Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = inter-story drift ratio (IDR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 13499 KiB  
Article
Effect of Viscous Dampers with Variable Capacity on the Response of Steel Buildings
by Panagiotis Mavroeidakos, Panagiota Katsimpini and George Papagiannopoulos
Vibration 2025, 8(1), 11; https://doi.org/10.3390/vibration8010011 - 18 Mar 2025
Cited by 1 | Viewed by 700
Abstract
The objective of this study was to examine the seismic behavior of steel buildings equipped with linear and nonlinear viscous dampers that may exhibit variable capacity. More specifically, nonlinear time history analyses were conducted on two three-dimensional steel buildings utilizing a number of [...] Read more.
The objective of this study was to examine the seismic behavior of steel buildings equipped with linear and nonlinear viscous dampers that may exhibit variable capacity. More specifically, nonlinear time history analyses were conducted on two three-dimensional steel buildings utilizing a number of recorded seismic motions. Initially, it was assumed that the distribution of viscous dampers was uniform along the height of the building and, thus, the damping coefficients used to size the viscous dampers were derived. Subsequently, nonlinear time history analyses were performed assuming either linear or nonlinear viscous dampers, which may operate at 80%, 100%, and 120% of their capacity. The response parameters extracted by these analyses included the base shear (structural and inertial), the inter-story drift ratio (IDR), the residual inter-story drift ratio (RIDR), the absolute floor accelerations, the formation of plastic hinges, and the forces experienced by the dampers. On the basis of these response parameters, the most appropriate type of viscous dampers was indicated. Full article
(This article belongs to the Special Issue Vibration Damping)
Show Figures

Figure 1

21 pages, 4943 KiB  
Article
Three-Dimensional Numerical Analysis of Seismic Response of Steel Frame–Core Wall Structure with Basement Considering Soil–Structure Interaction Effects
by Fujian Yang, Haonan Zhao, Tianchang Ma, Yi Bao, Kai Cao and Xiaoshuang Li
Buildings 2024, 14(11), 3522; https://doi.org/10.3390/buildings14113522 - 4 Nov 2024
Cited by 2 | Viewed by 1580
Abstract
In recent years, numerous studies highlighted the crucial role of the soil–structure interaction (SSI) in the seismic performance of basement structures. However, there remains a limited understanding of how this interaction affects buildings with basement structures under varying site conditions. Based on the [...] Read more.
In recent years, numerous studies highlighted the crucial role of the soil–structure interaction (SSI) in the seismic performance of basement structures. However, there remains a limited understanding of how this interaction affects buildings with basement structures under varying site conditions. Based on the three-dimensional (3D) numerical analysis method, the influence of the SSI on the seismic response of high-rise steel frame–core wall (SFCW) structures situated on shallow-box foundations were investigated in this study. To further investigate the effects of the SSI and site conditions, three types of soil profiles—soft, medium, and hard—were considered, along with a fixed-foundation model. The results were compared in terms of the maximum lateral displacement, inter-story drift ratio (IDR), acceleration amplification coefficient, and tensile damage for the SFCW structure under different site conditions, with both fixed-base and shallow-box foundation configurations. The findings highlight that the site conditions significantly affected the seismic performance of the SFCW structure, particularly in the soft soil, which increased the lateral deflection and inter-story drift. Moreover, compared with non-pulse-like ground motion, pulse-like ground motion resulted in a higher acceleration amplification coefficient and greater structural response in the SFCW structure. The RC core wall–basement slab junction was a critical region of stress concentration that exhibited a high sensitivity to the site conditions. Additionally, the maximum IDRs showed a more significant variation at incidence angles between 20 and 30 degrees, with a more pronounced effect at a seismic input intensity of 0.3 g than at 0.2 g. Full article
(This article belongs to the Special Issue Advances in Soil-Structure Interaction for Building Structures)
Show Figures

