Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = inter-simple sequence repeats (ISSRs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6808 KiB  
Article
In Vitro Polyploidy Induction of Longshan Lilium lancifolium from Regenerated Shoots and Morphological and Molecular Characterization
by Yu-Qin Tang, Hong Zhang, Qin Qian, Shi-Yuan Cheng, Xiu-Xian Lu, Xiao-Yu Liu, Guo-Qiang Han and Yong-Yao Fu
Plants 2025, 14(13), 1987; https://doi.org/10.3390/plants14131987 - 29 Jun 2025
Viewed by 383
Abstract
Longshan Lilium lancifolium is a well-known medicinal and edible lily and has been registered as a geographical indicator in China. Polyploidization confers many advantages in lily production; however, characteristics of Longshan L. lancifolium improved by polyploidization have not been reported. Here, polyploidization was [...] Read more.
Longshan Lilium lancifolium is a well-known medicinal and edible lily and has been registered as a geographical indicator in China. Polyploidization confers many advantages in lily production; however, characteristics of Longshan L. lancifolium improved by polyploidization have not been reported. Here, polyploidization was induced in regenerated Longshan L. lancifolium shoots using colchicine, and the mutant plantlets were characterized by morphological observation, flow cytometry, and inter simple sequence repeat (ISSR) marker technology. The optimal medium for inducing shoot regeneration was Murashige and Skoog (MS) media supplemented with 0.2 mg/L of naphthaleneacetic acid (NAA) and 0.4 mg/L of thidiazuron (TDZ). The greatest mutation induction effect was obtained after soaking the regenerated shoots in 0.10% colchicine for 48 h, for an 80.00% frequency of morphological variants. Forty-one mutant plantlets were subjected to flow cytometry, identifying one homozygous polyploid, ‘JD-12’, and one chimeric polyploid, ‘JD-37’. Additionally, 68 chromosomes were found in the ‘JD-12’ root tip cells. Compared with the control, both the tissue-cultured and field-generated ‘JD-12’ plantlets presented a slight decrease in plant height, a darker green leaf color, a rougher leaf surface, and a larger bulblet diameter; furthermore, the upper epidermal and guard cells of ‘JD-12’ were much larger with a significantly lower stomatal density. The ISSR marker detection indicated a genetic variation rate of 6.10% in ‘JD-12’. These results provide a basis for lily polyploidization breeding and the cultivation of superior Longshan L. lancifolium via shoot regeneration. Full article
Show Figures

Figure 1

14 pages, 3143 KiB  
Article
Characterization of a Gamma Radiation (60Co) Induced Mutant Population of Prickly Pear Cactus (Opuntia velutina F.A.C. Weber) Plants In Vitro Using ISSR Molecular Markers
by Eréndira Rubio-Ochoa, Eulogio De la Cruz-Torres, Rosa Elena Pérez-Sánchez, Héctor Eduardo Martínez-Flores, Liberato Portillo, Pedro Antonio García-Saucedo and Juan Florencio Gómez-Leyva
Horticulturae 2025, 11(7), 743; https://doi.org/10.3390/horticulturae11070743 - 27 Jun 2025
Viewed by 378
Abstract
The nopal cactus, a plant from the Cactaceae family, holds significant economic and nutritional value for Mexico. This study aimed to enhance the genetic diversity and morphological traits of Opuntia velutina, a species cultivated as a vegetable nopal. A total of 1050 in [...] Read more.
The nopal cactus, a plant from the Cactaceae family, holds significant economic and nutritional value for Mexico. This study aimed to enhance the genetic diversity and morphological traits of Opuntia velutina, a species cultivated as a vegetable nopal. A total of 1050 in vitro O. velutina explants were exposed to 15 different doses of gamma radiation from 60Co gamma, ranging from 5 to 125 Gy. The lethal dose was above 50 Gy, with an LD50 of 22.8 Gy for stimulating in vitro shoot growth. Shoots derived from doses between 5 and 50 Gy were subjected to in vitro shoot proliferation across four consecutive generations to stabilize morphological traits. Cluster analysis categorized the 178 irradiated shoots into 13 distinct morphological groups (CG1–CG13). Twenty-seven shoots exhibiting significant morphological improvements, such as a 50–100% increase in cladode length, up to a six-fold increase in shoot number, and up to a seven-fold increase in root number, were selected for molecular analysis of genetic diversity. Six primers were used with the Inter Simple Sequence Repeat (ISSR) molecular markers to examine genetic uniformity, yielding 54.5% polymorphic bands, indicating a high level of genetic variation. Both a UPGMA dendrogram and STRUCTURE-based Bayesian analysis confirmed the genetic divergence among the selected mutant lines. Overall, gamma irradiation effectively enhanced both phenotypic and genotypic diversity in O. velutina. This study corroborates that in vitro mutagenesis through gamma radiation is a viable strategy for generating novel genotypes with breeding potential within the Opuntia genus. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

