Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,381)

Search Parameters:
Keywords = integrated board

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 861 KiB  
Article
Designing a Board Game to Expand Knowledge About Parental Involvement in Teacher Education
by Zsófia Kocsis, Zsolt Csák, Dániel Bodnár and Gabriella Pusztai
Educ. Sci. 2025, 15(8), 986; https://doi.org/10.3390/educsci15080986 (registering DOI) - 2 Aug 2025
Abstract
Research highlights a growing demand for active, experiential learning methods in higher education, especially in teacher education. While the benefits of parental involvement (PI) are well-documented, Hungary lacks tools to effectively prepare teacher trainees for fostering family–school cooperation. This study addresses this gap [...] Read more.
Research highlights a growing demand for active, experiential learning methods in higher education, especially in teacher education. While the benefits of parental involvement (PI) are well-documented, Hungary lacks tools to effectively prepare teacher trainees for fostering family–school cooperation. This study addresses this gap by introducing a custom-designed board game as an innovative teaching tool. The game simulates real-world challenges in PI through a cooperative, scenario-based framework. Exercises are grounded in international and national research, ensuring their relevance and evidence-based design. Tested with 110 students, the game’s educational value was assessed via post-gameplay questionnaires. Participants emphasized the strengths of its cooperative structure, realistic scenarios, and integration of humor. Many reported gaining new insights into parental roles and strategies for effective home–school partnerships. Practical applications include integrating the game into teacher education curricula and adapting it for other educational contexts. This study demonstrates how board games can bridge theory and practice, offering an engaging, effective medium to prepare future teachers for the challenges of PI. Full article
(This article belongs to the Section Teacher Education)
Show Figures

Figure 1

22 pages, 760 KiB  
Review
Strengthening Corporate Governance and Financial Reporting Through Regulatory Reform: A Comparative Analysis of Greek Laws 3016/2002 and 4706/2020
by Savvina Paganou, Ioannis Antoniadis, Panagiota Xanthopoulou and Vasilios Kanavas
J. Risk Financial Manag. 2025, 18(8), 426; https://doi.org/10.3390/jrfm18080426 (registering DOI) - 1 Aug 2025
Abstract
This study explores how corporate governance reforms can enhance financial reporting quality and organizational transparency, focusing on Greece’s transition from Law 3016/2002 to Law 4706/2020. The legislative reform aimed to modernize governance structures, align national practices with international standards, and strengthen investor protection [...] Read more.
This study explores how corporate governance reforms can enhance financial reporting quality and organizational transparency, focusing on Greece’s transition from Law 3016/2002 to Law 4706/2020. The legislative reform aimed to modernize governance structures, align national practices with international standards, and strengthen investor protection in a post-crisis economic environment. Moving beyond a simple legal comparison, the study examines how Law 3016/2002’s formal compliance model contrasts with Law 4706/2020’s more substantive accountability framework. We hypothesize that Law 4706/2020 introduces substantively stronger governance mechanisms than its predecessor, thereby improving transparency and investor protection, while compliance with the new law imposes materially greater administrative and financial burdens, especially on small- and mid-cap firms. Methodologically, the research employs a narrative literature review and a structured comparative legal analysis to assess the administrative and financial implications of the new law for publicly listed companies, focusing on board composition and diversity, internal controls, suitability policies, and disclosure requirements. Drawing on prior comparative evidence, we posit that Law 4706/2020 will foster governance and disclosure improvements, enhanced oversight, and clearer board roles. However, these measures also impose compliance burdens. Due to the heterogeneity of listed companies and the lack of firm-level data following Law 4706/2020’s implementation, the findings are neither fully generalizable nor quantifiable; future quantitative research using event studies or panel data is required to validate the hypotheses. We conclude that Greece’s new framework is a critical step toward sustainable corporate governance and more transparent financial reporting, offering regulators, practitioners, and scholars examining legal reform’s impact on governance effectiveness and financial reporting integrity. Full article
(This article belongs to the Special Issue Research on Corporate Governance and Financial Reporting)
Show Figures

