Precision Oncology Guided by Genomic Profiling in Breast Cancer: Real-World Data from a Molecular Tumor Board
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Genomic Profiling
2.3. Molecular Tumor Board
2.4. Data Collection
2.5. Response Assessment and Clinical Outcome
2.6. Statistical Analysis
3. Results
3.1. Study Population and Baseline Characteristics
3.2. Genomic Profiling Results
3.3. Molecular Tumor Board Review
3.4. Implementation of Drug Recommendations
3.5. Response and Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasad, V.; Fojo, T.; Brada, M. Precision oncology: Origins, optimism, and potential. Lancet Oncol. 2016, 17, e81–e86. [Google Scholar] [CrossRef] [PubMed]
- Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The sequence of the human genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef] [PubMed]
- Sjöblom, T.; Jones, S.; Wood, L.D.; Parsons, D.W.; Lin, J.; Barber, T.D.; Mandelker, D.; Leary, R.J.; Ptak, J.; Silliman, N.; et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006, 314, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Sosinsky, A.; Ambrose, J.; Cross, W.; Turnbull, C.; Henderson, S.; Jones, L.; Hamblin, A.; Arumugam, P.; Chan, G.; Chubb, D.; et al. Insights for precision oncology from the integration of genomic and clinical data of 13,880 tumors from the 100,000 Genomes Cancer Programme. Nat. Med. 2024, 30, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Luyendijk, M.; Visser, O.; Blommestein, H.M.; de Hingh, I.; Hoebers, F.J.P.; Jager, A.; Sonke, G.S.; de Vries, E.G.E.; Uyl-de Groot, C.A.; Siesling, S. Changes in survival in de novo metastatic cancer in an era of new medicines. J. Natl. Cancer Inst. 2023, 115, 628–635. [Google Scholar] [CrossRef] [PubMed]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Patsouris, A.; Diop, K.; Tredan, O.; Nenciu, D.; Gonçalves, A.; Arnedos, M.; Sablin, M.P.; Jézéquel, P.; Jimenez, M.; Droin, N.; et al. Rucaparib in patients presenting a metastatic breast cancer with homologous recombination deficiency, without germline BRCA1/2 mutation. Eur. J. Cancer 2021, 159, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.M.; Robson, M.E.; Ventz, S.; Santa-Maria, C.A.; Nanda, R.; Marcom, P.K.; Shah, P.D.; Ballinger, T.J.; Yang, E.S.; Vinayak, S.; et al. TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes. J. Clin. Oncol. 2020, 38, 4274–4282. [Google Scholar] [CrossRef] [PubMed]
- Gruber, J.J.; Afghahi, A.; Timms, K.; DeWees, A.; Gross, W.; Aushev, V.N.; Wu, H.T.; Balcioglu, M.; Sethi, H.; Scott, D.; et al. A phase II study of talazoparib monotherapy in patients with wild-type BRCA1 and BRCA2 with a mutation in other homologous recombination genes. Nat. Cancer 2022, 3, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Marcus, L.; Fashoyin-Aje, L.A.; Donoghue, M.; Yuan, M.; Rodriguez, L.; Gallagher, P.S.; Philip, R.; Ghosh, S.; Theoret, M.R.; Beaver, J.A.; et al. FDA Approval Summary: Pembrolizumab for the Treatment of Tumor Mutational Burden-High Solid Tumors. Clin. Cancer Res. 2021, 27, 4685–4689. [Google Scholar] [CrossRef] [PubMed]