Figure 1

21 pages, 9176 KiB  
Article
Seismic Response of Vertical Hybrid Concrete/Steel Frames Considering Soil–Structure Interaction
by Panagiota S. Katsimpini
Buildings 2024, 14(4), 972; https://doi.org/10.3390/buildings14040972 - 1 Apr 2024
Cited by 3 | Viewed by 1589
Abstract
The aim of this study is to investigate the seismic behavior of concrete/steel mixed structures. In engineering praxis, many buildings consist of two parts: one made of reinforced concrete and the other made of steel. There are several difficulties in the code-based seismic [...] Read more.
The aim of this study is to investigate the seismic behavior of concrete/steel mixed structures. In engineering praxis, many buildings consist of two parts: one made of reinforced concrete and the other made of steel. There are several difficulties in the code-based seismic design of these structures due to the different dynamic responses of each discrete part. Seismic design codes, such as the IBC and Eurocode 8, do not provide instructions for structures consisting of two parts. In addition, they use a single-loading scenario, but there are many locations that are affected by more than one earthquake in a short period. Another drawback is that recent provisions do not consider soil–structure interaction effects. The specific issue addressed here is the seismic response of mixed structures, which is evaluated through inelastic time–history analysis. More specifically, the response indices involve height-wise distributions for peak interstory drift ratios, maximum floor horizontal displacements, maximum floor accelerations, and plastic hinge formations in the frame elements when they are subjected to seismic sequences of earthquakes, as well as in far fault ground motions for different soil types. The results reveal that sequential ground motions lead to increased displacement demands, and they affect the permanent displacements. This phenomenon appears in both cases of stiff and flexible soil, as well as for both regular and irregular frames. It is found that soil–structure interaction generally leads to lower values of IDR, and maximum horizontal displacement and acceleration in comparison with the case of rigid soil assumptions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 10770 KiB  
Article
Effects of Aftershocks on the Seismic Performances of Reinforced Concrete Eccentric Frame Structures
by Pengyu Sun, Weiping Wen and Siwei Zhang
Appl. Sci. 2023, 13(19), 10767; https://doi.org/10.3390/app131910767 - 27 Sep 2023
Cited by 2 | Viewed by 1789
Abstract
Strong aftershocks have the potential to cause accumulated damage in structures, a feature which has been reported in post-earthquake reconnaissance studies, particularly for eccentric or irregular structures. This study aims to investigate the seismic behaviors of eccentric RC structural models under mainshock–aftershock (MSAS) [...] Read more.
Strong aftershocks have the potential to cause accumulated damage in structures, a feature which has been reported in post-earthquake reconnaissance studies, particularly for eccentric or irregular structures. This study aims to investigate the seismic behaviors of eccentric RC structural models under mainshock–aftershock (MSAS) sequences. In this study, three-dimensional structural models with eccentricities of 5%, 10%, 15%, 20%, 25%, and 30%, and an eccentricity of 0 (symmetric structural model) are developed by changing the positions of the centers of the structural mass. A static pushover analysis and a nonlinear time history analysis are conducted on the structural models with different eccentricities considering unidirectional and bidirectional earthquake loading (including mainshock ground motion and MSAS sequences). The amplitude of the aftershock ground motion is scaled according to the structural damage levels calibrated with the inter-story drift ratio (IDR). Furthermore, the differences in seismic responses between the unidirectional and bidirectional eccentric structures are discussed. The results show that the peak displacements of the unidirectional eccentric structures under MSAS sequences are nearly 1.4 times higher than those under mainshock ground motions. The structural seismic responses under unidirectional earthquake loading are more sensitive to the intensity of aftershock ground motions than those under bidirectional earthquake loading. Compared with unidirectional eccentric structures, bidirectional eccentric structures are more sensitive to the intensity of aftershock ground motions and have larger torsional angles and more complex displacement trends. The maximum displacement and the maximum IDR of bidirectional eccentric structures under MSAS sequences can reach 1.5 times and 1.4 times of those under mainshock ground motions, respectively. Full article
Show Figures