Figure 1

18 pages, 4939 KiB  
Article
Decarbonizing Agricultural Buildings: A Life-Cycle Carbon Emissions Assessment of Dairy Barns
by Hui Liu, Zhen Wang, Xinyi Du, Fei Qi, Chaoyuan Wang and Zhengxiang Shi
Agriculture 2025, 15(15), 1645; https://doi.org/10.3390/agriculture15151645 - 30 Jul 2025
Viewed by 91
Abstract
The life-cycle carbon emissions (LCCE) assessment of dairy barns is crucial for identifying low-carbon transition pathways and promoting the sustainable development of the dairy industry. We applied a life cycle assessment approach integrated with building information modeling and EnergyPlus to establish a full [...] Read more.
The life-cycle carbon emissions (LCCE) assessment of dairy barns is crucial for identifying low-carbon transition pathways and promoting the sustainable development of the dairy industry. We applied a life cycle assessment approach integrated with building information modeling and EnergyPlus to establish a full life cycle inventory of the material quantities and energy consumption for dairy barns. The LCCE was quantified from the production to end-of-life stages using the carbon equivalent of dairy barns (CEDB) as the functional unit, expressed in kg CO2e head−1 year−1. A carbon emission assessment model was developed based on the “building–process–energy” framework. The LCCE of the open barn and the lower profile cross-ventilated (LPCV) barn were 152 kg CO2e head−1 year−1 and 229 kg CO2e head−1 year−1, respectively. Operational carbon emissions (OCE) accounted for the largest share of LCCE, contributing 57% and 74%, respectively. For embodied carbon emissions (ECE), the production of building materials dominated, representing 91% and 87% of the ECE, respectively. Regarding carbon mitigation strategies, the use of extruded polystyrene boards reduced carbon emissions by 45.67% compared with stone wool boards and by 36% compared with polyurethane boards. Employing a manure pit emptying system reduced carbon emissions by 76% and 74% compared to manure scraping systems. Additionally, the adoption of clean electricity resulted in a 33% reduction in OCE, leading to an overall LCCE reduction of 22% for the open barn and 26% for the LPCV barn. This study introduces the CEDB to evaluate low-carbon design strategies for dairy barns, integrating building layout, ventilation systems, and energy sources in a unified assessment approach, providing valuable insights for the low-carbon transition of agricultural buildings. Full article
Show Figures

Figure 1

23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Viewed by 166
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

25 pages, 19197 KiB  
Article
Empirical Evaluation of TLS-Enhanced MQTT on IoT Devices for V2X Use Cases
by Nikolaos Orestis Gavriilidis, Spyros T. Halkidis and Sophia Petridou
Appl. Sci. 2025, 15(15), 8398; https://doi.org/10.3390/app15158398 - 29 Jul 2025
Viewed by 106
Abstract
The rapid growth of Internet of Things (IoT) deployment has led to an unprecedented volume of interconnected, resource-constrained devices. Securing their communication is essential, especially in vehicular environments, where sensitive data exchange requires robust authentication, integrity, and confidentiality guarantees. In this paper, we [...] Read more.
The rapid growth of Internet of Things (IoT) deployment has led to an unprecedented volume of interconnected, resource-constrained devices. Securing their communication is essential, especially in vehicular environments, where sensitive data exchange requires robust authentication, integrity, and confidentiality guarantees. In this paper, we present an empirical evaluation of TLS (Transport Layer Security)-enhanced MQTT (Message Queuing Telemetry Transport) on low-cost, quad-core Cortex-A72 ARMv8 boards, specifically the Raspberry Pi 4B, commonly used as prototyping platforms for On-Board Units (OBUs) and Road-Side Units (RSUs). Three MQTT entities, namely, the broker, the publisher, and the subscriber, are deployed, utilizing Elliptic Curve Cryptography (ECC) for key exchange and authentication and employing the AES_256_GCM and ChaCha20_Poly1305 ciphers for confidentiality via appropriately selected libraries. We quantify resource consumption in terms of CPU utilization, execution time, energy usage, memory footprint, and goodput across TLS phases, cipher suites, message packaging strategies, and both Ethernet and WiFi interfaces. Our results show that (i) TLS 1.3-enhanced MQTT is feasible on Raspberry Pi 4B devices, though it introduces non-negligible resource overheads; (ii) batching messages into fewer, larger packets reduces transmission cost and latency; and (iii) ChaCha20_Poly1305 outperforms AES_256_GCM, particularly in wireless scenarios, making it the preferred choice for resource- and latency-sensitive V2X applications. These findings provide actionable recommendations for deploying secure MQTT communication on an IoT platform. Full article
(This article belongs to the Special Issue Cryptography in Data Protection and Privacy-Enhancing Technologies)
Show Figures