12 pages, 1493 KiB  
Article
Exploring the Genetic Variability of Gmelina arborea Roxb. in Mexico with Molecular Markers to Establish an Efficient Improvement Program
by Marynor E. Ortega-Ramírez, Anuar Magaña-Álvarez, Daisy Pérez-Brito, Alberto Cortés-Velázquez, Ángel Nexticapan-Garcéz, Raúl Tapia-Tussell and Rodolfo Martín-Mex
Plants 2025, 14(12), 1888; https://doi.org/10.3390/plants14121888 - 19 Jun 2025
Viewed by 419
Abstract
Melina (Gmelina arborea Roxb.) is a tree native to Asia, whose timber is not utilized in that region for a variety of reasons. However, the tree’s fast growth and extensive range of applications have increased its acceptance in other world’regions. G. arborea [...] Read more.
Melina (Gmelina arborea Roxb.) is a tree native to Asia, whose timber is not utilized in that region for a variety of reasons. However, the tree’s fast growth and extensive range of applications have increased its acceptance in other world’regions. G. arborea was introduced to Mexico in 1971, and it is currently the fifth most utilized forest species in commercial forest plantations (CFPs). However, its genetic diversity has not been evaluated in Mexico. The objective of this research was to investigate the genetic variability of Melina in Mexico using molecular markers. This investigation was undertaken to acquire valuable insights for the implementation of effective improvement strategies. A total of 85 Melina samples were collected from various locations in southeastern Mexico between 2017 and 2022. Genetic fingerprints were obtained using ten simple primer amplification reactions (SPARs): five Directed Amplification of Minisatellite DNA regions (DAMD), and five Inter-Simple Sequence Repeats (ISSRs). The polymorphic information content (PIC) was 0.940 and 0.950 for the DAMD and ISSR, respectively, and the similarity coefficients ranged from 0.12 to 0.88, indicating a high degree of polymorphism in the species under investigation. This is the first attempt to ascertain the genetic variability of Gmelina arborea in Mexico. Full article
(This article belongs to the Special Issue Molecular Marker-Assisted Technologies for Crop Breeding)
Show Figures

Figure 1

25 pages, 4439 KiB  
Article
Genetic Diversity and Metabolic Profile of Tibetan Medicinal Plant Saussurea obvallata
by Shengnan Zhang, Sujuan Wang, Shiyan Wang, Hao Su and Ji De
Genes 2025, 16(5), 593; https://doi.org/10.3390/genes16050593 - 17 May 2025
Viewed by 564
Abstract
Background/Objectives: Saussurea obvallata (DC.) Edgew., Asteraceae, is a traditional medicinal herbnative to the Qinghai–Tibet Plateau (QTP). Pharmacological investigationshave validated its pharmacological effects in anti-tumor, anti-inflammatory, heat-clearing, detoxifying, and analgesia. S. obv is presently facing habitat fragmentation and population decline. Therefore, we analyzed its [...] Read more.
Background/Objectives: Saussurea obvallata (DC.) Edgew., Asteraceae, is a traditional medicinal herbnative to the Qinghai–Tibet Plateau (QTP). Pharmacological investigationshave validated its pharmacological effects in anti-tumor, anti-inflammatory, heat-clearing, detoxifying, and analgesia. S. obv is presently facing habitat fragmentation and population decline. Therefore, we analyzed its genetic and chemical diversity to provide a scientific basis for the conservation and sustainable use of S. obv. Methods: Seven populations of S. obv were sampled from Xizang, China. The genetic diversity was analyzed using inter-simple sequence repeat (ISSR) markers, and metabolites were identified by ultra-high-performance liquid chromatography-tandem-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). Correlation analysis among genetic diversity, differential metabolites, and climatic factors were performed by R. Results: The genetic diversity among and within populations were both lowly and significantly correlated with geographical distance, showing a decreasing trend from east to west of the QTP. A total of 110 compounds were identified, including flavonoids, phenylpropanoids, lipids, fatty acids, terpenoids, alkaloids, etc. The metabolite contents among populations varied greatly and were related to environmental factors, mainly annual mean temperature and temperature fluctuation. The genetic diversity had little effect on the metabolic differences. Conclusions: These findings provided valuable baseline information for the conservation and pharmacological utilization of S. obv. Meanwhile, further research is necessary for the efficacy evaluation of anti-inflammatory, anti-tumor, radiation protection, and scar removal both in vitro and in vivo. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