Figure 1

18 pages, 4350 KiB  
Article
Inter-Story Drift Ratio Detection of High-Rise Buildings Based on Ambient Noise Recordings
by Zhen Peng, Zhen Guo, Yifan Shen and Xu Wang
Appl. Sci. 2023, 13(11), 6724; https://doi.org/10.3390/app13116724 - 31 May 2023
Cited by 1 | Viewed by 4872
Abstract
The inter-story drift ratio (IDR) is a crucial parameter in structural health monitoring to judge the safety, stability, and serviceability of buildings. Real-time, continuous, and widely applicable detection on IDRs is essential. However, the current methods present some challenges in conducting such detection, [...] Read more.
The inter-story drift ratio (IDR) is a crucial parameter in structural health monitoring to judge the safety, stability, and serviceability of buildings. Real-time, continuous, and widely applicable detection on IDRs is essential. However, the current methods present some challenges in conducting such detection, including adverse effects from weather, the requirement for large amounts of space, and fragile instruments. This study proposes an alternative method to overcome these defects to measure IDRs and evaluate the structural conditions using ambient noise recordings. Ambient noise is a random and continuous wave signal with various sources and is modified by its propagating medium. Taking the Zhonghe Building on the campus of Tongji University, Shanghai, China, as an example, 24 three-component seismometers were deployed to capture and record the ambient noise continuously from 20 November 2021 to 9 December 2021. Using analysis of the polarization parameters of ambient noise during the building’s most dangerous time and ordinary time, a deflection curve, IDRs, and harmful IDRs of the Zhonghe Building during the most dangerous time were calculated. The computed maximum drift was 0.06 m, the maximum IDR was 1.140×103, and the maximum harmful IDR was 2.573×104. These results were compared with the relevant specifications in China, and it was found that the structure was in good condition. The study proposes an alternative method to measure IDRs with high applicability and continuity in real time and underscores the need for further research to achieve a localized and real-time structural health monitoring system. Full article
(This article belongs to the Special Issue Advanced Structural Health Monitoring: From Theory to Applications II)
Show Figures

Figure 1

11 pages, 3074 KiB  
Article
Effectiveness of the Seesaw System as a Means of Seismic Upgrading in Older, Non-Ductile Reinforced Concrete Buildings
by Panagiota S. Katsimpini and George A. Papagiannopoulos
Vibration 2023, 6(1), 102-112; https://doi.org/10.3390/vibration6010008 - 21 Jan 2023
Cited by 9 | Viewed by 3289
Abstract
This work investigates and discusses the effectiveness of the seesaw system when installed in an older, non-ductile reinforced concrete (RC) building for seismic upgrading purposes. In particular, two different configurations of the seesaw system are assumed in a two-storey 3D RC framed building [...] Read more.
This work investigates and discusses the effectiveness of the seesaw system when installed in an older, non-ductile reinforced concrete (RC) building for seismic upgrading purposes. In particular, two different configurations of the seesaw system are assumed in a two-storey 3D RC framed building which was designed according to older seismic provisions and, thus, is susceptible to flexural and shear failures. To check if there is any merit in employing the seesaw system in this RC building, non-linear time-history (NLTH) analyses are conducting using 11 seismic motions. Peak values for inter-story drift ratios (IDR), residual inter-story drift ratios (RIDR) and floor accelerations (FA) are computed, and the sequence and cause (i.e., due to surpass of flexural or shear strength) of plastic hinge formations are monitored. Leaving aside any issues related to fabrication and cost, interpretation of the results obtained by the aforementioned seismic response indices for the RC building under study leads to the conclusion that the seesaw system can be a retrofitting scheme for the seismic upgrading of older, non-ductile RC framed buildings. Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
Show Figures

Figure 1

16 pages, 1934 KiB  
Article
Seismic Performance Target and Fragility of Masonry Infilled RC Frames under In-Plane Loading
by Chunhui Liu, Bo Liu, Xiaomin Wang, Jingchang Kong and Yuan Gao
Buildings 2022, 12(8), 1175; https://doi.org/10.3390/buildings12081175 - 6 Aug 2022
Cited by 10 | Viewed by 2396
Abstract
Masonry infilled RC frames are one of the most common structural forms, the damage of which, in earthquake events, usually cause serious losses. The determination of the seismic performance target is the key foundation of performance-based seismic evaluation and design for masonry infilled [...] Read more.
Masonry infilled RC frames are one of the most common structural forms, the damage of which, in earthquake events, usually cause serious losses. The determination of the seismic performance target is the key foundation of performance-based seismic evaluation and design for masonry infilled RC frames. In this paper, an extensive database of experimental tests on infilled RC frames loaded in an in-plane direction is collated. According to the crack propagation and elastic-plastic characteristics of infilled RC frames, the damage process is divided into four stages, and then the criteria of the damage states (DS) are proposed. In addition, the seismic performance targets expressed as inter-story drift ratio (IDR) for the four stages are suggested, which would support the performance-based in-plane seismic analysis of infilled RC frames. Finally, the proposed in-plane seismic performance target is utilized to analyze the fragility of two masonry infilled RC frame structures. Full article
(This article belongs to the Special Issue Earthquake Engineering and Urban Resilience)
Show Figures

Figure 1

Back to TopTop