV. Proteins were separated via two-dimensional(2D)-gel electrophoresis, digested with trypsin, and identified via Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (TOF) mass spectrometry (MALDI-TOF/TOF). Additionally, levels of malondialdehyde and 4-hydroxyalkenals (MDA + HAE), reduced glutathione (GSH), oxidized glutathione (GSSG), serum carbohydrate-deficient transferrin (%CDT), disialotransferrin (%DST), and sialic acid (SA) were analyzed. The results showed increased MDA + HAE and decreased total thiols in AUD patients, with GSSG elevated and the GSH/GSSG ratio reduced in the AUD MCV-high subgroup. Serum %CDT, %DST, and SA were significantly higher in AUD. Compared to the control profiles, the AUD group exhibited differential protein expression. Few proteins, such as bisphosphoglycerate mutase, were downregulated in AUD versus control and SD, as well as in the MCV-high AUD subgroup. Conversely, endoplasmin and gelsolin were upregulated in AUD relative to control. Cytoskeletal proteins, including spectrin-alpha chain, actin cytoplasmic 2, were overexpressed in the AUD group and MCV-high AUD subgroup. Several proteins, such as 14-3-3 isoforms, alpha-synuclein, translation initiation factors, heat shock proteins, and others, were upregulated in the MCV-high AUD subgroup. Under-expressed proteins in this subgroup include band 3 anion transport protein, bisphosphoglycerate mutase, tropomyosin alpha-3 chain, uroporphyrinogen decarboxylase, and WD repeat-containing protein 1. Our findings highlight the specific changes in protein expression associated with oxidative stress, cytoskeletal alterations, and metabolic dysregulation, specifically in AUD patients with an elevated MCV. Understanding these mechanisms is crucial for developing targeted interventions and identifying biomarkers of alcohol-induced cellular damage. The complex interplay between oxidative stress, membrane composition, and cellular function illustrates how chronic alcohol exposure affects cellular physiology. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

27 pages, 3086 KB  
Article
Trimetazidine–Profen Hybrid Molecules: Synthesis, Chemical Characterization, and Biological Evaluation of Their Racemates
by Diyana Dimitrova, Stanimir Manolov, Iliyan Ivanov, Dimitar Bojilov, Nikol Dimova, Gabriel Marc, Smaranda Oniga and Ovidiu Oniga
Pharmaceuticals 2025, 18(9), 1251; https://doi.org/10.3390/ph18091251 - 23 Aug 2025
Viewed by 72
Abstract
Background: Trimetazidine is a clinically established cardioprotective agent with anti-ischemic and antioxidant properties, widely used in the management of coronary artery disease. Combining its metabolic and cytoprotective effects with the potent anti-inflammatory activity of profens presents a promising therapeutic strategy. Methods: Five novel [...] Read more.
Background: Trimetazidine is a clinically established cardioprotective agent with anti-ischemic and antioxidant properties, widely used in the management of coronary artery disease. Combining its metabolic and cytoprotective effects with the potent anti-inflammatory activity of profens presents a promising therapeutic strategy. Methods: Five novel trimetazidine–profen hybrid compounds were synthesized using N,N′-dicyclohexylcarbodiimide-mediated coupling and structurally characterized by NMR and high-resolution mass spectrometry. Their antioxidant activity was evaluated by hydroxyl radical scavenging assays (HRSA), and the anti-inflammatory potential was assessed via the inhibition of albumin denaturation (IAD). Lipophilicity was determined chromatographically. Molecular docking and 100 ns molecular dynamics simulations were performed to investigate the binding modes and stability in human serum albumin (HSA) binding sites. The acute toxicity of the hybrid molecules was predicted in silico using GUSAR software. Results: All synthesized hybrids demonstrated varying degrees of biological activity, with compound 3c exhibiting the most potent antioxidant (HRSA IC₅₀ = 71.13 µg/mL) and anti-inflammatory (IAD IC₅₀ = 108.58 µg/mL) effects. Lipophilicity assays indicated moderate membrane permeability, with compounds 3c and 3d showing favorable profiles. Docking studies revealed stronger binding affinities of S-enantiomers, particularly 3c and 3d, to Sudlow sites II and III in HSA. Molecular dynamics simulations confirmed stable ligand–protein complexes, highlighting compound 3c as maintaining consistent and robust interactions. The toxicity results indicate that most hybrids, particularly compounds 3b3d, exhibit a favorable safety profile compared to the parent trimetazidine. Conclusion: The hybrid trimetazidine–profen compounds synthesized herein, especially compound 3c, demonstrate promising dual antioxidant and anti-inflammatory therapeutic potential. Their stable interaction with serum albumin and balanced physicochemical properties support further development as novel agents for managing ischemic heart disease and associated inflammatory conditions. Full article
(This article belongs to the Special Issue Advances in the Medicinal Synthesis of Bioactive Compounds)
Show Figures

Figure 1

Back to TopTop