28 pages, 5492 KiB  
Article
In Vitro Propagation of Endangered Vanda coerulea Griff. ex Lindl.: Asymbiotic Seed Germination, Genetic Homogeneity Assessment, and Micro-Morpho-Anatomical Analysis for Effective Conservation
by Leimapokpam Tikendra, Asem Robinson Singh, Wagner Aparecido Vendrame and Potshangbam Nongdam
Agronomy 2025, 15(5), 1195; https://doi.org/10.3390/agronomy15051195 - 15 May 2025
Viewed by 1388
Abstract
In nature, orchid seed germination is extremely low, making in vitro asymbiotic seed germination essential for the propagation and conservation of endangered Vanda coerulea. This study optimized a micropropagation protocol and evaluated the genetic homogeneity of regenerated orchids. The synergistic effect of [...] Read more.
In nature, orchid seed germination is extremely low, making in vitro asymbiotic seed germination essential for the propagation and conservation of endangered Vanda coerulea. This study optimized a micropropagation protocol and evaluated the genetic homogeneity of regenerated orchids. The synergistic effect of kinetin (KN) with auxins in the Mitra (M) medium best supported protocorm formation and seedling development. The highest shoot multiplication (5.62 ± 0.09) was achieved with 1.2 mg L−1 KN and 0.6 mg L−1 IBA (indole-3-butyric acid) in the medium. Enhanced leaf production (4.81 ± 0.37) was observed when 3.2 mg L−1 KN was combined with 1.8 mg L−1 IAA (indole-3-acetic acid), while root development was superior when 3.2 mg L−1 KN together with 2.4 mg L−1 IAA was incorporated in the medium. Anatomical sections confirmed well-developed leaf and root structures. Genetic fidelity assessment using random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), inter-primer binding site (iPBS), and start codon targeted (SCoT) markers revealed 97.17% monomorphism (240/247 bands) and low Nei’s genetic distances (0.000–0.039), indicating high similarity among the regenerants. Dendrogram clustering was supported by a high cophenetic correlation coefficient (CCC = 0.806) and strong resolution in Principal Coordinate Analysis (PCoA) (44.03% and 67.36% variation on the first two axes). The Mantel test revealed a significant correlation between both ISSR and SCoT markers with the pooled marker data. Flow cytometry confirmed the genome stability among the in vitro-propagated orchids, with consistently low CV (FL2-A) values (4.37–4.94%). This study demonstrated the establishment of a reliable in vitro protocol for rapidly propagating genetically identical V. coerulea via asymbiotic seed germination. Full article
(This article belongs to the Special Issue Seeds for Future: Conservation and Utilization of Germplasm Resources)
Show Figures

Figure 1

16 pages, 2942 KiB  
Article
In Vitro Propagation and Genetic Stability Assessment Using the ISSR Markers of Stachys byzantina K. Koch, a Promising Ornamental Species
by Stefanos Hatzilazarou, Chara Kantere, Aikaterini-Angeliki Kotoula, Athanasios Economou, Konstantinos Bertsouklis, Anastasios Darras and Stefanos Kostas
Horticulturae 2025, 11(5), 530; https://doi.org/10.3390/horticulturae11050530 - 14 May 2025
Viewed by 859
Abstract
In this study, a reliable and efficient micropropagation protocol was developed for Stachys byzantina, a valuable and promising ornamental species. For the initial in vitro cultures on the Murashige and Skoog (MS) medium, shoot tips were used as explants. The addition of [...] Read more.
In this study, a reliable and efficient micropropagation protocol was developed for Stachys byzantina, a valuable and promising ornamental species. For the initial in vitro cultures on the Murashige and Skoog (MS) medium, shoot tips were used as explants. The addition of 5 μM of kinetin (KIN) resulted in the production of multiple (6.0 shoots/explant) and elongated (3.6 cm) shoots. The MS medium supplemented with 10 μM of a-Naphthaleneacetic acid (NAA) proved efficient for the in vitro rooting (73.3%) of the microshoots. For the ex vitro rooting of the microshoots, the treatment with 0.5 g L−1 of Indole-3-butyric acid potassium salt (K-IBA), before planting in 1:1 (v/v) peat and perlite substrate and placed in a fog system, led to 86.7% rooting. The acclimatization stage was successful, and 96.7% survival was recorded for the ex vitro-rooted plantlets. Inter Simple Sequence Repeat (ISSR) markers were employed to examine the genetic uniformity of the in vitro-derived plantlets with the mother S. byzantina plants. The monomorphic banding pattern in the micropropagated plants and the mother plant confirmed the genetic uniformity of the in vitro-derived plantlets and revealed the reliability of the proposed in vitro protocol for S. byzantina. As far as we know, this is the first study on a combined micropropagation and genetic uniformity assessment of the species, the findings of which could be further used to apply new in vitro cultivation techniques or to produce elite genotypes of S. byzantina. Full article
(This article belongs to the Special Issue Innovative Micropropagation of Horticultural and Medicinal Plants)
Show Figures

