Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = intelligent virtual agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1275 KiB  
Article
The Operational Nitrogen Indicator (ONI): An Intelligent Index for the Wastewater Treatment Plant’s Optimization
by Míriam Timiraos, Antonio Díaz-Longueira, Esteban Jove, Óscar Fontenla-Romero and José Luis Calvo-Rolle
Processes 2025, 13(7), 2301; https://doi.org/10.3390/pr13072301 - 19 Jul 2025
Viewed by 435
Abstract
In the context of wastewater treatment plant optimization, this study presents a novel approach based on a virtual sensor architecture designed to estimate total nitrogen levels in effluent and assess plant performance using an operational indicator. The core of the system is an [...] Read more.
In the context of wastewater treatment plant optimization, this study presents a novel approach based on a virtual sensor architecture designed to estimate total nitrogen levels in effluent and assess plant performance using an operational indicator. The core of the system is an intelligent agent that integrates real-time sensor data with machine learning models to infer nitrogen dynamics and anticipate deviations from optimal operating conditions. Central to this strategy is the operational nitrogen indicator (ONI), a weighted aggregation of four sub-indicators: legal compliance (Nactual%), the nitrogen dynamic trend (Tnitr%), removal efficiency (Enitr%), and microbial balance (NP%), each of which captures a critical dimension of the nitrogen removal process. The ONI enables the early detection of stress conditions and facilitates adaptive decision-making by quantifying operational status in terms of regulatory thresholds, biological requirements, and dynamic stability. This approach contributes to a shift toward smart wastewater treatment plants, where virtual sensing, autonomous control, and throttling-aware diagnostics converge to improve process efficiency, reduce operational risk, and promote environmental compliance. Full article
(This article belongs to the Special Issue Novel Recovery Technologies from Wastewater and Waste)
Show Figures

Figure 1

10 pages, 1207 KiB  
Proceeding Paper
Generalized Net Model for Analysis of Behavior and Efficiency of Intelligent Virtual Agents in Risky Environment
by Dilyana Budakova, Velyo Vasilev and Lyudmil Dakovski
Eng. Proc. 2025, 100(1), 56; https://doi.org/10.3390/engproc2025100056 - 17 Jul 2025
Viewed by 55
Abstract
In this article, two generalized net models (GNMs) are proposed to study the behavior and effectiveness of intelligent virtual agents (IVA) working in a risky environment under different scenarios and training algorithms. The proposed GNMs allow for the selection of machine learning algorithms [...] Read more.
In this article, two generalized net models (GNMs) are proposed to study the behavior and effectiveness of intelligent virtual agents (IVA) working in a risky environment under different scenarios and training algorithms. The proposed GNMs allow for the selection of machine learning algorithms such as intensity of characteristics Q-learning (InCh-Q), as well as the modification of multi-plan reinforcement learning (RL), proximal policy optimization (PPO), soft actor–critic (SAC), the generative adversarial imitation learning (GAIL) algorithm, and behavioral cloning (CB). The choice of action, the change in priorities, and the achievement of goals by the IVA are studied under different scenarios, such as fire extinguishing, rescue operations, evacuation, patrolling, and training. Transitions in the GNMs represent the scenarios and learning algorithms. The tokens that pass through the GNMs can be the GNMs of the IVA architecture or the IVA memory model, which are enriched with knowledge and experience during the experiments, as the scenarios develop. The proposed GNMs are formally correct and, at the same time, understandable, practically applicable, and convenient for interpretation. Achieving GNMs that meet these requirements is a complex problem. Therefore, issues related to the design and use of GNMs for the reliable modeling and analysis of the behavior and effectiveness of IVAs operating in a dynamic and risky environment are discussed. Some advantages and challenges in using GNMs compared to other classical models used to study IVA behavior are considered. Full article
Show Figures