Figure 1

25 pages, 527 KiB  
Article
Do Board Characteristics Influence Leverage and Debt Maturity? Empirical Evidence from a Transitional Economy
by Adja Hamida, Olivier Colot and Rabah Kechad
J. Risk Financial Manag. 2025, 18(8), 418; https://doi.org/10.3390/jrfm18080418 - 28 Jul 2025
Viewed by 230
Abstract
This study examines the impact of board characteristics on capital structure decisions in the context of a transition economy, focusing on Algeria, where governance institutions are underdeveloped and the financial market remains immature. Using the Generalized Method of Moments (GMM) on a panel [...] Read more.
This study examines the impact of board characteristics on capital structure decisions in the context of a transition economy, focusing on Algeria, where governance institutions are underdeveloped and the financial market remains immature. Using the Generalized Method of Moments (GMM) on a panel dataset of 120 firms over the period 2015 to 2019, we identify a U-shaped relationship between board size and leverage, and an inverted U-shaped relationship between board size and debt maturity. Furthermore, increased nationality diversity on boards is found to significantly reduce debt maturity. These findings highlight the critical role of board composition in shaping corporate financing strategies in transition economies and provide novel insights into corporate governance dynamics in a relatively underexplored institutional context. The results are particularly relevant for national entities such as COSOB and Hawkama El Djazaïr and may guide banking sector practices by promoting the integration of board governance criteria into credit evaluation processes. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Corporate Finance and Governance)
Show Figures

Figure 1

16 pages, 2662 KiB  
Article
Electronic Control Unit and Digital Twin Based on Raspberry Pi 4 for Testing the Remote Nonlinear Trajectory Tracking of a P3-DX Robot
by Cristina Losada-Gutiérrez, Felipe Espinosa, Carlos Cruz and Biel P. Alvarado
Actuators 2025, 14(8), 376; https://doi.org/10.3390/act14080376 - 27 Jul 2025
Viewed by 284
Abstract
The properties of Hardware-in-the-Loop (HIL) for the development of controllers, together with electronic emulation of physical process by Digital Twins (DT) significantly enhance the optimization of design and implementation in nonlinear control applications. The study emphasizes the use of the Raspberry Pi (RBP), [...] Read more.
The properties of Hardware-in-the-Loop (HIL) for the development of controllers, together with electronic emulation of physical process by Digital Twins (DT) significantly enhance the optimization of design and implementation in nonlinear control applications. The study emphasizes the use of the Raspberry Pi (RBP), a low-cost and portable electronic board for two interrelated goals: (a) the Electronic Control Unit (ECU-RBP) implementing a Lyapunov-based Controller (LBC) for nonlinear trajectory tracking of P3DX wheeled robots, and (b) the Digital Twin (DT-RPB) emulating the real robot behavior, which is remotely connected to the control unit. ECU-RBP, DT-RBP and real robot are connected as nodes within the same wireless network, enhancing interaction between the three physical elements. The development process is supported by the Matlab/Simulink environment and the associated packages for the specified electronic board. Following testing of the real robot from the ECU-RBP in an open loop, the model is identified and integrated into the DT-RBP to replicate its functionality. The LBC solution, which has also been validated through simulation, is implemented in the ECU-RBP to examine the closed-loop control according to the HIL strategy. Finally, the study evaluates the effectiveness of the HIL approach by comparing the results obtained from the application of the LBC, as implemented in the ECU-RBP to both the real robot and its DT. Full article
(This article belongs to the Special Issue Nonlinear Control of Mechanical and Robotic Systems)
Show Figures