Figure 1

23 pages, 1448 KiB  
Article
Portuguese Monofloral Honeys: Molecular Insights and Biochemical Characterization
by Mariana Silva, Miguel Maia, Márcia Carvalho and Ana Novo Barros
Molecules 2025, 30(8), 1808; https://doi.org/10.3390/molecules30081808 - 17 Apr 2025
Cited by 1 | Viewed by 1168
Abstract
Honey is a multifaceted substance whose composition is intricately affected by various biotic and abiotic elements generated in the bee colony’s surroundings, including botanical and geographical origins, climatic conditions, soil characteristics, and beekeeping techniques. Monofloral honeys are identified by pollen analysis and are [...] Read more.
Honey is a multifaceted substance whose composition is intricately affected by various biotic and abiotic elements generated in the bee colony’s surroundings, including botanical and geographical origins, climatic conditions, soil characteristics, and beekeeping techniques. Monofloral honeys are identified by pollen analysis and are derived from the nectar of a predominant plant species, exhibiting rich sensory and nutritional profiles, making them food matrices with unique characteristics and excellent qualities. To explore the monofloral honey potential harvested in different regions of Portugal, a comprehensive study was conducted including the determination of phenolic composition and the assessment of biological activities. In addition to this evaluation, the inter simple sequence repeat (ISSR) was used to help differentiate honeys by botanical origin. The phenolic content and the antioxidant capacity were evaluated by spectrophotometric methods, observing, in general, differences between monofloral honeys. The honey from Citrus sinensis (Silves) exhibited the lowest phenolic content, including total phenols, ortho-diphenols, and flavonoids, whereas honeydew (Vinhais) showed the highest values. Regarding the antioxidant capacity, honey from Lavandula stoechas (Almodôvar) presented the lowest values, while honeydew (Vinhais) displayed the highest values for both DPPH and FRAP assays. In relation to the ABTS assay, the honey from Metrosideros excelsa (Aveiro) exhibited the lowest values, whereas the honey from Eucalyptus spp. (Arouca) showed the highest. The ISSR marker analysis allows the distribution of the samples based on the honey’s botanical origin, suggesting its potential role in honey authentication. Full article
Show Figures