- Dilawari, A.; Buturla, J.; Osgood, C.; Gao, X.; Chen, W.; Ricks, T.K.; Schaefer, T.; Avasarala, S.; Reyes Turcu, F.; Pathak, A.; et al. US Food and Drug Administration Approval Summary: Capivasertib with Fulvestrant for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Locally Advanced or Metastatic Breast Cancer with PIK3CA/AKT1/PTEN Alterations. J. Clin. Oncol. 2024, 42, 4103–4113. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Lingam, H.; Gao, X.; Gittleman, H.; Fiero, M.H.; Krol, D.; Biel, N.; Ricks, T.K.; Fu, W.; Hamed, S.; et al. US Food and Drug Administration Approval Summary: Elacestrant for Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative, ESR1-Mutated Advanced or Metastatic Breast Cancer. J. Clin. Oncol. 2024, 42, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Mateo, J.; Steuten, L.; Aftimos, P.; André, F.; Davies, M.; Garralda, E.; Geissler, J.; Husereau, D.; Martinez-Lopez, I.; Normanno, N.; et al. Delivering precision oncology to patients with cancer. Nat. Med. 2022, 28, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Tamborero, D.; Dienstmann, R.; Rachid, M.H.; Boekel, J.; Lopez-Fernandez, A.; Jonsson, M.; Razzak, A.; Braña, I.; De Petris, L.; Yachnin, J.; et al. The Molecular Tumor Board Portal supports clinical decisions and automated reporting for precision oncology. Nat. Cancer 2022, 3, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Larson, K.L.; Huang, B.; Weiss, H.L.; Hull, P.; Westgate, P.M.; Miller, R.W.; Arnold, S.M.; Kolesar, J.M. Clinical Outcomes of Molecular Tumor Boards: A Systematic Review. JCO Precis. Oncol. 2021, 5, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Repetto, M.; Crimini, E.; Boscolo Bielo, L.; Guerini-Rocco, E.; Ascione, L.; Bonfanti, A.; Zanzottera, C.; Mazzarella, L.; Ranghiero, A.; Belli, C.; et al. Molecular tumour board at European Institute of Oncology: Report of the first three year activity of an Italian precision oncology experience. Eur. J. Cancer 2023, 183, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Von Hoff, D.D.; Stephenson, J.J., Jr.; Rosen, P.; Loesch, D.M.; Borad, M.J.; Anthony, S.; Jameson, G.; Brown, S.; Cantafio, N.; Richards, D.A.; et al. Pilot study using molecular profiling of patients’ tumors to find potential targets and select treatments for their refractory cancers. J. Clin. Oncol. 2010, 28, 4877–4883. [Google Scholar] [CrossRef] [PubMed]
- Frampton, G.M.; Fichtenholtz, A.; Otto, G.A.; Wang, K.; Downing, S.R.; He, J.; Schnall-Levin, M.; White, J.; Sanford, E.M.; An, P.; et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 2013, 31, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, A.; Arnold, F.M.; Hanimann, J.; Nowak, M.; Pauli, C.; Britschgi, C.; Moch, H.; Zoche, M. MTPpilot: An Interactive Software for Visualization of Next-Generation Sequencing Results in Molecular Tumor Boards. JCO Clin. Cancer Inform. 2022, 6, e2200032. [Google Scholar] [CrossRef] [PubMed]
- HL7 International: Minimal Common Oncology Data Elements (mCODE) Implementation Guide, Version 3.0.0. Available online: https://hl7.org/fhir/us/mcode/STU3 (accessed on 31 March 2025).