Figure 1

19 pages, 3709 KiB  
Article
Analysis of the Physical and Thermal Characteristics of Gypsum Panels with Hemp Hurds for Building Insulation
by Chatpon Chaimongkol, Sukunya Ross, Dachaphon Kealkaew and Atthakorn Thongtha
Sustainability 2025, 17(15), 6801; https://doi.org/10.3390/su17156801 - 26 Jul 2025
Viewed by 368
Abstract
The study investigates the potential of enhancing gypsum board properties through the integration of hemp hurds and glass fibers. The investigation focuses on evaluating the composite material’s density, water absorption, flexural strength, compressive strength, and thermal performance. Experimental results demonstrate a reduction in [...] Read more.
The study investigates the potential of enhancing gypsum board properties through the integration of hemp hurds and glass fibers. The investigation focuses on evaluating the composite material’s density, water absorption, flexural strength, compressive strength, and thermal performance. Experimental results demonstrate a reduction in gypsum composite density and improved thermal insulating properties with the introduction of hemp hurds. Water absorption, a significant drawback of gypsum boards, is mitigated with hemp hurds, indicating potential benefits for insulation efficiency. For mechanical tests, the gypsum ceiling board at approximately 5% by weight exhibits a flexural strength value exceeding the minimum average threshold of 1 MPa and the highest average compressive strength at 2.94 MPa. Thermal testing reveals lower temperatures and longer time lags in gypsum boards with 5% hemp hurds, suggesting enhanced heat resistance and reduced energy consumption for cooling. The study contributes valuable insights into the potential use of hemp hurds in gypsum-based building materials, presenting a sustainable and energy-efficient alternative for the construction industry. Full article
Show Figures

Figure 1

26 pages, 12786 KiB  
Article
EMB System Design and Clamping Force Tracking Control Research
by Junyi Zou, Haojun Yan, Yunbing Yan and Xianping Huang
Modelling 2025, 6(3), 72; https://doi.org/10.3390/modelling6030072 - 25 Jul 2025
Viewed by 304
Abstract
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active [...] Read more.
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active disturbance rejection controller based on clamping force. This solves the problem of excessive axial distance in traditional EMB and reduces the axial distance by 30%, while concentrating the PCB control board for the wheels on the EMB housing. This enables the ABS and ESP functions to be integrated into the EMB system, further enhancing the integration of line control and active safety functions. A feedforward second-order linear active disturbance rejection controller (LADRC) based on the clamping force of the brake caliper is proposed. Compared with the traditional clamping force control methods three-loop PID and adaptive fuzzy PID, it improves the response speed, steady-state error, and anti-interference ability. Moreover, the LADRC has more advantages in parameter adjustment. Simulation results show that the response speed is increased by 130 ms, the overshoot is reduced by 9.85%, and the anti-interference ability is increased by 41.2%. Finally, the feasibility of this control algorithm was verified through the EMB hardware-in-the-loop test bench. Full article
Show Figures