Figure 1

19 pages, 3073 KiB  
Article
Characterization of Genetic Diversity of Mulberry (Morus alba) Genotypes Growing Naturally in Northeastern Türkiye (Kelkit Valley) Using Morphological, Biochemical, and Molecular Markers
by Ahmet Sümbül
Horticulturae 2025, 11(3), 298; https://doi.org/10.3390/horticulturae11030298 - 10 Mar 2025
Cited by 2 | Viewed by 994
Abstract
Türkiye has a unique position globally as it connects the Asian and European continents. In this study, the genetic diversity of a total of 27 mulberry (Morus alba) genotypes collected from northeastern Türkiye was evaluated in terms of morphological, biochemical, and [...] Read more.
Türkiye has a unique position globally as it connects the Asian and European continents. In this study, the genetic diversity of a total of 27 mulberry (Morus alba) genotypes collected from northeastern Türkiye was evaluated in terms of morphological, biochemical, and molecular characteristics. In the fruits of the mulberry genotypes, the fruit weight (FW) ranged from 2.00 to 5.13 g, fruit width (Fw) ranged from 12.64 to 16.93 mm, and fruit length (FL) ranged from 20.89 to 32.34 mm. Total soluble solids (TSS) ranged from 16.56% to 26.00%, fruit pH ranged from 3.87 to 5.10, total phenolic content (TPC) ranged from 72.69 to 171.34 mg GAE/100 g, total flavonoid content (TFC) ranged from 75.55 to 86.85 mg QE 100/g, and antioxidant activity (AA) ranged from 42.35% to 74.93%. According to principal component analysis (PCA), the first three principal components (eigenvalue ≥ 1.00) explain 54.05% of the total variation. In general, the fruit and leaf characteristics were more effective in the first two principal components, while the biochemical traits were more effective in the third principal component. As a result of molecular analysis using 13 inter-simple sequence repeat (ISSR) primers, 94.23% of the total of 76 bands was polymorphic. Molecular variance analysis (AMOVA) showed that within the population, genetic variation was 79%, and among the populations, the variation was 21%. The similarities of the genotypes in the UPGMA dendrogram created according to the results of the molecular analysis varied between 0.74 and 0.98, and the genotypes were divided into two main groups. This study guides breeders in future studies by evaluating mulberry genotypes from morphological, biochemical, and molecular perspectives and explaining the wide variation among genotypes. Full article
Show Figures

Figure 1

10 pages, 2094 KiB  
Article
Genetic Diversity of Peach (Prunus persica) Accessions Collected in Northern Vietnam Using ISSR Markers
by Dinh Ha Tran, Thanh Huyen Dao, Xuan Binh Ngo, Van Hong Nguyen, Thanh Van Dao and Tien Dung Nguyen
Diversity 2025, 17(3), 151; https://doi.org/10.3390/d17030151 - 24 Feb 2025
Viewed by 539
Abstract
Peach (Prunus persica) is a temperate fruit crop that is widely cultivated in the northern region of Vietnam. This study investigated the genetic diversity of 59 peach accessions collected from northern mountainous provinces in Vietnam using ISSR (inter-simple sequence repeat) markers. [...] Read more.
Peach (Prunus persica) is a temperate fruit crop that is widely cultivated in the northern region of Vietnam. This study investigated the genetic diversity of 59 peach accessions collected from northern mountainous provinces in Vietnam using ISSR (inter-simple sequence repeat) markers. The obtained results enabled the evaluation of genetic variation and relationships among peach varieties, which supports breeding programs and germplasm conservation. The analysis identified high levels of polymorphism (92.5%) across six ISSR primers. The accessions were grouped into two main clusters based on a genetic similarity coefficient threshold of 0.674. There were no significant correlations between genetic and geographic distances. The findings underscore the importance of molecular markers like ISSR for identifying genetic relationships and conserving germplasm resources. The results also highlight the potential genetic drift resulting from the trading and exchange of peach varieties among farmers, leading to the creation of regionally named varieties. This study provides valuable insights into the genetic diversity of Vietnamese peaches, supporting efforts to preserve and utilize these resources for breeding and agricultural development. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

16 pages, 2415 KiB  
Article
Biodiversity and Evaluation of Genetic Resources of Some Coffee Trees Grown in Al-Baha, Saudi Arabia
by Fatima Omari Alzahrani, Mohammed Obeid Alshaharni, Gamal Awad El-Shaboury and Abdelfattah Badr
Curr. Issues Mol. Biol. 2025, 47(3), 136; https://doi.org/10.3390/cimb47030136 - 20 Feb 2025
Viewed by 729
Abstract
The biodiversity of 12 coffee (Coffea arabica L.) cultivars collected from the Al-Baha region in the southwest of Saudi Arabia was evaluated using 25 morphological variations and genetic diversity as demonstrated by molecular polymorphism generated by eight Inter Simple Sequence Repeats (ISSRs) [...] Read more.
The biodiversity of 12 coffee (Coffea arabica L.) cultivars collected from the Al-Baha region in the southwest of Saudi Arabia was evaluated using 25 morphological variations and genetic diversity as demonstrated by molecular polymorphism generated by eight Inter Simple Sequence Repeats (ISSRs) and nine Start Codon Targeted (SCoT) primers. Substantial variations were scored in the morphological traits reflected in the clustering of the examined cultivars in PCA of the coffee cultivars. The examined cultivars were grouped in two groups, one included the cultivars coded Y5, Y6, R113, and Y7 and the other group comprised two clusters; one comprised cultivars coded R8 and R4 and the other comprised cultivars R112, R114, and Y2. In the meantime, the cultivars coded R9 and R111 were differentiated together from other cultivars, while the Y3 cultivar was confirmed by the analysis of ISSR data and SCoT data, which also support the grouping of R9 and R111 cultivars. Principle Component Analysis (PCA) of morphological, ISSR, and SCoT data as a combined set differentiated the examined species into four groups in a scatter plot in agreement with their separation in the cluster trees. The diversity profile among the examined C. arabica cultivars proved that R111 and R4 cultivars are highly diverse, while R8 and Y5 cultivars exhibit low diversity. Alpha diversity indices indicated that R9 and R111 cultivars are the most dominant and stable C. arabica cultivars among the examined samples in the study region. Full article
(This article belongs to the Special Issue Genetics and Natural Bioactive Components in Beverage Plants)
Show Figures