Figure 1

51 pages, 770 KiB  
Systematic Review
Novel Artificial Intelligence Applications in Energy: A Systematic Review
by Tai Zhang and Goran Strbac
Energies 2025, 18(14), 3747; https://doi.org/10.3390/en18143747 - 15 Jul 2025
Cited by 1 | Viewed by 462
Abstract
This systematic review examines state-of-the-art artificial intelligence applications in energy systems, assessing their performance, real-world deployments and transformative potential. Guided by PRISMA 2020, we searched Web of Science, IEEE Xplore, ScienceDirect, SpringerLink, and Google Scholar for English-language studies published between January 2015 and [...] Read more.
This systematic review examines state-of-the-art artificial intelligence applications in energy systems, assessing their performance, real-world deployments and transformative potential. Guided by PRISMA 2020, we searched Web of Science, IEEE Xplore, ScienceDirect, SpringerLink, and Google Scholar for English-language studies published between January 2015 and January 2025 that reported novel AI uses in energy, empirical results, or significant theoretical advances and passed peer review. After title–abstract screening and full-text assessment, it was determined that 129 of 3000 records met the inclusion criteria. The methodological quality, reproducibility and real-world validation were appraised, and the findings were synthesised narratively around four critical themes: reinforcement learning (35 studies), multi-agent systems (28), planning under uncertainty (25), and AI for resilience (22), with a further 19 studies covering other areas. Notable outcomes include DeepMind-based reinforcement learning cutting data centre cooling energy by 40%, multi-agent control boosting virtual power plant revenue by 28%, AI-enhanced planning slashing the computation time by 87% without sacrificing solution quality, battery management AI raising efficiency by 30%, and machine learning accelerating hydrogen catalyst discovery 200,000-fold. Across domains, AI consistently outperformed traditional techniques. The review is limited by its English-only scope, potential under-representation of proprietary industrial work, and the inevitable lag between rapid AI advances and peer-reviewed publication. Overall, the evidence positions AI as a pivotal enabler of cleaner, more reliable, and efficient energy systems, though progress will depend on data quality, computational resources, legacy system integration, equity considerations, and interdisciplinary collaboration. No formal review protocol was registered because this study is a comprehensive state-of-the-art assessment rather than a clinical intervention analysis. Full article
(This article belongs to the Special Issue Optimization and Machine Learning Approaches for Power Systems)
Show Figures

Figure 1

22 pages, 2108 KiB  
Article
Deep Reinforcement Learning for Real-Time Airport Emergency Evacuation Using Asynchronous Advantage Actor–Critic (A3C) Algorithm
by Yujing Zhou, Yupeng Yang, Bill Deng Pan, Yongxin Liu, Sirish Namilae, Houbing Herbert Song and Dahai Liu
Mathematics 2025, 13(14), 2269; https://doi.org/10.3390/math13142269 - 15 Jul 2025
Viewed by 365
Abstract
Emergencies can occur unexpectedly and require immediate action, especially in aviation, where time pressure and uncertainty are high. This study focused on improving emergency evacuation in airport and aircraft scenarios using real-time decision-making support. A system based on the Asynchronous Advantage Actor–Critic (A3C) [...] Read more.
Emergencies can occur unexpectedly and require immediate action, especially in aviation, where time pressure and uncertainty are high. This study focused on improving emergency evacuation in airport and aircraft scenarios using real-time decision-making support. A system based on the Asynchronous Advantage Actor–Critic (A3C) algorithm, an advanced deep reinforcement learning method, was developed to generate faster and more efficient evacuation routes compared to traditional models. The A3C model was tested in various scenarios, including different environmental conditions and numbers of agents, and its performance was compared with the Deep Q-Network (DQN) algorithm. The results showed that A3C achieved evacuations 43.86% faster on average and converged in fewer episodes (100 vs. 250 for DQN). In dynamic environments with moving threats, A3C also outperformed DQN in maintaining agent safety and adapting routes in real time. As the number of agents increased, A3C maintained high levels of efficiency and robustness. These findings demonstrate A3C’s strong potential to enhance evacuation planning through improved speed, adaptability, and scalability. The study concludes by highlighting the practical benefits of applying such models in real-world emergency response systems, including significantly faster evacuation times, real-time adaptability to evolving threats, and enhanced scalability for managing large crowds in high-density environments including airport terminals. The A3C-based model offers a cost-effective alternative to full-scale evacuation drills by enabling virtual scenario testing, supports proactive safety planning through predictive modeling, and contributes to the development of intelligent decision-support tools that improve coordination and reduce response time during emergencies. Full article
Show Figures