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.; Sasano, H.; Wu, Y. WHO classifcation of tumours editorial board: Breast tumours. In WHO Classifcation of Tumours Series; The International Agency for Research on Cancer (IARC): Lyon, France, 2019. [Google Scholar]
- Elston, C.W.; Ellis, I.O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 1991, 19, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch. Pathol. Lab. Med. 2018, 142, 1364–1382. [Google Scholar] [CrossRef] [PubMed]
- Allison, K.H.; Hammond, M.E.H.; Dowsett, M.; McKernin, S.E.; Carey, L.A.; Fitzgibbons, P.L.; Hayes, D.F.; Lakhani, S.R.; Chavez-MacGregor, M.; Perlmutter, J.; et al. Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. J. Clin. Oncol. 2020, 38, 1346–1366. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.L.; Oza, A.M.; Lorusso, D.; Aghajanian, C.; Oaknin, A.; Dean, A.; Colombo, N.; Weberpals, J.I.; Clamp, A.; Scambia, G.; et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 1949–1961. [Google Scholar] [CrossRef] [PubMed]
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, L.; Wei, J.; Weiss, H.; Miller, R.W.; Villano, J.L. Phase II trial design with growth modulation index as the primary endpoint. Pharm. Stat. 2019, 18, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Castelo-Branco, L.; Pellat, A.; Martins-Branco, D.; Valachis, A.; Derksen, J.W.G.; Suijkerbuijk, K.P.M.; Dafni, U.; Dellaporta, T.; Vogel, A.; Prelaj, A.; et al. ESMO Guidance for Reporting Oncology real-World evidence (GROW). Ann. Oncol. 2023, 34, 1097–1112. [Google Scholar] [CrossRef] [PubMed]
- Mahe, M.; Dufour, F.; Neyret-Kahn, H.; Moreno-Vega, A.; Beraud, C.; Shi, M.; Hamaidi, I.; Sanchez-Quiles, V.; Krucker, C.; Dorland-Galliot, M.; et al. An FGFR3/MYC positive feedback loop provides new opportunities for targeted therapies in bladder cancers. EMBO Mol. Med. 2018, 10, e8163. [Google Scholar] [CrossRef]
- Mosele, M.F.; Westphalen, C.B.; Stenzinger, A.; Barlesi, F.; Bayle, A.; Bièche, I.; Bonastre, J.; Castro, E.; Dienstmann, R.; Krämer, A.; et al. Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: A report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2024, 35, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Rieke, D.T.; Bitzer, M.; Bleckmann, A.; Desuki, A.; Ernst, T.; Esposito, I.; Gerger, A.; Glimm, H.; Horak, P.; Hübschmann, D.; et al. Precision oncology-Guideline of the Austrian, German and Swiss Societies for hematology and medical oncology. Eur. J. Cancer 2025, 220, 115331. [Google Scholar] [CrossRef] [PubMed]
- Bruzas, S.; Kuemmel, S.; Harrach, H.; Breit, E.; Ataseven, B.; Traut, A.; Rüland, A.; Kostara, A.; Chiari, O.; Dittmer-Grabowski, C.; et al. Next-Generation Sequencing-Directed Therapy in Patients with Metastatic Breast Cancer in Routine Clinical Practice. Cancers 2021, 13, 4564. [Google Scholar] [CrossRef] [PubMed]
- Boscolo Bielo, L.; Guerini Rocco, E.; Crimini, E.; Repetto, M.; Lombardi, M.; Zanzottera, C.; Aurilio, G.; Barberis, M.; Belli, C.; Zhan, Y.; et al. Molecular tumor board in patients with metastatic breast cancer. Breast Cancer Res. Treat. 2025, 210, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Fukada, I.; Mori, S.; Hayashi, N.; Hosonaga, M.; Yamazaki, M.; Wang, X.; Kawai, S.; Inagaki, L.; Ozaki, Y.; Kobayashi, K.; et al. Assessment of a cancer genomic profile test for patients with metastatic breast cancer. Sci. Rep. 2022, 12, 4813. [Google Scholar] [CrossRef] [PubMed]