Figure 1

16 pages, 2522 KiB  
Article
Genetic Structure of Endangered Species Anagallis foemina Mill. and Abundant Weed Anagalis arvensis L. Occurring in Segetal Habitats in South-Eastern Poland
by Ewa Kwiecińska-Poppe, Sylwia Sowa, Joanna Lech, Małgorzata Haliniarz and Edyta Paczos-Grzęda
Agronomy 2025, 15(1), 3; https://doi.org/10.3390/agronomy15010003 - 24 Dec 2024
Viewed by 718
Abstract
In Poland, two species of the genus Anagallis can be found in segetal communities: scarlet pimpernel (Anagallis arvensis L.) and blue pimpernel (Anagallis foemina Mill.). A. arvensis usually has brick-red flowers and is a common weed in arable crops. Meanwhile, A. [...] Read more.
In Poland, two species of the genus Anagallis can be found in segetal communities: scarlet pimpernel (Anagallis arvensis L.) and blue pimpernel (Anagallis foemina Mill.). A. arvensis usually has brick-red flowers and is a common weed in arable crops. Meanwhile, A. foemina, with blue flowers, is considered a species at risk of extinction in Poland. Flower colour is not a determinant of species affiliation, as there is a form of Anagallis arvensis f. azurea with blue flowers; thus, it is very difficult to specify the species identity of plants with blue flowers based on the negligible differences in morphology. Therefore, for the determination of species affiliation, the presence of two deletions within the intron of the chloroplastic gene trnL in A. arvensis and their absence in A. foemina were confirmed. The genetic similarity and population structure were established based on DNA polymorphism markers identified via the ISSR (inter simple sequence repeat) and SRAP (sequence-related amplified polymorphism) methods. UPGMA (unweighted pair group method with arithmetic mean) analyses revealed that red-flowered (A. arvensis) and blue-flowered (A. foemina) plants were grouped into two separate groups. Within the A. foemina group, two subgroups were distinguished: the first subgroup included genotypes from the Lublin Upland (LU) and Volhynian Polesie (VP), while the second subgroup consisted of genotypes from Western Volhynian Upland (VU). The within-group genetic diversity of A. arvensis was greater than the diversity within the A. foemina subpopulations. Principal coordinate analysis (PCoA) and STRUCTURE were also used to group samples according to species affiliation and collection site. The results obtained confirm that A. foemina populations in the study area are fragmented and isolated, which may lead to a decrease in their adaptability to environmental changes, reduced reproductive rates, and increased mortality. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

