Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (234)

Search Parameters:
Keywords = intelligent error correction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1947 KB  
Article
Real-Time Correction and Long-Term Drift Compensation in MOS Gas Sensor Arrays Using Iterative Random Forests and Incremental Domain-Adversarial Networks
by Xiaorui Dong and Shijing Han
Micromachines 2025, 16(9), 991; https://doi.org/10.3390/mi16090991 (registering DOI) - 29 Aug 2025
Abstract
Sensor arrays serve a crucial role in various fields such as environmental monitoring, industrial process control, and medical diagnostics, yet their reliability remains challenged by sensor drift and noise contamination. This study presents a novel framework for real-time data error correction and long-term [...] Read more.
Sensor arrays serve a crucial role in various fields such as environmental monitoring, industrial process control, and medical diagnostics, yet their reliability remains challenged by sensor drift and noise contamination. This study presents a novel framework for real-time data error correction and long-term drift compensation utilizing an iterative random forest-based error correction algorithm paired with an Incremental Domain-Adversarial Network (IDAN). The iterative random forest algorithm leverages the collective data from multiple sensor channels to identify and rectify abnormal sensor responses in real time. The IDAN integrates domain-adversarial learning principles with an incremental adaptation mechanism to effectively manage temporal variations in sensor data. Experiments utilizing the metal oxide semiconductor gas sensor array drift dataset demonstrate that the combination of these approaches significantly enhances data integrity and operational efficiency, achieving a robust and good accuracy even in the presence of severe drift. This study underscores the efficacy of integrating advanced artificial intelligence techniques for the ongoing evolution of sensor array technology, paving the way for enhanced monitoring systems capable of sustaining high levels of performance over extended time periods. Full article
(This article belongs to the Special Issue AI-Driven Design and Optimization of Microsystems)
Show Figures

Figure 1

20 pages, 5494 KB  
Article
An Online Correction Method for System Errors in the Pipe Jacking Inertial Guidance System
by Yutong Zu, Lu Wang, Zheng Zhou, Da Gong, Yuanbiao Hu and Gansheng Yang
Mathematics 2025, 13(17), 2764; https://doi.org/10.3390/math13172764 - 28 Aug 2025
Abstract
The pipe-jacking inertial guidance method is a key technology to solve the guidance problems of complex pipe-jacking projects, such as long distances and curves. However, since its guidance information is obtained by gyroscope integration. System errors will accumulate over time and affect the [...] Read more.
The pipe-jacking inertial guidance method is a key technology to solve the guidance problems of complex pipe-jacking projects, such as long distances and curves. However, since its guidance information is obtained by gyroscope integration. System errors will accumulate over time and affect the guidance accuracy. To address the above issues, this study proposes an intelligent online system error correction scheme based on single-axis rotation and data backtracking. The method enhances system observability by actively exciting the sensor states and introducing data reuse technology. Then, a Bayesian optimization algorithm is incorporated to construct a multi-objective function. The algorithm autonomously searches for the optimal values of three key control parameters, thereby constructing an optimal correction strategy. The results show that the inclination accuracy improving by 99.36%. The tool face accuracy improving by 94.05%. The azimuth accuracy improving by 94.42% improvement. By comparing different correction schemes, the proposed method shows better performance in estimating gyro bias. In summary, the proposed method uses single-axis rotation and data backtracking, and can correct system errors in inertial navigation effectively. It has better value for engineering and provides a technical foundation for high-accuracy navigation in tunnel, pipe-jacking, and other complex tasks with low-cost inertial systems. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