Figure 1

20 pages, 504 KiB  
Review
The Current State of School Attendance Research and Data in Canada
by Jess Whitley, Natasha McBrearty, Maria A. Rogers and J. David Smith
Educ. Sci. 2025, 15(8), 964; https://doi.org/10.3390/educsci15080964 - 25 Jul 2025
Viewed by 473
Abstract
The issue of school absenteeism has received increased attention in previous years due to the widespread absences caused by the COVID-19 pandemic. However, Canadian research is sparse on the topic, and a data-based picture of the extent of the problem does not exist. [...] Read more.
The issue of school absenteeism has received increased attention in previous years due to the widespread absences caused by the COVID-19 pandemic. However, Canadian research is sparse on the topic, and a data-based picture of the extent of the problem does not exist. In this conceptual article, we briefly trace the origins of school absenteeism and outline the current status of prevalence data and research in the area of school absenteeism in Canada, drawing on a broad range of sources including national and international surveys. Our exploration suggests several recommendations to advance knowledge and practice in the area, including the identification and sharing of attendance-related data within and across provinces and territories, the development of partnerships between researchers and school boards, the integration of discipline-specific research in the area and the analysis of school absenteeism through nuanced, complex lenses. Full article
Show Figures

Figure 1

23 pages, 2856 KiB  
Article
A Study on the Effectiveness of a Hybrid Digital-Physical Board Game Incorporating the Sustainable Development Goals in Elementary School Sustainability Education
by Jhih-Ning Jhang, Yi-Chun Lin and Yen-Ting Lin
Sustainability 2025, 17(15), 6775; https://doi.org/10.3390/su17156775 - 25 Jul 2025
Viewed by 334
Abstract
The Sustainable Development Goals (SDGs), launched by the United Nations in 2015, outline 17 interconnected objectives designed to promote human well-being and sustainable development worldwide. Education is recognized by the United Nations as a key factor in promoting sustainable development. To cultivate students [...] Read more.
The Sustainable Development Goals (SDGs), launched by the United Nations in 2015, outline 17 interconnected objectives designed to promote human well-being and sustainable development worldwide. Education is recognized by the United Nations as a key factor in promoting sustainable development. To cultivate students with both global perspectives and local engagement, it is essential to integrate sustainability education into elementary curricula. Accordingly, this study aimed to enhance elementary school students’ understanding of the SDGs by designing a structured instructional activity and developing a hybrid digital-physical board game. The game was implemented as a supplementary review tool to traditional classroom teaching, leveraging the motivational and knowledge-retention benefits of physical board games while incorporating digital features to support learning process monitoring. To address the limitations of conventional review approaches—such as reduced student engagement and increased cognitive load—the instructional model incorporated the board game during review sessions following formal instruction. This was intended to maintain student attention and reduce unnecessary cognitive effort, thereby supporting learning in sustainability-related content. A quasi-experimental design was employed to evaluate the effectiveness of the instructional intervention and the board game system, focusing on three outcome variables: learning motivation, cognitive load, and learning achievement. The results indicated that students in the game-based Sustainable Development Goals group achieved significantly higher delayed posttest scores (M = 72.91, SD = 15.17) than the traditional review group (M = 61.30, SD = 22.82; p < 0.05). In addition, they reported significantly higher learning motivation (M = 4.40, SD = 0.64) compared to the traditional group (M = 3.99, SD = 0.69; p < 0.05) and lower cognitive load (M = 1.84, SD = 1.39) compared to the traditional group (M = 2.66, SD = 1.30; p < 0.05), suggesting that the proposed approach effectively supported student learning in sustainability education at the elementary level. Full article
Show Figures