18 pages, 3742 KiB  
Article
Phenotypic and Genetic Diversity Analysis of 18 Ornamental Strawberries
by Chaocui Nong, Jiayi Hou, Jin He, Yanju Zheng, Shugen Yang, Lai Jiang, Qian Xie, Wei Wang, Jinghua Wu, Qingxi Chen and Lixiang Miao
Horticulturae 2024, 10(12), 1364; https://doi.org/10.3390/horticulturae10121364 - 19 Dec 2024
Viewed by 1370
Abstract
The red-flowered strawberry is a novel ornamental plant. This study aimed to assess the genetic diversity among ornamental strawberry germplasm resources. In this investigation, 17 red-flowered strawberry germplasms and 1 white-flowered strawberry germplasm were analyzed for genetic diversity and genetic relationships using a [...] Read more.
The red-flowered strawberry is a novel ornamental plant. This study aimed to assess the genetic diversity among ornamental strawberry germplasm resources. In this investigation, 17 red-flowered strawberry germplasms and 1 white-flowered strawberry germplasm were analyzed for genetic diversity and genetic relationships using a combination of phenotypic data, inter-simple sequence repeats (ISSR), and conserved DNA-derived polymorphism (CDDP) molecular markers. The results indicated that the 18 strawberry germplasms exhibited significant variability and genetic diversity at both phenotypic and molecular levels. The clustering results revealed notable differences between phenotypic clustering and molecular marker clustering, while the ISSR and CDDP markers grouped into broadly similar clusters. We further consolidated the ISSR and CDDP marker data to conduct the cluster analysis and population structure analysis of the 18 strawberry germplasms. The cluster analysis classified these germplasms into four clusters at a genetic similarity coefficient of 0.77. The population structure analysis categorized the germplasms into three groups, with 88.89% exhibiting a Q value ≥ 0.6, and 11.11% demonstrating a Q value < 0.6. This finding suggests that the genetic background of the 18 strawberry germplasms is relatively homogeneous. Notably, ‘Summer Breeze-Rose’ and ‘Summer Breeze-Cherry’ possess relatively complex genetic backgrounds (Q < 0.6). Furthermore, the floral, foliar, and plant traits of both germplasms display significant ornamental value and can serve as vital resources for the development and utilization of ornamental strawberries, as well as for the selection and breeding of new varieties. Full article
(This article belongs to the Special Issue Propagation and Flowering of Ornamental Plants)
Show Figures

Figure 1

14 pages, 3909 KiB  
Article
Diversity of Improved Diploids and Commercial Triploids from Musa spp. via Molecular Markers
by Juliana Rodrigues Sampaio, Wanderley Diaciso dos Santos Oliveira, Luiz Carlos de Souza Junior, Fernanda dos Santos Nascimento, Ricardo Franco Cunha Moreira, Andresa Priscila de Souza Ramos, Janay Almeida dos Santos-Serejo, Edson Perito Amorim, Renata Darilia Moraes de Jesus and Claudia Fortes Ferreira
Curr. Issues Mol. Biol. 2024, 46(11), 11783-11796; https://doi.org/10.3390/cimb46110700 - 22 Oct 2024
Cited by 3 | Viewed by 1552
Abstract
Banana breeding consists of obtaining diploid, triploid, and tetraploid intra- and interspecific hybrids by conventional breeding methods with the objective of aggregating characteristics of agronomic and commercial interest. Given the narrow genetic base of bananas, Embrapa’s Banana Genetic Breeding Program (BGBP) aims at [...] Read more.
Banana breeding consists of obtaining diploid, triploid, and tetraploid intra- and interspecific hybrids by conventional breeding methods with the objective of aggregating characteristics of agronomic and commercial interest. Given the narrow genetic base of bananas, Embrapa’s Banana Genetic Breeding Program (BGBP) aims at crosses between improved diploids (ID) (ID × ID) and between improved diploids (ID) and commercial triploids (ID × CTP) and tetraploids (ID × CTT), in order to increase the genetic base and variability in bananas regarding agronomic traits of interest and resistance to main biotic and abiotic factors. These improved diploids are resistant to main fungal diseases such as yellow (YSD) and black Sigatoka (BSD) disease and Fusarium wilt (race 1 and subtropical race 4), the latter being one of the most devastating diseases in bananas. The genetic diversity between 22 improved diploids and seven commercial banana triploids was analyzed using DNA molecular markers. Five IRAP (Inter-Retrotransposon Amplified Polymorphism, 7 ISSR (Inter-Simple Sequence Repeats) and 12 SSR (Simple Sequence Repeat) markers were used. The genetic dissimilarity matrix was based on the Jaccard dissimilarity index; clusters were separated using the UPGMA (Unweighted Pair Group Method With Arithmetic Mean) method and cophenetic correlation of 0.8755. This study of the genetic diversity between improved diploids and commercial triploids, based on the genetic dissimilarity matrix, revealed that the most dissimilar diploids were DM23 and DM15 (74%) and DM16 and DM15 (74%). The smallest genetic distances between the improved diploids and commercial triploids were between TCGN25 and DM17 (50%) and TCN26 and DM17 (50%). The genetic distance matrix also revealed important genotypes to be used in crosses in order to maintain good characteristics in commercial triploids when crossed with improved diploids. The results of our study provide better breeding strategies for one of the largest banana-breeding programs worldwide focused on the development of banana varieties resistant to main biotic and abiotic factors. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 3588 KiB  
Article
Efficient Plantlet Regeneration from Branches in Mangifera indica L.
by Huijing Zhou, Jinglang Sun, Keyuan Zheng, Xinyuan Zhang, Yuan Yao and Mulan Zhu
Plants 2024, 13(18), 2595; https://doi.org/10.3390/plants13182595 - 17 Sep 2024
Cited by 2 | Viewed by 1873
Abstract
Mango (Mangifera indica L.) is one of the most significant tropical and subtropical fruit species, with high ecological and economic value. However, research on the in vitro culture of mangoes is relatively weak, so establishing an efficient and stable mango plant regeneration [...] Read more.
Mango (Mangifera indica L.) is one of the most significant tropical and subtropical fruit species, with high ecological and economic value. However, research on the in vitro culture of mangoes is relatively weak, so establishing an efficient and stable mango plant regeneration system is of great significance. In this study, a preliminary mango regeneration system was established with Mangifera indica L. cv. Keitt from young branches as the starting explants. The results showed that the optimal plant growth regulator (PGR) formula for direct adventitious shoot induction on the branches was 1 mg/L 6-benzylaminopurine (6-BA) + 0.1 mg/L a-naphthaleneacetic acid (NAA), with an adventitious shoot induction rate of 73.63% and an average of 6.76 adventitious shoots. The optimal basal medium for adventitious shoot induction was wood plant medium (WPM), with an adventitious shoot induction rate of 63.87% and an average of 5.21 adventitious shoots. The optimal culture medium for adventitious shoot elongation was WPM + 1 mg/L 6-BA + 0.5 mg/L NAA, with an adventitious shoot elongation rate of 89.33% and an average length of 5.17 cm. The optimal formula for the induction of mango rooting was Douglas fir cotyledon revised medium (DCR) + 3 mg/L indole-3-butyric acid (IBA), with a maximum rooting rate of 66.13% and an average rooting quantity of 6.43. The genetic fidelity of the in vitro-regenerated plants was evaluated using inter-simple sequence repeat (ISSR) molecular markers. There was no difference between the in vitro-regenerated plants and the parent plant. This study provides an efficient and stable propagation system for Mangifera indica L., laying the foundation for its rapid propagation and genetic improvement. Full article
Show Figures