- Walter, C.; Hartkopf, A.; Koch, A.; Klaumünzer, M.; Schulze, M.; Grischke, E.M.; Taran, F.A.; Brucker, S.; Battke, F.; Biskup, S. Sequencing for an interdisciplinary molecular tumor board in patients with advanced breast cancer: Experiences from a case series. Oncotarget 2020, 11, 3279–3285. [Google Scholar] [CrossRef] [PubMed]
- van Geelen, C.T.; Savas, P.; Teo, Z.L.; Luen, S.J.; Weng, C.F.; Ko, Y.A.; Kuykhoven, K.S.; Caramia, F.; Salgado, R.; Francis, P.A.; et al. Clinical implications of prospective genomic profiling of metastatic breast cancer patients. Breast Cancer Res. 2020, 22, 91. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.A.; Schwaederlé, M.; Scur, M.D.; Boles, S.G.; Helsten, T.; Subramanian, R.; Schwab, R.B.; Kurzrock, R. Breast Cancer Experience of the Molecular Tumor Board at the University of California, San Diego Moores Cancer Center. J. Oncol. Pract. 2015, 11, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Hlevnjak, M.; Schulze, M.; Elgaafary, S.; Fremd, C.; Michel, L.; Beck, K.; Pfütze, K.; Richter, D.; Wolf, S.; Horak, P.; et al. CATCH: A Prospective Precision Oncology Trial in Metastatic Breast Cancer. JCO Precis. Oncol. 2021, 5, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Sohal, D.P.; Rini, B.I.; Khorana, A.A.; Dreicer, R.; Abraham, J.; Procop, G.W.; Saunthararajah, Y.; Pennell, N.A.; Stevenson, J.P.; Pelley, R.; et al. Prospective Clinical Study of Precision Oncology in Solid Tumors. J. Natl. Cancer Inst. 2015, 108, djv332. [Google Scholar] [CrossRef] [PubMed]
- Massard, C.; Michiels, S.; Ferté, C.; Le Deley, M.C.; Lacroix, L.; Hollebecque, A.; Verlingue, L.; Ileana, E.; Rosellini, S.; Ammari, S.; et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial. Cancer Discov. 2017, 7, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Pernas, S.; Villagrasa, P.; Vivancos, A.; Scaltriti, M.; Rodón, J.; Burgués, O.; Nuciforo, P.; Canes, J.; Paré, L.; Dueñas, M.; et al. First Nationwide Molecular Screening Program in Spain for Patients with Advanced Breast Cancer: Results From the AGATA SOLTI-1301 Study. Front. Oncol. 2021, 11, 744112. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.; Filleron, T.; Kamal, M.; Mosele, F.; Arnedos, M.; Dalenc, F.; Sablin, M.P.; Campone, M.; Bonnefoi, H.; Lefeuvre-Plesse, C.; et al. Genomics to select treatment for patients with metastatic breast cancer. Nature 2022, 610, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Mateo, J.; Chakravarty, D.; Dienstmann, R.; Jezdic, S.; Gonzalez-Perez, A.; Lopez-Bigas, N.; Ng, C.K.Y.; Bedard, P.L.; Tortora, G.; Douillard, J.Y.; et al. A framework to rank genomic alterations as targets for cancer precision medicine: The ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol. 2018, 29, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, D.; Gao, J.; Phillips, S.M.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 1, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kuzbari, Z.; Bandlamudi, C.; Loveday, C.; Garrett, A.; Mehine, M.; George, A.; Hanson, H.; Snape, K.; Kulkarni, A.; Allen, S.; et al. Germline-focused analysis of tumour-detected variants in 49,264 cancer patients: ESMO Precision Medicine Working Group recommendations. Ann. Oncol. 2023, 34, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Lian, B.; Ou, J.; Wang, Q.; Wang, W.; Wang, K.; Wang, D.; Song, Z.; Liu, A.; Yu, J.; et al. Expert Consensus on the Diagnosis and Treatment of FGFR Gene-Altered Solid Tumors. Glob. Med. Genet. 2024, 11, 330–343. [Google Scholar] [CrossRef] [PubMed]