Figure 1

37 pages, 1029 KiB  
Article
Autonomous Reinforcement Learning for Intelligent and Sustainable Autonomous Microgrid Energy Management
by Iacovos Ioannou, Saher Javaid, Yasuo Tan and Vasos Vassiliou
Electronics 2025, 14(13), 2691; https://doi.org/10.3390/electronics14132691 - 3 Jul 2025
Viewed by 384
Abstract
Effective energy management in microgrids is essential for integrating renewable energy sources and maintaining operational stability. Machine learning (ML) techniques offer significant potential for optimizing microgrid performance. This study provides a comprehensive comparative performance evaluation of four ML-based control strategies: deep Q-networks (DQNs), [...] Read more.
Effective energy management in microgrids is essential for integrating renewable energy sources and maintaining operational stability. Machine learning (ML) techniques offer significant potential for optimizing microgrid performance. This study provides a comprehensive comparative performance evaluation of four ML-based control strategies: deep Q-networks (DQNs), proximal policy optimization (PPO), Q-learning, and advantage actor–critic (A2C). These strategies were rigorously tested using simulation data from a representative islanded microgrid model, with metrics evaluated across diverse seasonal conditions (autumn, spring, summer, winter). Key performance indicators included overall episodic reward, unmet load, excess generation, energy storage system (ESS) state-of-charge (SoC) imbalance, ESS utilization, and computational runtime. Results from the simulation indicate that the DQN-based agent consistently achieved superior performance across all evaluated seasons, effectively balancing economic rewards, reliability, and battery health while maintaining competitive computational runtimes. Specifically, DQN delivered near-optimal rewards by significantly reducing unmet load, minimizing excess renewable energy curtailment, and virtually eliminating ESS SoC imbalance, thereby prolonging battery life. Although the tabular Q-learning method showed the lowest computational latency, it was constrained by limited adaptability in more complex scenarios. PPO and A2C, while offering robust performance, incurred higher computational costs without additional performance advantages over DQN. This evaluation clearly demonstrates the capability and adaptability of the DQN approach for intelligent and autonomous microgrid management, providing valuable insights into the relative advantages and limitations of various ML strategies in complex energy management scenarios. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Emerging Applications)
Show Figures

Figure 1

18 pages, 2044 KiB  
Article
Intuitive Recognition of a Virtual Agent’s Learning State Through Facial Expressions in VR
by Wonhyong Lee and Dong Hwan Jin
Electronics 2025, 14(13), 2666; https://doi.org/10.3390/electronics14132666 - 30 Jun 2025
Viewed by 328
Abstract
As artificial intelligence agents become integral to immersive virtual reality environments, their inherent opacity presents a significant challenge to transparent human–agent communication. This study aims to determine if a virtual agent can effectively communicate its learning state to a user through facial expressions, [...] Read more.
As artificial intelligence agents become integral to immersive virtual reality environments, their inherent opacity presents a significant challenge to transparent human–agent communication. This study aims to determine if a virtual agent can effectively communicate its learning state to a user through facial expressions, and to empirically validate a set of designed expressions for this purpose. We designed three animated facial expression sequences for a stylized three-dimensional avatar, each corresponding to a distinct learning outcome: clear success (Case A), mixed performance (Case B), and moderate success (Case C). An initial online survey (n=93) first confirmed the general interpretability of these expressions, followed by a main experiment in virtual reality (n=30), where participants identified the agent’s state based solely on these visual cues. The results strongly supported our primary hypothesis (H1), with participants achieving a high overall recognition accuracy of approximately 91%. While user background factors did not yield statistically significant differences, observable trends suggest they may be worthy of future investigation. These findings demonstrate that designed facial expressions serve as an effective and intuitive channel for real-time, affective explainable artificial intelligence (affective XAI), contributing a practical, human-centric method for enhancing agent transparency in collaborative virtual environments. Full article
(This article belongs to the Special Issue Advances in Human-Computer Interaction: Challenges and Opportunities)
Show Figures