Figure 1

16 pages, 1490 KiB  
Article
Genetic Diversity and Population Genetic Structure of Jatropha curcas L. Accessions from Different Provenances Revealed by Amplified Fragment-Length Polymorphism and Inter-Simple Sequence Repeat Markers
by Guoye Guo, Lin Tang and Ying Xu
Forests 2024, 15(9), 1575; https://doi.org/10.3390/f15091575 - 8 Sep 2024
Viewed by 1160
Abstract
The genetic diversity and structure of 17 populations of J. curcas, including 92 accessions from different provenances (tropical and subtropical), were investigated and effectively evaluated using twelve inter-simple sequence repeats (ISSRs) and seven pairs of florescence-amplified fragment-length polymorphism (AFLP) primers. Genetic diversity, [...] Read more.
The genetic diversity and structure of 17 populations of J. curcas, including 92 accessions from different provenances (tropical and subtropical), were investigated and effectively evaluated using twelve inter-simple sequence repeats (ISSRs) and seven pairs of florescence-amplified fragment-length polymorphism (AFLP) primers. Genetic diversity, at the overall level among populations of J. curcas based on the ISSR markers, showed that the observed number of alleles (Na) was 1.593, the effective number of alleles (Ne) was 1.330, Nei’s gene diversity (H) was 0.200, Shannon’s information index (I) was 0.303, and the percentage of polymorphic loci was 59.29%, indicating moderate genetic diversity between and within the different populations of J. curcas. Based on the genetic diversity analysis of AFLP markers, there were 1.464 (Na) and 1.216 (Ne) alleles, Nei’s gene diversity (H) was 0.132, Shannon’s information index (I) was 0.204, and the percentage of polymorphic loci was 46.40%. The AMOVA analysis showed that this large variance was due to differences within the populations, with genetic distinctions and limited gene flow among those from varied regions. The 17 populations were clustered into five main groups via UPGMA clustering analysis based on Nei’s genetic distance, and the genetic relationships among the populations exhibited no significant correlations with geographical provenances. The genetic variation among Chinese populations of J. curcas distributed in dry-hot valley areas was remarkable, and the American germplasm presented with distinct genetic differentiation. Full article
(This article belongs to the Special Issue Genetic Diversity and Gene Analysis in Forest Tree Breeding)
Show Figures

Figure 1

Back to TopTop