- Alva, A.S.; Mangat, P.K.; Garrett-Mayer, E.; Halabi, S.; Hansra, D.; Calfa, C.J.; Khalil, M.F.; Ahn, E.R.; Cannon, T.L.; Crilley, P.; et al. Pembrolizumab in Patients with Metastatic Breast Cancer with High Tumor Mutational Burden: Results From the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. J. Clin. Oncol. 2021, 39, 2443–2451. [Google Scholar] [CrossRef] [PubMed]
- Henry, N.L.; Somerfield, M.R.; Dayao, Z.; Elias, A.; Kalinsky, K.; McShane, L.M.; Moy, B.; Park, B.H.; Shanahan, K.M.; Sharma, P.; et al. Biomarkers for Systemic Therapy in Metastatic Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2022, 40, 3205–3221. [Google Scholar] [CrossRef] [PubMed]
- Cortés, A.; López-Miranda, E.; Fernández-Ortega, A.; Carañana, V.; Servitja, S.; Urruticoechea, A.; Lema-Roso, L.; Márquez, A.; Lazaris, A.; Alcalá-López, D.; et al. Olaparib monotherapy in advanced triple-negative breast cancer patients with homologous recombination deficiency and without germline mutations in BRCA1/2: The NOBROLA phase 2 study. Breast 2024, 78, 103834. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.L.; Chang, Y.T.; Hong, Z.Y.; Lin, C.S. Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy. Int. J. Mol. Sci. 2022, 23, 3238. [Google Scholar] [CrossRef] [PubMed]
- Yap, T.A.; Bardia, A.; Dvorkin, M.; Galsky, M.D.; Beck, J.T.; Wise, D.R.; Karyakin, O.; Rubovszky, G.; Kislov, N.; Rohrberg, K.; et al. Avelumab Plus Talazoparib in Patients with Advanced Solid Tumors: The JAVELIN PARP Medley Nonrandomized Controlled Trial. JAMA Oncol. 2023, 9, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.D.; Merino Vega, D.; Arend, R.C.; Baden, J.F.; Barbash, O.; Beaubier, N.; Collins, G.; French, T.; Ghahramani, N.; Hinson, P.; et al. Homologous Recombination Deficiency: Concepts, Definitions, and Assays. Oncologist 2022, 27, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Akhoundova, D.; Rubin, M.A. Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer Cell 2022, 40, 920–938. [Google Scholar] [CrossRef] [PubMed]
- Irmisch, A.; Bonilla, X.; Chevrier, S.; Lehmann, K.V.; Singer, F.; Toussaint, N.C.; Esposito, C.; Mena, J.; Milani, E.S.; Casanova, R.; et al. The Tumor Profiler Study: Integrated, multi-omic, functional tumor profiling for clinical decision support. Cancer Cell 2021, 39, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Miglino, N.; Toussaint, N.C.; Ring, A.; Bonilla, X.; Tusup, M.; Gosztonyi, B.; Mehra, T.; Gut, G.; Jacob, F.; Chevrier, S.; et al. Feasibility of multiomics tumor profiling for guiding treatment of melanoma. Nat. Med. 2025, 31, 2430–2441. [Google Scholar] [CrossRef] [PubMed]
MTB reviews, number | 104 |
Molecular profile analysis, n (%) | |
Molecular comparison conducted | 2 (1.9) |
CUP characterization conducted | 0 (0) |
MTB review with recommendation, n (%) | 72 (69.2) |