10 pages, 1385 KB  
Article
Prediction of Distal Dural Ring Location in Internal Carotid Paraclinoid Aneurysms Using the Tuberculum Sellae–Anterior Clinoid Process Line
by Masaki Matsumoto, Tohru Mizutani, Tatsuya Sugiyama, Kenji Sumi, Shintaro Arai and Yoichi Morofuji
J. Clin. Med. 2025, 14(17), 5951; https://doi.org/10.3390/jcm14175951 - 22 Aug 2025
Viewed by 322
Abstract
Background/Objectives: Current bone-based landmark approaches have shown variable accuracy and poor reproducibility. We validated a two-point “tuberculum sellae–anterior clinoid process” (TS–ACP) line traced on routine 3D-computed tomography angiography (CTA) for predicting distal dural ring (DDR) position and quantified the interobserver agreement. Methods [...] Read more.
Background/Objectives: Current bone-based landmark approaches have shown variable accuracy and poor reproducibility. We validated a two-point “tuberculum sellae–anterior clinoid process” (TS–ACP) line traced on routine 3D-computed tomography angiography (CTA) for predicting distal dural ring (DDR) position and quantified the interobserver agreement. Methods: We retrospectively reviewed data from 85 patients (87 aneurysms) who were treated via clipping between June 2012 and December 2024. Two blinded neurosurgeons classified each aneurysm as extradural, intradural, or straddling the TS–ACP line. The intraoperative DDR inspection served as the reference standard. Diagnostic accuracy, χ2 statistics, and Cohen’s κ were calculated. Results: The TS–ACP line landmarks were identifiable in all cases. The TS–ACP line classification correlated strongly with operative findings (χ2 = 138.3, p = 6.4 × 10−29). The overall accuracy was 89.7% (78/87), and sensitivity and specificity for identifying intradural aneurysms were 94% and 82%, respectively. The interobserver agreement was substantial (κ = 0.78). Nine aneurysms were misclassified, including four cavernous-sinus lesions that partially crossed the DDR. Retrospective fusion using constructive interference in steady-state magnetic resonance imaging corrected these errors. Conclusions: The TS–ACP line represents a rapid, reproducible tool that reliably localizes the DDR on standard 3D-CTA, showing higher accuracy than previously reported single-landmark techniques. Its high accuracy and substantial inter-observer concordance support incorporation into routine preoperative assessments. Because the method depends on only two easily detectable bony points, it is well-suited for automated implementation, offering a practical pathway toward artificial intelligence-assisted stratification of paraclinoid aneurysms. Full article
(This article belongs to the Special Issue Revolutionizing Neurosurgery: Cutting-Edge Techniques and Innovations)
Show Figures

Graphical abstract

21 pages, 1339 KB  
Article
Generative AI for Geospatial Analysis: Fine-Tuning ChatGPT to Convert Natural Language into Python-Based Geospatial Computations
by Zachary Sherman, Sandesh Sharma Dulal, Jin-Hee Cho, Mengxi Zhang and Junghwan Kim
ISPRS Int. J. Geo-Inf. 2025, 14(8), 314; https://doi.org/10.3390/ijgi14080314 - 18 Aug 2025
Viewed by 702
Abstract
This study investigates the potential of fine-tuned large language models (LLMs) to enhance geospatial intelligence by translating natural language queries into executable Python code. Traditional GIS workflows, while effective, often lack usability and scalability for non-technical users. LLMs offer a new approach by [...] Read more.
This study investigates the potential of fine-tuned large language models (LLMs) to enhance geospatial intelligence by translating natural language queries into executable Python code. Traditional GIS workflows, while effective, often lack usability and scalability for non-technical users. LLMs offer a new approach by enabling conversational interaction with spatial data. We evaluate OpenAI’s GPT-4o-mini model in two forms: an “As-Is” baseline and a fine-tuned version trained on 600+ prompt–response pairs related to geospatial Python scripting in Virginia. Using U.S. Census shapefiles and hospital data, we tested both models across six types of spatial queries. The fine-tuned model achieved 89.7%, a 49.2 percentage point improvement over the baseline’s 40.5%. It also demonstrated substantial reductions in execution errors and token usage. Key innovations include the integration of spatial reasoning, modular external function calls, and fuzzy geographic input correction. These findings suggest that fine-tuned LLMs can improve the accuracy, efficiency, and usability of geospatial dashboards when they are powered by LLMs. Our results further imply a scalable and replicable approach for future domain-specific AI applications in geospatial science and smart cities studies. Full article
Show Figures