Figure 1

19 pages, 2733 KiB  
Article
A Two-Layer User Energy Management Strategy for Virtual Power Plants Based on HG-Multi-Agent Reinforcement Learning
by Sen Tian, Qian Xiao, Tianxiang Li, Zibo Wang, Ji Qiao, Hong Zhu and Wenlu Ji
Appl. Sci. 2025, 15(12), 6713; https://doi.org/10.3390/app15126713 - 15 Jun 2025
Viewed by 410
Abstract
Household loads are becoming dominant in virtual power plants (VPP). However, their dispatch potential has not yet been explored due to the lack of detailed user power management. To solve this issue, a novel two-layer user energy management strategy based on HG-multi-agent reinforcement [...] Read more.
Household loads are becoming dominant in virtual power plants (VPP). However, their dispatch potential has not yet been explored due to the lack of detailed user power management. To solve this issue, a novel two-layer user energy management strategy based on HG-multi-agent reinforcement learning has been proposed in this paper. Firstly, a novel two-layer optimization framework is established, where the upper layer is applied to coordinate the scheduling and benefit allocation among various stakeholders and the lower layer is applied to execute intelligent decision-making for users. Secondly, the mathematical model for the framework is established, where a detailed household power management model is proposed in the lower layer, and the generated predicted power demands are used to replace the conventional aggregate model in the upper layer. As a result, the energy consumption behaviors of household users can be precisely described in the scheduling scheme. Furthermore, an HG-multi-agent reinforcement-based method is applied to accelerate the game-solving process. Case study results indicate that the proposed method leads to a reduction in user costs and an increase in VPP profit. Full article
Show Figures

Figure 1

31 pages, 5948 KiB  
Article
Intelligent Digital Twin for Predicting Technology Discourse Patterns: Agent-Based Modeling of User Interactions and Sentiment Dynamics in DeepSeek Discourse Case
by Kaihang Zhang, Changqi Dong, Yifeng Guo, Guang Yu and Jianing Mi
Systems 2025, 13(6), 451; https://doi.org/10.3390/systems13060451 - 8 Jun 2025
Cited by 1 | Viewed by 532
Abstract
Understanding user interaction patterns during technology-triggered public discourse provides critical insights into how emerging technologies gain social meaning. This study develops an intelligent digital twin framework for modeling discourse dynamics around DeepSeek, an indigenous large language model that generated approximately 250,000 social media [...] Read more.
Understanding user interaction patterns during technology-triggered public discourse provides critical insights into how emerging technologies gain social meaning. This study develops an intelligent digital twin framework for modeling discourse dynamics around DeepSeek, an indigenous large language model that generated approximately 250,000 social media interactions during a 13-day period. By integrating LLM-enhanced semantic analysis with agent-based modeling, we create a comprehensive virtual representation that captures both content characteristics and behavioral dynamics. Our analysis identifies six distinct thematic domains that structure public engagement: Technological Competition, Technological Breakthrough, User Feedback, Financial Market, Social Influence, and Information Security. The agent-based simulation reveals distinctive participation and sentiment patterns across different user segments, with general users expressing stronger positive sentiments than domain experts and institutional accounts. Network analysis demonstrates the evolution from random-like initial connection patterns to scale-free structures with pronounced influence hubs. The simulation results illuminate how individual behaviors aggregate to produce complex discourse patterns, offering insights into the micro-mechanisms underlying technology reception. This research advances digital twin methodologies beyond physical systems into social phenomena, providing a framework for anticipating public responses to technological innovations and informing more effective communication strategies. Full article
Show Figures