Total count of MTB recommendations, number | 155 |
Type of MTB recommendation, n (%) | |
Treatment | 123 (79.4) |
Clinical study | 4 (2.6) |
Genetic counseling | 12 (7.7) |
Additional testing | 16 (10.3) |
Clinical study recommendations (n = 4) | |
Study phase, n (%) | |
Phase 1 | 1 (25) |
Phase 2 | 3 (75) |
Underlying gene alteration, n (%) | |
AKT1 | 2 (50) |
BRAF-GTF2I | 1 (25) |
FANCA | 1 (25) |
Treatment recommendations (n = 123) | |
Expected drug action, n (%) | |
Therapeutic drug effect | 117 (95.1) |
Lack of drug effect | 6 (4.9) |
Drug class, n (%) | |
PI3K inhibitor | 34 (27.6) |
Endocrine therapy | 30 (24.4) |
PARP inhibitor | 13 (10.6) |
Immune checkpoint inhibitor | 11 (8.9) |
FGFR inhibitor | 9 (7.3) |
Chemotherapeutic agent | 7 (5.7) |
mTOR inhibitor | 7 (5.7) |
HER2-targeting antibody | 5 (4.1) |
CDK4/6 inhibitor | 2 (1.6) |
HER2-targeting TKI | 2 (1.6) |
MEK inhibitor | 1 (0.8) |
MAPK inhibitor | 1 (0.8) |
SMO inhibitor | 1 (0.8) |
Adherence to clinical practice, n (%) | |
Non-SOC | 33 (26.8) |
Most frequent underlying alteration, n (%) | |
PIK3CA | 51 (41.5) |
High TMB | 12 (9.8) |
ESR1 | 11 (8.9) |
ERBB2 | 8 (6.5) |
High LOH score | 6 (4.9) |
BRCA2 | 5 (4.1) |
AKT1 | 4 (3.3) |
FGFR1 | 4 (3.3) |
BRCA1-NSRP1 | 2 (1.6) |
Cancer Subtype | Drug Class | Altered Gene | Type of Alteration | Protein Sequence Variation | Specific Drug | Palliative Line | PFS (m) | PFS-Ratio | OS (m) | Best Response |
---|---|---|---|---|---|---|---|---|---|---|
HR−/HER2− | FGFR Inhibitor | FGFR1 | Copy Number Increase | — | Erdafitinib | 8 | 1 | — # | 2 | SD/PD < 6 m |
HR+/HER2− | FGFR Inhibitor | FGFR1 | Copy Number Increase | — | — | — | — | — | — | — |
HR+/HER2− | FGFR Inhibitor | FGFR1 | Copy Number Increase | — | — | — | — | — | — | — |
HR+/HER2− | FGFR Inhibitor | FGFR1 | Copy Number Increase | — | — | — | — | — | — | — |
HR+/HER2− | FGFR Inhibitor | FGFR2 | Copy Number Increase | — | — | — | — | — | — | — |
HR+/HER2− | FGFR Inhibitor | FGFR3 | Missense Variant | p.(Ser249Cys) | — | — | — | — | — | — |
HR+/HER2− | FGFR Inhibitor | FGF3 | Copy Number Increase | — | — | — | — | — | — | — |
HR+/HER2− | FGFR Inhibitor | FGF4 | Copy Number Increase | — | — | — | — | — | — | — |
HR+/HER2− | FGFR Inhibitor | FGF19 | Copy Number Increase | — | — | — | — | — | — | — |
HR+/HER2− | HER2-targeting TKI | ERBB2 | Missense Variant | p.(Asp769Tyr) | — | — | — | — | — | — |
HR−/HER2− | ICI | — | High TMB ‡ | — | — | — | — | — | — | — |
HR+/HER2− | ICI | — | High TMB | — | — | — | — | — | — | — |
HR−/HER2− | ICI | — | «High» TMB (7.9 Mut/Mb) | — | — | — | — | — | — | — |
HR+/HER2− | ICI | — | High TMB | — | — | — | — | — | — | — |
HR+/HER2− | ICI | — | High TMB | — | — | — | — | — | — | — |
HR+/HER2− | ICI | — | High TMB | — | — | — | — | — | — | — |
HR+/HER2− | ICI | — | High TMB | — | Pembrolizumab | 3 | 20 * | 10 | 20 * | SD > 6 m |
HR+/HER2− | ICI | — | High TMB | — | Ipilimumab/Nivolumab | 5 | 0 | 0 | 0 | SD/PD < 6 m † |
HR+/HER2− | ICI | — | High TMB | — | — | — | — | — | — | — |
HR−/HER2− | ICI | — | High TMB | — | Atezolizumab | 3 | 0 | 0 | 0 | SD/PD < 6 m † |
HR−/HER2− | MAPK Inhibitor | MAPK1 | Missense Variant | p.(Glu322Lys) | — | — | — | — | — | — |
HR+/HER2− | MEK Inhibitor | BRAF-GTF2I | Gene Fusion | — | — | — | — | — | — | — |