Figure 1

12 pages, 1246 KB  
Article
Research on Personalized Exercise Volume Optimization in College Basketball Training Based on LSTM Neural Network with Multi-Modal Data Fusion Intervention
by Xiongce Lv, Ye Tao and Yang Xue
Appl. Sci. 2025, 15(16), 8871; https://doi.org/10.3390/app15168871 - 12 Aug 2025
Viewed by 422
Abstract
This study addresses the shortcomings of traditional exercise volume assessment methods in dynamic modeling and individual adaptation by proposing a multi-modal data fusion framework based on a spatio-temporal attention-enhanced LSTM neural network for personalized exercise volume optimization in college basketball courses. By integrating [...] Read more.
This study addresses the shortcomings of traditional exercise volume assessment methods in dynamic modeling and individual adaptation by proposing a multi-modal data fusion framework based on a spatio-temporal attention-enhanced LSTM neural network for personalized exercise volume optimization in college basketball courses. By integrating physiological signals (heart rate), kinematic parameters (triaxial acceleration, step count), and environmental data collected from smart wearable devices, we constructed a dynamic weighted fusion mechanism and a personalized correction engine, establishing an evaluation model incorporating BMI correction factors and fitness-level compensation. Experimental data from 100 collegiate basketball trainees (60 males, 40 females; BMI 17.5–28.7) wearing Polar H10 and Xsens MVN devices were analyzed through an 8-week longitudinal study design. The framework integrates physiological monitoring (HR, HRV), kinematic analysis (3D acceleration at 100 Hz), and environmental sensing (SHT35 sensor). Experimental results demonstrate the following: (1) the LSTM-attention model achieves 85.3% accuracy in exercise intensity classification, outperforming traditional methods by 13.2%, with its spatio-temporal attention mechanism effectively capturing high-dynamic movement features such as basketball sudden stops and directional changes; (2) multi-modal data fusion reduces assessment errors by 15.2%, confirming the complementary value of heart rate and acceleration data; (3) the personalized correction mechanism significantly improves evaluation precision for overweight students (error reduction of 13.6%) and beginners (recognition rate increase of 18.5%). System implementation enhances exercise goal completion rates by 10.3% and increases moderate-to-vigorous training duration by 14.7%, providing a closed-loop “assessment-correction-feedback” solution for intelligent sports education. The research contributes methodological innovations in personalized modeling for exercise science and multi-modal time-series data processing. Full article
Show Figures

Figure 1

24 pages, 1395 KB  
Review
A Systematic Literature Review of MODFLOW Combined with Artificial Neural Networks (ANNs) for Groundwater Flow Modelling
by Kunal Kishor, Ashish Aggarwal, Pankaj Kumar Srivastava, Yaggesh Kumar Sharma, Jungmin Lee and Fatemeh Ghobadi
Water 2025, 17(16), 2375; https://doi.org/10.3390/w17162375 - 11 Aug 2025
Viewed by 603
Abstract
The sustainable management of global groundwater resources is increasingly challenged by climatic uncertainty and escalating anthropogenic stress. Thus, there is a need for simulation tools that are more robust and flexible. This systematic review addresses the integration of two dominant modeling paradigms: the [...] Read more.
The sustainable management of global groundwater resources is increasingly challenged by climatic uncertainty and escalating anthropogenic stress. Thus, there is a need for simulation tools that are more robust and flexible. This systematic review addresses the integration of two dominant modeling paradigms: the physically grounded Modular Finite-Difference Flow (MODFLOW) model and the data-agile Artificial Neural Network (ANN). While the MODFLOW model provides deep process-based understanding, it is often limited by extensive data requirements and computational intensity. In contrast, an ANN offers remarkable predictive accuracy and computational efficiency, particularly in complex, non-linear systems, but traditionally lacks physical interpretability. This review synthesizes existing research to present a functional classification framework for MODFLOW–ANN integration, providing a systematic analysis of the literature within this structure. Our analysis of the literature, sourced from Scopus, Web of Science, and Google Scholar reveals a clear trend of the strategic integration of these models, representing a new trend in hydrogeological simulation. The literature reveals a classification framework that categorizes the primary integration strategies into three distinct approaches: (1) training an ANN on MODFLOW model outputs to create computationally efficient surrogate models; (2) using an ANN to estimate physical parameters for improved MODFLOW model calibration; and (3) applying ANNs as post-processors to correct systematic errors in MODFLOW model simulations. Our analysis reveals that these hybrid methods consistently outperform standalone approaches by leveraging ANNs for computational acceleration through surrogate modeling, for enhanced model calibration via intelligent parameter estimation, and for improved accuracy through systematic error correction. Full article
(This article belongs to the Special Issue Application of Hydrological Modelling to Water Resources Management)
Show Figures

Figure 1

25 pages, 394 KB  
Article
SMART DShot: Secure Machine-Learning-Based Adaptive Real-Time Timing Correction
by Hyunmin Kim, Zahid Basha Shaik Kadu and Kyusuk Han
Appl. Sci. 2025, 15(15), 8619; https://doi.org/10.3390/app15158619 - 4 Aug 2025
Viewed by 392
Abstract
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems [...] Read more.
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems through seamless integration of adaptive timing correction and real-time anomaly detection within Digital Shot (DShot) communication protocols. Our approach addresses critical vulnerabilities in Electronic Speed Controller (ESC) interfaces by deploying four synergistic algorithms—Kalman Filter Timing Correction (KFTC), Recursive Least Squares Timing Correction (RLSTC), Fuzzy Logic Timing Correction (FLTC), and Hybrid Adaptive Timing Correction (HATC)—each optimized for specific error characteristics and attack scenarios. Through comprehensive evaluation encompassing 32,000 Monte Carlo test iterations (500 per scenario × 16 scenarios × 4 algorithms) across 16 distinct operational scenarios and PolarFire SoC Field-Programmable Gate Array (FPGA) implementation, we demonstrate exceptional performance with 88.3% attack detection rate, only 2.3% false positive incidence, and substantial vulnerability mitigation reducing Common Vulnerability Scoring System (CVSS) severity from High (7.3) to Low (3.1). Hardware validation on PolarFire SoC confirms practical viability with minimal resource overhead (2.16% Look-Up Table utilization, 16.57 mW per channel) and deterministic sub-10 microsecond execution latency. The Hybrid Adaptive Timing Correction algorithm achieves 31.01% success rate (95% CI: [30.2%, 31.8%]), representing a 26.5% improvement over baseline approaches through intelligent meta-learning-based algorithm selection. Statistical validation using Analysis of Variance confirms significant performance differences (F(3,1996) = 30.30, p < 0.001) with large effect sizes (Cohen’s d up to 4.57), where 64.6% of algorithm comparisons showed large practical significance. SMART DShot establishes a paradigmatic shift from reactive to proactive embedded security, demonstrating that sophisticated artificial intelligence can operate effectively within microsecond-scale real-time constraints while providing comprehensive protection against timing manipulation, de-synchronization, burst interference, replay attacks, coordinated multi-channel attacks, and firmware-level compromises. This work provides essential foundations for trustworthy autonomous systems across critical domains including aerospace, automotive, industrial automation, and cyber–physical infrastructure. These results conclusively demonstrate that ML-enhanced motor control systems can achieve both superior security (88.3% attack detection rate with 2.3% false positives) and operational performance (31.01% timing correction success rate, 26.5% improvement over baseline) simultaneously, establishing SMART DShot as a practical, deployable solution for next-generation autonomous systems. Full article
Show Figures