Figure 1

28 pages, 6914 KiB  
Article
Guided Reinforcement Learning with Twin Delayed Deep Deterministic Policy Gradient for a Rotary Flexible-Link System
by Carlos Saldaña Enderica, José Ramon Llata and Carlos Torre-Ferrero
Robotics 2025, 14(6), 76; https://doi.org/10.3390/robotics14060076 - 31 May 2025
Viewed by 1270
Abstract
This study proposes a robust methodology for vibration suppression and trajectory tracking in rotary flexible-link systems by leveraging guided reinforcement learning (GRL). The approach integrates the twin delayed deep deterministic policy gradient (TD3) algorithm with a linear quadratic regulator (LQR) acting as a [...] Read more.
This study proposes a robust methodology for vibration suppression and trajectory tracking in rotary flexible-link systems by leveraging guided reinforcement learning (GRL). The approach integrates the twin delayed deep deterministic policy gradient (TD3) algorithm with a linear quadratic regulator (LQR) acting as a guiding controller during training. Flexible-link mechanisms common in advanced robotics and aerospace systems exhibit oscillatory behavior that complicates precise control. To address this, the system is first identified using experimental input-output data from a Quanser® virtual plant, generating an accurate state-space representation suitable for simulation-based policy learning. The hybrid control strategy enhances sample efficiency and accelerates convergence by incorporating LQR-generated trajectories during TD3 training. Internally, the TD3 agent benefits from architectural features such as twin critics, delayed policy updates, and target action smoothing, which collectively improve learning stability and reduce overestimation bias. Comparative results show that the guided TD3 controller achieves superior performance in terms of vibration damping, transient response, and robustness, when compared to conventional LQR, fuzzy logic, neural networks, and GA-LQR approaches. Although the controller was validated using a high-fidelity digital twin, it has not yet been deployed on the physical plant. Future work will focus on real-time implementation and structural robustness testing under parameter uncertainty. Overall, this research demonstrates that guided reinforcement learning can yield stable and interpretable policies that comply with classical control criteria, offering a scalable and generalizable framework for intelligent control of flexible mechanical systems. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