Figure 1

17 pages, 655 KiB  
Review
Passenger Service Time at the Platform–Train Interface: A Review of Variability, Design Factors, and Crowd Management Implications Based on Laboratory Experiments
by Sebastian Seriani, Vicente Aprigliano, Vinicius Minatogawa, Alvaro Peña, Ariel Lopez and Felipe Gonzalez
Appl. Sci. 2025, 15(15), 8256; https://doi.org/10.3390/app15158256 - 24 Jul 2025
Viewed by 253
Abstract
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd [...] Read more.
This paper reviews the variability of passenger service time (PST) at the platform–train interface (PTI), a critical performance indicator in metro systems shaped by the infrastructure design, affecting passenger behavior and accessibility. Despite its operational importance, PST remains underexplored in relation to crowd management strategies. This review synthesizes findings from empirical and experimental research to clarify the main factors influencing PST and their implications for platform-level interventions. Key contributors to PST variability include door width, gap dimensions, crowd density, and user characteristics such as mobility impairments. Design elements—such as platform edge doors, yellow safety lines, and vertical handrails—affect flow efficiency and spatial dynamics during boarding and alighting. Advanced tracking and simulation tools (e.g., PeTrack and YOLO-based systems) are identified as essential for evaluating pedestrian behavior and supporting Level of Service (LOS) analysis. To complement traditional LOS metrics, the paper introduces Level of Interaction (LOI) and a multidimensional LOS framework that captures spatial conflicts and user interaction zones. Control strategies such as platform signage, seating arrangements, and visual cues are also reviewed, with experimental evidence showing that targeted design interventions can reduce PST by up to 35%. The review highlights a persistent gap between academic knowledge and practical implementation. It calls for greater integration of empirical evidence into policy, infrastructure standards, and operational contracts. Ultimately, it advocates for human-centered, data-informed approaches to PTI planning that enhance efficiency, inclusivity, and resilience in high-demand transit environments. Full article
(This article belongs to the Special Issue Research Advances in Rail Transport Infrastructure)
Show Figures

Figure 1

18 pages, 3732 KiB  
Article
Precision Oncology Guided by Genomic Profiling in Breast Cancer: Real-World Data from a Molecular Tumor Board
by Tim Graf, Laura A. Boos, Tarun Mehra, Nicola Miglino, Bettina Sobottka, Jan H. Rüschoff, Luis Fábregas-Ibáñez, Martin Zoche, Heike Frauchiger-Heuer, Isabell Witzel, Alexander Ring and Andreas Wicki
Cancers 2025, 17(15), 2435; https://doi.org/10.3390/cancers17152435 - 23 Jul 2025
Viewed by 270
Abstract
Background/Objectives: Next-generation-sequencing-based genomic profiling (GP) of advanced breast cancer (BC) has been increasingly integrated into clinical practice. The growing number of biomarker-based therapies in BC increasingly complicates treatment decisions. As a result, molecular tumor boards (MTBs) have become pivotal. However, real-world data on [...] Read more.
Background/Objectives: Next-generation-sequencing-based genomic profiling (GP) of advanced breast cancer (BC) has been increasingly integrated into clinical practice. The growing number of biomarker-based therapies in BC increasingly complicates treatment decisions. As a result, molecular tumor boards (MTBs) have become pivotal. However, real-world data on the utility of MTBs in advanced BC remain limited. This study evaluates the translation of molecular findings in BC patients into MTB recommendations and examines their implementation and outcomes in real-world clinical practice. Methods: This retrospective, single-center study included 103 BC patients who received GP between January 2018 and December 2023. Patients were discussed at the weekly multidisciplinary MTB of our institution. Data retrieved included patient characteristics, GP results, and MTB recommendations, which were consecutively matched with treatment outcomes, namely the proportion of patients receiving an MTB treatment recommendation, proportion of patients receiving molecularly matched targeted therapy (MTT), and best treatment response. Results: The MTB reviewed 94 patients and provided 155 recommendations to 68 patients (72.3%), including systemic anti-cancer treatment (n = 123), clinical study participation (n = 4), genetic counseling (n = 12), and additional molecular testing (n = 16) recommendations. Treatment recommendations were provided to 63 patients (67%), of whom 38 (60.3%) received MTT. Of the 35 patients eligible for response assessment, 16 (45.7%) demonstrated clinical benefit: three achieved a complete response, six a partial response, and ten a stable disease > 6 months. Conclusions: GP and MTBs expand biomarker-matched treatment options to BC patients beyond the standard of care. Around half of the patients who receive MTT experience a clinical benefit. The standardization of procedures, the development of multi-biomarker-based prediction, and the enhancement in MTT delivery to patients are key challenges, which should be addressed in future initiatives. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