Figure 1

19 pages, 3139 KB  
Article
Intelligent Recognition and Parameter Estimation of Radar Active Jamming Based on Oriented Object Detection
by Jiawei Lu, Yiduo Guo, Weike Feng, Xiaowei Hu, Jian Gong and Yu Zhang
Remote Sens. 2025, 17(15), 2646; https://doi.org/10.3390/rs17152646 - 30 Jul 2025
Viewed by 321
Abstract
To enhance the perception capability of radar in complex electromagnetic environments, this paper proposes an intelligent jamming recognition and parameter estimation method based on deep learning. The core idea of the method is to reformulate the jamming perception problem as an object detection [...] Read more.
To enhance the perception capability of radar in complex electromagnetic environments, this paper proposes an intelligent jamming recognition and parameter estimation method based on deep learning. The core idea of the method is to reformulate the jamming perception problem as an object detection task in computer vision, and we pioneer the application of oriented object detection to this problem, enabling simultaneous jamming classification and key parameter estimation. This method takes the time–frequency spectrogram of jamming signals as input. First, it employs the oriented object detection network YOLOv8-OBB (You Only Look Once Version 8–oriented bounding box) to identify three types of classic suppression jamming and five types of Interrupted Sampling Repeater Jamming (ISRJ) and outputs the positional information of the jamming in the time–frequency spectrogram. Second, for the five ISRJ types, a post-processing algorithm based on boxes fusion is designed to further extract features for secondary recognition. Finally, by integrating the detection box information and secondary recognition results, parameters of different ISRJ are estimated. In this paper, ablation experiments from the perspective of Non-Maximum Suppression (NMS) are conducted to simulate and compare the OBB method with the traditional horizontal bounding box-based detection approaches, highlighting OBB’s detection superiority in dense jamming scenarios. Experimental results show that, compared with existing jamming detection methods, the proposed method achieves higher detection probabilities under the jamming-to-noise ratio (JNR) ranging from 0 to 20 dB, with correct identification rates exceeding 98.5% for both primary and secondary recognition stages. Moreover, benefiting from the advanced YOLOv8 network, the method exhibits an absolute error of less than 1.85% in estimating six types of jamming parameters, outperforming existing methods in estimation accuracy across different JNR conditions. Full article
(This article belongs to the Special Issue Array and Signal Processing for Radar (Second Edition))
Show Figures

Figure 1

8 pages, 192 KB  
Brief Report
Accuracy and Safety of ChatGPT-3.5 in Assessing Over-the-Counter Medication Use During Pregnancy: A Descriptive Comparative Study
by Bernadette Cornelison, David R. Axon, Bryan Abbott, Carter Bishop, Cindy Jebara, Anjali Kumar and Kristen A. Root
Pharmacy 2025, 13(4), 104; https://doi.org/10.3390/pharmacy13040104 - 30 Jul 2025
Viewed by 937
Abstract
As artificial intelligence (AI) becomes increasingly utilized to perform tasks requiring human intelligence, patients who are pregnant may turn to AI for advice on over-the-counter (OTC) medications. However, medications used in pregnancy may pose profound safety concerns limited by data availability. This study [...] Read more.
As artificial intelligence (AI) becomes increasingly utilized to perform tasks requiring human intelligence, patients who are pregnant may turn to AI for advice on over-the-counter (OTC) medications. However, medications used in pregnancy may pose profound safety concerns limited by data availability. This study focuses on a chatbot’s ability to accurately provide information regarding OTC medications as it relates to patients that are pregnant. A prospective, descriptive design was used to compare the responses generated by the Chat Generative Pre-Trained Transformer 3.5 (ChatGPT-3.5) to the information provided by UpToDate®. Eighty-seven of the top pharmacist-recommended OTC drugs in the United States (U.S.) as identified by Pharmacy Times were assessed for safe use in pregnancy using ChatGPT-3.5. A piloted, standard prompt was input into ChatGPT-3.5, and the responses were recorded. Two groups independently rated the responses compared to UpToDate on their correctness, completeness, and safety using a 5-point Likert scale. After independent evaluations, the groups discussed the findings to reach a consensus, with a third independent investigator giving final ratings. For correctness, the median score was 5 (interquartile range [IQR]: 5–5). For completeness, the median score was 4 (IQR: 4–5). For safety, the median score was 5 (IQR: 5–5). Despite high overall scores, the safety errors in 9% of the evaluations (n = 8), including omissions that pose a risk of serious complications, currently renders the chatbot an unsafe standalone resource for this purpose. Full article
(This article belongs to the Special Issue AI Use in Pharmacy and Pharmacy Education)
19 pages, 3636 KB  
Article
Research on Wellbore Trajectory Prediction Based on a Pi-GRU Model
by Hanlin Liu, Yule Hu and Zhenkun Wu
Appl. Sci. 2025, 15(15), 8317; https://doi.org/10.3390/app15158317 - 26 Jul 2025
Viewed by 304
Abstract
Accurate wellbore trajectory prediction is of great significance for enhancing the efficiency and safety of directional drilling in coal mines. However, traditional mechanical analysis methods have high computational complexity, and the existing data-driven models cannot fully integrate non-sequential features such as stratum lithology. [...] Read more.
Accurate wellbore trajectory prediction is of great significance for enhancing the efficiency and safety of directional drilling in coal mines. However, traditional mechanical analysis methods have high computational complexity, and the existing data-driven models cannot fully integrate non-sequential features such as stratum lithology. To solve these problems, this study proposes a parallel input gated recurrent unit (Pi-GRU) model based on the TensorFlow framework. The GRU network captures the temporal dependencies of sequence data (such as dip angle and azimuth angle), while the BP neural network extracts deep correlations from non-sequence features (such as stratum lithology), thereby achieving multi-source data fusion modeling. Orthogonal experimental design was adopted to optimize the model hyperparameters, and the ablation experiment confirmed the necessity of the parallel architecture. The experimental results obtained based on the data of a certain coal mine in Shanxi Province show that the mean square errors (MSE) of the azimuth and dip angle angles of the Pi-GRU model are 0.06° and 0.01°, respectively. Compared with the emerging CNN-BiLSTM model, they are reduced by 66.67% and 76.92%, respectively. To evaluate the generalization performance of the model, we conducted cross-scenario validation on the dataset of the Dehong Coal Mine. The results showed that even under unknown geological conditions, the Pi-GRU model could still maintain high-precision predictions. The Pi-GRU model not only outperforms existing methods in terms of prediction accuracy, with an inference delay of only 0.21 milliseconds, but also requires much less computing power for training and inference than the maximum computing power of the Jetson TX2 hardware. This proves that the model has good practicability and deployability in the engineering field. It provides a new idea for real-time wellbore trajectory correction in intelligent drilling systems and shows strong application potential in engineering applications. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

19 pages, 2564 KB  
Article
FLIP: A Novel Feedback Learning-Based Intelligent Plugin Towards Accuracy Enhancement of Chinese OCR
by Xinyue Tao, Yueyue Han, Yakai Jin and Yunzhi Wu
Mathematics 2025, 13(15), 2372; https://doi.org/10.3390/math13152372 - 24 Jul 2025
Viewed by 385
Abstract
Chinese Optical Character Recognition (OCR) technology is essential for digital transformation in Chinese regions, enabling automated document processing across various applications. However, Chinese OCR systems struggle with visually similar characters, where subtle stroke differences lead to systematic recognition errors that limit practical deployment [...] Read more.
Chinese Optical Character Recognition (OCR) technology is essential for digital transformation in Chinese regions, enabling automated document processing across various applications. However, Chinese OCR systems struggle with visually similar characters, where subtle stroke differences lead to systematic recognition errors that limit practical deployment accuracy. This study develops FLIP (Feedback Learning-based Intelligent Plugin), a lightweight post-processing plugin designed to improve Chinese OCR accuracy across different systems without external dependencies. The plugin operates through three core components as follows: UTF-8 encoding-based output parsing that converts OCR results into mathematical representations, error correction using information entropy and weighted similarity measures to identify and fix character-level errors, and adaptive feedback learning that optimizes parameters through user interactions. The approach functions entirely through mathematical calculations at the character encoding level, ensuring universal compatibility with existing OCR systems while effectively handling complex Chinese character similarities. The plugin’s modular design enables seamless integration without requiring modifications to existing OCR algorithms, while its feedback mechanism adapts to domain-specific terminology and user preferences. Experimental evaluation on 10,000 Chinese document images using four state-of-the-art OCR models demonstrates consistent improvements across all tested systems, with precision gains ranging from 1.17% to 10.37% and overall Chinese character recognition accuracy exceeding 98%. The best performing model achieved 99.42% precision, with ablation studies confirming that feedback learning contributes additional improvements from 0.45% to 4.66% across different OCR architectures. Full article
(This article belongs to the Special Issue Crowdsourcing Learning: Theories, Algorithms, and Applications)
Show Figures

Figure 1

21 pages, 9749 KB  
Article
Enhanced Pose Estimation for Badminton Players via Improved YOLOv8-Pose with Efficient Local Attention
by Yijian Wu, Zewen Chen, Hongxing Zhang, Yulin Yang and Weichao Yi
Sensors 2025, 25(14), 4446; https://doi.org/10.3390/s25144446 - 17 Jul 2025
Viewed by 753
Abstract
With the rapid development of sports analytics and artificial intelligence, accurate human pose estimation in badminton is becoming increasingly important. However, challenges such as the lack of domain-specific datasets and the complexity of athletes’ movements continue to hinder progress in this area. To [...] Read more.
With the rapid development of sports analytics and artificial intelligence, accurate human pose estimation in badminton is becoming increasingly important. However, challenges such as the lack of domain-specific datasets and the complexity of athletes’ movements continue to hinder progress in this area. To address these issues, we propose an enhanced pose estimation framework tailored to badminton players, built upon an improved YOLOv8-Pose architecture. In particular, we introduce an efficient local attention (ELA) mechanism that effectively captures fine-grained spatial dependencies and contextual information, thereby significantly improving the keypoint localization accuracy and overall pose estimation performance. To support this study, we construct a dedicated badminton pose dataset comprising 4000 manually annotated samples, captured using a Microsoft Kinect v2 camera. The raw data undergo careful processing and refinement through a combination of depth-assisted annotation and visual inspection to ensure high-quality ground truth keypoints. Furthermore, we conduct an in-depth comparative analysis of multiple attention modules and their integration strategies within the network, offering generalizable insights to enhance pose estimation models in other sports domains. The experimental results show that the proposed ELA-enhanced YOLOv8-Pose model consistently achieves superior accuracy across multiple evaluation metrics, including the mean squared error (MSE), object keypoint similarity (OKS), and percentage of correct keypoints (PCK), highlighting its effectiveness and potential for broader applications in sports vision tasks. Full article
(This article belongs to the Special Issue Computer Vision-Based Human Activity Recognition)
Show Figures

Figure 1

20 pages, 23222 KB  
Article
A Multi-View Three-Dimensional Scanning Method for a Dual-Arm Hand–Eye System with Global Calibration of Coded Marker Points
by Tenglong Zheng, Xiaoying Feng, Siyuan Wang, Haozhen Huang and Shoupeng Li
Micromachines 2025, 16(7), 809; https://doi.org/10.3390/mi16070809 - 13 Jul 2025
Viewed by 724
Abstract
To achieve robust and accurate collaborative 3D measurement under complex noise conditions, a global calibration method for dual-arm hand–eye systems and multi-view 3D imaging is proposed. A multi-view 3D scanning approach based on ICP (M3DHE-ICP) integrates a multi-frequency heterodyne coding phase solution with [...] Read more.
To achieve robust and accurate collaborative 3D measurement under complex noise conditions, a global calibration method for dual-arm hand–eye systems and multi-view 3D imaging is proposed. A multi-view 3D scanning approach based on ICP (M3DHE-ICP) integrates a multi-frequency heterodyne coding phase solution with ICP optimization, effectively correcting stitching errors caused by robotic arm attitude drift. After correction, the average 3D imaging error is 0.082 mm, reduced by 0.330 mm. A global calibration method based on encoded marker points (GCM-DHE) is also introduced. By leveraging spatial geometry constraints and a dynamic tracking model of marker points, the transformation between multi-coordinate systems of the dual arms is robustly solved. This reduces the average imaging error to 0.100 mm, 0.456 mm lower than that of traditional circular calibration plate methods. In actual engineering measurements, the average error for scanning a vehicle’s front mudguard is 0.085 mm, with a standard deviation of 0.018 mm. These methods demonstrate significant value for intelligent manufacturing and multi-robot collaborative measurement. Full article
Show Figures