19 pages, 1492 KiB  
Article
Metaverse and Digital Twins in the Age of AI and Extended Reality
by Ming Tang, Mikhail Nikolaenko, Ahmad Alrefai and Aayush Kumar
Architecture 2025, 5(2), 36; https://doi.org/10.3390/architecture5020036 - 30 May 2025
Viewed by 894
Abstract
This paper explores the evolving relationship between Digital Twins (DT) and the Metaverse, two foundational yet often conflated digital paradigms in digital architecture. While DTs function as mirrored models of real-world systems—integrating IoT, BIM, and real-time analytics to support decision-making—Metaverses are typically fictional, [...] Read more.
This paper explores the evolving relationship between Digital Twins (DT) and the Metaverse, two foundational yet often conflated digital paradigms in digital architecture. While DTs function as mirrored models of real-world systems—integrating IoT, BIM, and real-time analytics to support decision-making—Metaverses are typically fictional, immersive, multi-user environments shaped by social, cultural, and speculative narratives. Through several research projects, the team investigate the divergence between DTs and Metaverses through the lens of their purpose, data structure, immersion, and interactivity, while highlighting areas of convergence driven by emerging technologies in Artificial Intelligence (AI) and Extended Reality (XR).This study aims to investigate the convergence of DTs and the Metaverse in digital architecture, examining how emerging technologies—such as AI, XR, and Large Language Models (LLMs)—are blurring their traditional boundaries. By analyzing their divergent purposes, data structures, and interactivity modes, as well as hybrid applications (e.g., data-integrated virtual environments and AI-driven collaboration), this study seeks to define the opportunities and challenges of this integration for architectural design, decision-making, and immersive user experiences. Our research spans multiple projects utilizing XR and AI to develop DT and the Metaverse. The team assess the capabilities of AI in DT environments, such as reality capture and smart building management. Concurrently, the team evaluates metaverse platforms for online collaboration and architectural education, focusing on features facilitating multi-user engagement. The paper presents evaluations of various virtual environment development pipelines, comparing traditional BIM+IoT workflows with novel approaches such as Gaussian Splatting and generative AI for content creation. The team further explores the integration of Large Language Models (LLMs) in both domains, such as virtual agents or LLM-powered Non-Player-Controlled Characters (NPC), enabling autonomous interaction and enhancing user engagement within spatial environments. Finally, the paper argues that DTs and Metaverse’s once-distinct boundaries are becoming increasingly porous. Hybrid digital spaces—such as virtual buildings with data-integrated twins and immersive, social metaverses—demonstrate this convergence. As digital environments mature, architects are uniquely positioned to shape these dual-purpose ecosystems, leveraging AI, XR, and spatial computing to fuse data-driven models with immersive and user-centered experiences. Full article
(This article belongs to the Special Issue Shaping Architecture with Computation)
Show Figures

Figure 1

15 pages, 1272 KiB  
Article
Design of an Immersive Basketball Tactical Training System Based on Digital Twins and Federated Learning
by Xiongce Lv, Ye Tao, Yifan Zhang and Yang Xue
Appl. Sci. 2025, 15(7), 3831; https://doi.org/10.3390/app15073831 - 31 Mar 2025
Viewed by 767
Abstract
To address the challenges of dynamic adversarial scenario modeling distortion, insufficient cross-institutional data privacy protection, and simplistic evaluation systems in collegiate basketball tactical education, this study proposes and validates an immersive instructional system integrating digital twin and federated learning technologies. The four-tier architecture [...] Read more.
To address the challenges of dynamic adversarial scenario modeling distortion, insufficient cross-institutional data privacy protection, and simplistic evaluation systems in collegiate basketball tactical education, this study proposes and validates an immersive instructional system integrating digital twin and federated learning technologies. The four-tier architecture (sensing layer, digital twin layer, federated layer, and interaction layer) synthesizes multimodal data (motion trajectories and physiological signals) with Multi-Agent Reinforcement Learning (MARL) to enable virtual–physical integrated tactical simulation and real-time error correction. Experimental results demonstrate that the experimental group achieved 35.2% higher tactical execution accuracy (TEA) (p < 0.01), 1.8 s faster decision making (p < 0.05), and 47% improved team coordination efficiency compared to the controls. The hierarchical federated learning framework (trajectory ε = 0.8; physiology ε = 0.3) maintained model precision loss at 2.4% while optimizing communication efficiency by 23%, ensuring privacy preservation. A novel three-dimensional “Skill–Creativity–Load” evaluation system revealed a 22% increase in unconventional tactical applications (p = 0.013) through the Tactical Creativity Index (TCI). By implementing lightweight federated architecture with dynamic cognitive offloading mechanisms, the system enables resource-constrained institutions to achieve 87% of the pedagogical effectiveness observed in elite programs, offering an innovative solution to reconcile educational equity with technological ethics. Future research should focus on long-term skill transfer, multimodal adaptive learning, and ethical framework development to advance intelligent sports education from efficiency-oriented paradigms to competency-based transformation. Full article
Show Figures