HR−/HER2− | mTOR Inhibitor | PIK3R1 | Missense Variant | p.(Asn564Asp) | — | — | — | — | — | — |
HR−/HER2− | mTOR Inhibitor | PTEN | Frameshift Variant | p.(Val222fs*1) | — | — | — | — | — | — |
HR+/HER2− | PARP Inhibitor | — | High LOH Score ‡ | — | — | — | — | — | — | — |
HR+/HER2− | PARP Inhibitor | — | High LOH Score | — | — | — | — | — | — | — |
HR+/HER2− | PARP Inhibitor | — | High LOH Score | — | Olaparib | 3 | 21 * | 0.84 | 21 * | CR |
HR+/HER2− | PARP Inhibitor | — | High LOH Score | — | — | — | — | — | — | — |
HR+/HER2− | PARP Inhibitor | BRIP1 | Frameshift Variant | p.(Lys998fs*60) | — | — | — | — | — | — |
HR+/HER2− | PARP Inhibitor | CCND1 | Copy Number Increase | — | — | — | — | — | — | — |
HR+/HER2− | PARP Inhibitor | — | HRR-deficiency | — | Talazo- and olaparib (consecutively) | 3 | 8 | 0.67 | 18 | PR |
HR−/HER2− | PI3K Inhibitor | PIK3CA | Missense Variant | p.(Gln546Arg) | Alpelisib | 2 | 6 | 0.75 | 12 * | PR |
HR+/HER2− | SMO Inhibitor | PTCH1 | Stop Gained | p.(Met1Val) | — | — | — | — | — | — |
Summary, median (range) | 3 (2–8) | 6 (0–21) | 0.71 (0–10) | 12 (0–21) | — |
Matched Targeted Therapy | |
Number of treatments | 48 |
Percentage of all therapeutic drug effect recommendations (n = 117) | 41 |
Number of patients | 35 |
Percentage of all patients receiving a therapeutic drug effect recommendation (n = 59) | 59.3 |
Adherence to clinical practice | |
Non-SOC treatment recommendation followed, number | 7 |
Percentage of all non-SOC treatment recommendations (n = 33) | 21.2 |
Palliative treatment line | |
Median (range) | 2 (1–11) |
Line 1, n (%) | 7 (17.1) |
Line 2, n (%) | 18 (43.9) |
Line 3, n (%) | 13 (31.7) |
Line 4, n (%) | 5 (12.2) |
Line 5, n (%) | 3 (7.3) |
Line 8, n (%) | 1 (2.4) |
Line 11, n (%) | 1 (2.4) |
Treatment duration, months | |
Median (range) | 6 (0–49) |
Treatment ongoing †, n (%) | 9 (18.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graf, T.; Boos, L.A.; Mehra, T.; Miglino, N.; Sobottka, B.; Rüschoff, J.H.; Fábregas-Ibáñez, L.; Zoche, M.; Frauchiger-Heuer, H.; Witzel, I.; et al. Precision Oncology Guided by Genomic Profiling in Breast Cancer: Real-World Data from a Molecular Tumor Board. Cancers 2025, 17, 2435. https://doi.org/10.3390/cancers17152435
Graf T, Boos LA, Mehra T, Miglino N, Sobottka B, Rüschoff JH, Fábregas-Ibáñez L, Zoche M, Frauchiger-Heuer H, Witzel I, et al. Precision Oncology Guided by Genomic Profiling in Breast Cancer: Real-World Data from a Molecular Tumor Board. Cancers. 2025; 17(15):2435. https://doi.org/10.3390/cancers17152435
Chicago/Turabian StyleGraf, Tim, Laura A. Boos, Tarun Mehra, Nicola Miglino, Bettina Sobottka, Jan H. Rüschoff, Luis Fábregas-Ibáñez, Martin Zoche, Heike Frauchiger-Heuer, Isabell Witzel, and et al. 2025. "Precision Oncology Guided by Genomic Profiling in Breast Cancer: Real-World Data from a Molecular Tumor Board" Cancers 17, no. 15: 2435. https://doi.org/10.3390/cancers17152435
APA StyleGraf, T., Boos, L. A., Mehra, T., Miglino, N., Sobottka, B., Rüschoff, J. H., Fábregas-Ibáñez, L., Zoche, M., Frauchiger-Heuer, H., Witzel, I., Ring, A., & Wicki, A. (2025). Precision Oncology Guided by Genomic Profiling in Breast Cancer: Real-World Data from a Molecular Tumor Board. Cancers, 17(15), 2435. https://doi.org/10.3390/cancers17152435