Figure 1

21 pages, 1682 KB  
Article
Dynamic Multi-Path Airflow Analysis and Dispersion Coefficient Correction for Enhanced Air Leakage Detection in Complex Mine Ventilation Systems
by Yadong Wang, Shuliang Jia, Mingze Guo, Yan Zhang and Yongjun Wang
Processes 2025, 13(7), 2214; https://doi.org/10.3390/pr13072214 - 10 Jul 2025
Viewed by 438
Abstract
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static [...] Read more.
Mine ventilation systems are critical for ensuring operational safety, yet air leakage remains a pervasive challenge, leading to energy inefficiency and heightened safety risks. Traditional tracer gas methods, while effective in simple networks, exhibit significant errors in complex multi-entry systems due to static empirical parameters and environmental interference. This study proposes an integrated methodology that combines multi-path airflow analysis with dynamic longitudinal dispersion coefficient correction to enhance the accuracy of air leakage detection. Utilizing sulfur hexafluoride (SF6) as the tracer gas, a phased release protocol with temporal isolation was implemented across five strategic points in a coal mine ventilation network. High-precision detectors (Bruel & Kiaer 1302) and the MIVENA system enabled synchronized data acquisition and 3D network modeling. Theoretical models were dynamically calibrated using field-measured airflow velocities and dispersion coefficients. The results revealed three deviation patterns between simulated and measured tracer peaks: Class A deviation showed 98.5% alignment in single-path scenarios, Class B deviation highlighted localized velocity anomalies from Venturi effects, and Class C deviation identified recirculation vortices due to abrupt cross-sectional changes. Simulation accuracy improved from 70% to over 95% after introducing wind speed and dispersion adjustment coefficients, resolving concealed leakage pathways between critical nodes and key nodes. The study demonstrates that the dynamic correction of dispersion coefficients and multi-path decomposition effectively mitigates errors caused by turbulence and geometric irregularities. This approach provides a robust framework for optimizing ventilation systems, reducing invalid airflow losses, and advancing intelligent ventilation management through real-time monitoring integration. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

25 pages, 3106 KB  
Article
Multifractal-Aware Convolutional Attention Synergistic Network for Carbon Market Price Forecasting
by Liran Wei, Mingzhu Tang, Na Li, Jingwen Deng, Xinpeng Zhou and Haijun Hu
Fractal Fract. 2025, 9(7), 449; https://doi.org/10.3390/fractalfract9070449 - 7 Jul 2025
Viewed by 477
Abstract
Accurate carbon market price prediction is crucial for promoting a low-carbon economy and sustainable engineering. Traditional models often face challenges in effectively capturing the multifractality inherent in carbon market prices. Inspired by the self-similarity and scale invariance inherent in fractal structures, this study [...] Read more.
Accurate carbon market price prediction is crucial for promoting a low-carbon economy and sustainable engineering. Traditional models often face challenges in effectively capturing the multifractality inherent in carbon market prices. Inspired by the self-similarity and scale invariance inherent in fractal structures, this study proposes a novel multifractal-aware model, MF-Transformer-DEC, for carbon market price prediction. The multi-scale convolution (MSC) module employs multi-layer dilated convolutions constrained by shared convolution kernel weights to construct a scale-invariant convolutional network. By projecting and reconstructing time series data within a multi-scale fractal space, MSC enhances the model’s ability to adapt to complex nonlinear fluctuations while significantly suppressing noise interference. The fractal attention (FA) module calculates similarity matrices within a multi-scale feature space through multi-head attention, adaptively integrating multifractal market dynamics and implicit associations. The dynamic error correction (DEC) module models error commonality through variational autoencoder (VAE), and uncertainty-guided dynamic weighting achieves robust error correction. The proposed model achieved an average R2 of 0.9777 and 0.9942 for 7-step ahead predictions on the Shanghai and Guangdong carbon price datasets, respectively. This study pioneers the interdisciplinary integration of fractal theory and artificial intelligence methods for complex engineering analysis, enhancing the accuracy of carbon market price prediction. The proposed technical pathway of “multi-scale deconstruction and similarity mining” offers a valuable reference for AI-driven fractal modeling. Full article
Show Figures

Figure 1

Back to TopTop