Figure 1

15 pages, 1256 KiB  
Article
Virtual Reality and Relaxation for the Treatment of Generalized Anxiety Disorder: A Randomized Comparative Study with Standard Intervention
by Eric Malbos, Nadège Chichery, Baptiste Borwell, Gabriel Weindel, Jordan Molitor, Mélodie Einig-Iscain, Julien Seimandi and Christophe Lançon
J. Clin. Med. 2025, 14(4), 1351; https://doi.org/10.3390/jcm14041351 - 18 Feb 2025
Cited by 1 | Viewed by 1754
Abstract
Background/Objectives: Modern therapeutic strategies incorporating virtual reality (VR) have emerged as potential treatments for generalized anxiety disorder (GAD), a prevalent and debilitating condition that is challenging to cure. This study aimed to evaluate the efficacy of VR combined with relaxation techniques in patients [...] Read more.
Background/Objectives: Modern therapeutic strategies incorporating virtual reality (VR) have emerged as potential treatments for generalized anxiety disorder (GAD), a prevalent and debilitating condition that is challenging to cure. This study aimed to evaluate the efficacy of VR combined with relaxation techniques in patients with GAD by comparing VR-based relaxation with standard mental imagery (MI) relaxation. Methods: Fifty-eight patients with GAD participated in a randomized comparative trial. Specific virtual environments were created using an inexpensive game engine/level editor (GLE). Psychometric scales and physiological instruments were employed to assess the effects of relaxation therapy on anxiety, depression, quality of life, presence within virtual environments and cybersickness. Results: Both the VR and MI groups demonstrated statistically significant improvements in anxiety, worry and mental quality of life scores. However, no significant differences were observed between the two groups in pre–post comparisons of psychometric scores. The VR group exhibited a noticeably higher protocol completion rate and a significant increase in heart rate variability during the therapy. The level of presence in the VR group was satisfactory and significantly correlated with physiological improvements and anxiety reduction, while cybersickness remained low. Participants’ preferences for specific virtual environments for relaxation are also discussed. Conclusions: These findings suggest that teaching and practicing relaxation in VR holds therapeutic potential for the treatment of GAD. Further research leveraging advanced VR sensory equipment and artificial intelligence agents is warranted to enhance therapeutic outcomes and explore additional applications. Full article
(This article belongs to the Section Mental Health)
Show Figures

Graphical abstract

14 pages, 8539 KiB  
Article
Responsible Artificial Intelligence Hyper-Automation with Generative AI Agents for Sustainable Cities of the Future
by Daswin De Silva, Nishan Mills, Harsha Moraliyage, Prabod Rathnayaka, Sam Wishart and Andrew Jennings
Smart Cities 2025, 8(1), 34; https://doi.org/10.3390/smartcities8010034 - 17 Feb 2025
Cited by 1 | Viewed by 1778
Abstract
Smart cities are Hyper-Connected Digital Environments (HCDEs) that transcend the boundaries of natural, human-made, social, virtual, and artificial environments. Human activities are no longer confined to a single environment as our presence and interactions are represented and interconnected across HCDEs. The data streams [...] Read more.
Smart cities are Hyper-Connected Digital Environments (HCDEs) that transcend the boundaries of natural, human-made, social, virtual, and artificial environments. Human activities are no longer confined to a single environment as our presence and interactions are represented and interconnected across HCDEs. The data streams and repositories of HCDEs provide opportunities for the responsible application of Artificial Intelligence (AI) that generates unique insights into the constituent environments and the interplay across constituents. The translation of data into insights poses several complex challenges originating in data generation and then propagating through the computational layers to decision outcomes. To address these challenges, this article presents the design and development of a Hyper-Automated AI framework with Generative AI agents for sustainable smart cities. The framework is empirically evaluated in the living lab setting of a ‘University City of the Future’. The developed AI framework is grounded on the core capabilities of acquisition, preparation, orchestration, dissemination, and retrospection, with an independent cognitive engine for hyper-automation of these AI capabilities using Generative AI. Hyper-automation output feeds into a human-in-the-loop process prior to decision-making outcomes. More broadly, this framework aims to provide a validated pathway for university cities of the future to take up the role of prototypes that deliver evidence-based guidelines for the development and management of sustainable smart cities. Full article
Show Figures

Figure 1

21 pages, 8043 KiB  
Article
AI Agent-Based Intelligent Urban Digital Twin (I-UDT): Concept, Methodology, and Case Studies
by Sebin Choi and Sungmin Yoon
Smart Cities 2025, 8(1), 28; https://doi.org/10.3390/smartcities8010028 - 11 Feb 2025
Cited by 4 | Viewed by 3514
Abstract
The concept of digital twins (DTs) has expanded to encompass buildings and cities, with urban building energy modeling (UBEM) playing a crucial role in predicting urban-scale energy consumption via modeling individual energy use and interactions. As a virtual model within urban digital twins [...] Read more.
The concept of digital twins (DTs) has expanded to encompass buildings and cities, with urban building energy modeling (UBEM) playing a crucial role in predicting urban-scale energy consumption via modeling individual energy use and interactions. As a virtual model within urban digital twins (UDTs), UBEM offers the potential for managing energy in sustainable cities. However, UDTs face challenges with regard to integrating large-scale data and relying on bottom-up UBEM approaches. In this study, we propose an AI agent-based intelligent urban digital twin (I-UDT) to enhance DTs’ technical realization and UBEM’s service functionality. Integrating GPT within the UDT enabled the efficient integration of fragmented city-scale data and the extraction of building features, addressing the limitations of the service realization of traditional UBEM. This framework ensures continuous updates of the virtual urban model and the streamlined provision of updated information to users in future studies. This research establishes the concept of an I-UDT and lays a foundation for future implementations. The case studies include (1) data analysis, (2) prediction, (3) feature engineering, and (4) information services for 3500 buildings in Seoul. Through these case studies, the I-UDT was integrated and analyzed scattered data, predicted energy consumption, derived conditioned areas, and evaluated buildings on benchmark. Full article
Show Figures

Figure 1

26 pages, 6839 KiB  
Article
Stochastic Potential Game-Based Target Tracking and Encirclement Approach for Multiple Unmanned Aerial Vehicles System
by Kejie Yang, Ming Zhu, Xiao Guo, Yifei Zhang and Yuting Zhou
Drones 2025, 9(2), 103; https://doi.org/10.3390/drones9020103 - 30 Jan 2025
Viewed by 1215
Abstract
Utilizing fully distributed intelligent control algorithms has enabled the gradual adoption of the multiple unmanned aerial vehicles system for executing Target Tracking and Encirclement missions in industrial and civil applications. Restricted by the evasion behavior of the target, current studies focus on constructing [...] Read more.
Utilizing fully distributed intelligent control algorithms has enabled the gradual adoption of the multiple unmanned aerial vehicles system for executing Target Tracking and Encirclement missions in industrial and civil applications. Restricted by the evasion behavior of the target, current studies focus on constructing zero-sum game settings, and existing strategy solvers that accommodate continuous state-action spaces have exhibited only modest performance. To tackle the challenges mentioned above, we devise a Stochastic Potential Game framework to model the mission scenario while considering the environment’s limited observability. Furthermore, a multi-agent reinforcement learning method is proposed to estimate the near Nash Equilibrium strategy in the above game scenario, which utilizes time-serial relative kinematic information and obstacle observation. In addition, considering collision avoidance and cooperative tracking, several techniques, such as novel reward functions and recurrent network structures, are presented to optimize the training process. The results of numerical simulations demonstrate that the proposed method exhibits superior search capability for Nash strategies. Moreover, through dynamic virtual experiments conducted with speed and attitude controllers, it has been shown that well-trained actors can effectively act as practical navigators for the real-time swarm control. Full article
Show Figures

Figure 1

Back to TopTop