18 pages, 3220 KiB  
Article
High-Throughput Microfluidic Electroporation (HTME): A Scalable, 384-Well Platform for Multiplexed Cell Engineering
by William R. Gaillard, Jess Sustarich, Yuerong Li, David N. Carruthers, Kshitiz Gupta, Yan Liang, Rita Kuo, Stephen Tan, Sam Yoder, Paul D. Adams, Hector Garcia Martin, Nathan J. Hillson and Anup K. Singh
Bioengineering 2025, 12(8), 788; https://doi.org/10.3390/bioengineering12080788 - 22 Jul 2025
Viewed by 443
Abstract
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. [...] Read more.
Electroporation-mediated gene delivery is a cornerstone of synthetic biology, offering several advantages over other methods: higher efficiencies, broader applicability, and simpler sample preparation. Yet, electroporation protocols are often challenging to integrate into highly multiplexed workflows, owing to limitations in their scalability and tunability. These challenges ultimately increase the time and cost per transformation. As a result, rapidly screening genetic libraries, exploring combinatorial designs, or optimizing electroporation parameters requires extensive iterations, consuming large quantities of expensive custom-made DNA and cell lines or primary cells. To address these limitations, we have developed a High-Throughput Microfluidic Electroporation (HTME) platform that includes a 384-well electroporation plate (E-Plate) and control electronics capable of rapidly electroporating all wells in under a minute with individual control of each well. Fabricated using scalable and cost-effective printed-circuit-board (PCB) technology, the E-Plate significantly reduces consumable costs and reagent consumption by operating on nano to microliter volumes. Furthermore, individually addressable wells facilitate rapid exploration of large sets of experimental conditions to optimize electroporation for different cell types and plasmid concentrations/types. Use of the standard 384-well footprint makes the platform easily integrable into automated workflows, thereby enabling end-to-end automation. We demonstrate transformation of E. coli with pUC19 to validate the HTME’s core functionality, achieving at least a single colony forming unit in more than 99% of wells and confirming the platform’s ability to rapidly perform hundreds of electroporations with customizable conditions. This work highlights the HTME’s potential to significantly accelerate synthetic biology Design-Build-Test-Learn (DBTL) cycles by mitigating the transformation/transfection bottleneck. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Graphical abstract

26 pages, 4049 KiB  
Article
A Versatile UAS Development Platform Able to Support a Novel Tracking Algorithm in Real-Time
by Dan-Marius Dobrea and Matei-Ștefan Dobrea
Aerospace 2025, 12(8), 649; https://doi.org/10.3390/aerospace12080649 - 22 Jul 2025
Viewed by 308
Abstract
A primary objective of this research entails the development of an innovative algorithm capable of tracking a drone in real-time. This objective serves as a fundamental requirement across various applications, including collision avoidance, formation flying, and the interception of moving targets. Nonetheless, regardless [...] Read more.
A primary objective of this research entails the development of an innovative algorithm capable of tracking a drone in real-time. This objective serves as a fundamental requirement across various applications, including collision avoidance, formation flying, and the interception of moving targets. Nonetheless, regardless of the efficacy of any detection algorithm, achieving 100% performance remains unattainable. Deep neural networks (DNNs) were employed to enhance this performance. To facilitate real-time operation, the DNN must be executed within a Deep Learning Processing Unit (DPU), Neural Processing Unit (NPU), Tensor Processing Unit (TPU), or Graphics Processing Unit (GPU) system on board the UAV. Given the constraints of these processing units, it may be necessary to quantify the DNN or utilize a less complex variant, resulting in an additional reduction in performance. However, precise target detection at each control step is imperative for effective flight path control. By integrating multiple algorithms, the developed system can effectively track UAVs with improved detection performance. Furthermore, this paper aims to establish a versatile Unmanned Aerial System (UAS) development platform constructed using open-source components and possessing the capability to adapt and evolve seamlessly throughout the development and post-production phases. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop