Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = insulinoma cell lines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4036 KB  
Article
Investigating the Role of Diet-Manipulated Gut Bacteria in Pathogenesis of Type 2 Diabetes Mellitus—An In Vitro Approach
by Asha Guraka, Marie Lush, Georgios Zouganelis, Joe Waldron, Subbareddy Mekapothula, Jinit Masania, Gareth Wynn Vaughan Cave, Myra Elizabeth Conway, Gyanendra Tripathi and Ali Kermanizadeh
Nutrients 2026, 18(2), 279; https://doi.org/10.3390/nu18020279 - 15 Jan 2026
Viewed by 269
Abstract
Background: The human gut microbiome is highly complex, and its composition is strongly influenced by dietary patterns. Alterations in microbiome structure have been associated with a range of diseases, including type 2 diabetes mellitus. However, the underlying mechanisms for this remain poorly understood. [...] Read more.
Background: The human gut microbiome is highly complex, and its composition is strongly influenced by dietary patterns. Alterations in microbiome structure have been associated with a range of diseases, including type 2 diabetes mellitus. However, the underlying mechanisms for this remain poorly understood. In this study, a novel in vitro approach was utilized to investigate the interplay between gut bacteria, dietary metabolites, and metabolic dysfunction. Methods: Two representative gut bacterial species—Bacteroides thetaiotaomicron and Lactobacillus fermentum—were isolated from human faecal samples and subjected to controlled dietary manipulation to mimic eubiotic and dysbiotic conditions. Metabolites produced under these conditions were extracted, characterized, and quantified. To assess the functional impact of these metabolites, we utilized the INS-1 832/3 insulinoma cell line, evaluating insulin sensitivity through glucose-stimulated insulin secretion and ERK1/2 activation. Results: Our findings demonstrate that metabolites derived from high-carbohydrate/high-fat diets exacerbate metabolic dysfunction, whereas those generated under high-fibre conditions significantly enhance insulin secretion and glucose-dependent ERK1/2 activation in co-culture compared to monocultures. Conclusions: This work systematically disentangles the complex interactions between gut microbiota, diet, and disease, providing mechanistic insights into how microbial metabolites contribute to the onset of metabolic disorders. Full article
Show Figures

Graphical abstract

16 pages, 3328 KB  
Article
A Small-Molecule Mitofusin 1 Agonist Enhances Islet Survival Under Hypoxic Conditions In Vitro and Improves Transplantation Outcomes
by Yue Wang, Bofeng Yang, Pengkun Song, Zexiang Ji, Di Zhang, Wenxuan Chen, Lei Du and Lei Liu
Biomolecules 2025, 15(11), 1585; https://doi.org/10.3390/biom15111585 - 11 Nov 2025
Viewed by 786
Abstract
Background: Hypoxia-induced oxidative stress compromises the survival and function of transplanted islets, contributing to high rates of islet transplantation failure. Methods: This study investigated the small-molecule mitochondrial fusion agonist S89, which specifically activates mitofusin 1 (MFN1). We assessed its protective effects [...] Read more.
Background: Hypoxia-induced oxidative stress compromises the survival and function of transplanted islets, contributing to high rates of islet transplantation failure. Methods: This study investigated the small-molecule mitochondrial fusion agonist S89, which specifically activates mitofusin 1 (MFN1). We assessed its protective effects against hypoxia-induced oxidative stress and apoptosis in pancreatic β-cells. Results: In mouse insulinoma cells (Min6), S89 enhanced cell viability by promoting mitochondrial fusion to inhibit mitochondrial reactive oxygen species (mtROS) overaccumulation (S89 reduced mtROS by approximately 30%) and attenuated mitochondrial lipid peroxidation; furthermore, it suppressed hypoxia-induced apoptosis via downregulation of the BAX/BCL-2 ratio, thus protecting the cells from hypoxia-induced oxidative damage. Notably, S89 significantly potentiated glucose-stimulated insulin secretion (GSIS) in both the Min6 β-cell line and primary mouse islets. Critically, S89 pretreatment enhanced hypoxia resistance in islets and significantly increased graft survival upon transplantation into streptozotocin (STZ)-induced type 1 diabetic (T1D) mice, maintaining prolonged blood glucose homeostasis. Conclusions: These findings demonstrate that S89 protects β-cells from hypoxic injury, indicating its efficacy as a therapeutic approach for improving islet transplantation outcomes. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

12 pages, 1664 KB  
Article
Dual Effect of 4-Methylumbelliferone on INS1E Cells: Enhancing Migration and Glucose-Stimulated Insulin Secretion
by Giorgia Adamo, Daniele Romancino, Paola Gargano, Marta Sarullo, Aldo Nicosia, Sabrina Picciotto, Giulia Smeraldi, Antonella Bongiovanni and Monica Salamone
Int. J. Mol. Sci. 2025, 26(15), 7637; https://doi.org/10.3390/ijms26157637 - 7 Aug 2025
Viewed by 1283
Abstract
Recent studies have demonstrated that the coumarin derivative 4-Methylumbelliferone (4MU) has an antidiabetic effect in rodent models. 4MU is known to decrease the availability of hyaluronan (HA) substrates and inhibit the activity of different HA synthases. Nevertheless, it has been observed that 4MU [...] Read more.
Recent studies have demonstrated that the coumarin derivative 4-Methylumbelliferone (4MU) has an antidiabetic effect in rodent models. 4MU is known to decrease the availability of hyaluronan (HA) substrates and inhibit the activity of different HA synthases. Nevertheless, it has been observed that 4MU may also affect cellular metabolism. In this study, we utilize the rat insulinoma beta cell line (INS-1E) cultured in both two-dimensional (2D) and three-dimensional (3D) experimental settings (pseudo islets), as an in vitro model to study beta cell functionality. For the first time, we observed that treating INS1E cells with 4MU results in improved insulin secretion. Additionally, we discovered that 4MU treatment elicited morphological changes from multilayer to monolayer conditions, along with a varied distribution of insulin granules and cell adhesion properties. Notably, we found that insulin secretion is not correlated with HA production. The same result was observed in co-culture experiments involving INS-1E cells and stromal vascular fraction (SVF) from adipose tissue. These experiments aim to investigate the effects of 4MU on beta cells in the context of its potential use in early-stage type 1 diabetes and in enhancing islet transplantation outcomes. Full article
(This article belongs to the Special Issue New Insights into Hyaluronan in Human Medicine)
Show Figures

Figure 1

13 pages, 2107 KB  
Article
Unlocking the Bioactivity of Sweet Wormwood (Artemisia annua L., Asteraceae) Ethanolic Extract: Phenolics, Antioxidants, and Cytotoxic Effects
by Neda Gavarić, Milica Aćimović, Nebojša Kladar, Maja Hitl, Jovana Drljača Lero, Nataša Milić and Katarina Radovanović
Pharmaceutics 2025, 17(7), 890; https://doi.org/10.3390/pharmaceutics17070890 - 9 Jul 2025
Cited by 3 | Viewed by 2874
Abstract
Objectives: The aim of this work was to determine the phenolic composition of sweet wormwood (Artemisia annua L., Asteraceae) from controlled cultivation in Serbia and to assess the potential antioxidant effects and cytotoxicity. Methods: High-performance liquid chromatography was used to [...] Read more.
Objectives: The aim of this work was to determine the phenolic composition of sweet wormwood (Artemisia annua L., Asteraceae) from controlled cultivation in Serbia and to assess the potential antioxidant effects and cytotoxicity. Methods: High-performance liquid chromatography was used to determine the phenolic composition of Artemisia annua ethanolic extract. The antioxidant activity was studied using in vitro tests of inhibition of the neutralization of 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), and nitroso (NO) radicals, as well as the process of inhibiting lipid peroxidation and the ferric reducing antioxidant power (FRAP). The cytotoxicity was evaluated by the effect on three cell lines (the rat pancreatic insulinoma cell line (Rin-5F), the rat hepatoma cell line (H4IIE), and human hepatocellular carcinoma (Hep G2)) using the MTT test of viability. Results: Ethanol extract showed the highest potency in inhibiting the DPPH radical, and the half maximal inhibitory concentration (IC50) was 5.17 μg/mL. Chlorogenic acid was the dominant phenolic compound with an amount of 651 μg/g of dry extract. The results of the MTT viability test showed that the extract has the potential to inhibit the growth of the Rin-5F and Hep G2 cell lines, while no growth inhibition was observed on the H4IIE cell line. Conclusions: Undoubtedly, Artemisia annua is a powerful plant and a rich source of phenolic compounds. Inhibitory activity on causes of oxidative stress shows that the plant has a good antioxidant effect. Also, the anticancer activity shown through the inhibition of cell growth is not negligible. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

18 pages, 4186 KB  
Article
Interplay of PAK1 and CAMKII in Pancreatic Beta Cell Insulin Secretion
by Nely Gisela López-Desiderio, Genaro Patiño-López, Citlaltépetl Salinas-Lara, Carlos Sánchez-Garibay, Olga Villamar-Cruz, Alonso Vilches-Flores, José de Jesús Peralta-Romero, Leonel Armas-López, Jazmín García-Machorro, Luis Enrique Arias-Romero and Héctor Iván Saldívar-Cerón
Diabetology 2025, 6(5), 39; https://doi.org/10.3390/diabetology6050039 - 7 May 2025
Cited by 1 | Viewed by 4086
Abstract
Background/Objectives: Type 2 diabetes mellitus (T2DM) is a major global health challenge, primarily driven by insulin resistance and beta-cell dysfunction. This study investigated the roles of p21-activated kinase 1 (PAK1) and calcium/calmodulin-dependent protein kinase II (CAMKII) in insulin secretion, aiming to elucidate their [...] Read more.
Background/Objectives: Type 2 diabetes mellitus (T2DM) is a major global health challenge, primarily driven by insulin resistance and beta-cell dysfunction. This study investigated the roles of p21-activated kinase 1 (PAK1) and calcium/calmodulin-dependent protein kinase II (CAMKII) in insulin secretion, aiming to elucidate their involvement in this process and their implications in T2DM pathophysiology. Methods: Using the Beta-TC-6 insulinoma cell line, we assessed colocalization and interaction of PAK1 and CAMKII under glucose stimulation through indirect immuno-fluorescence (IFI) and proximity ligation assays (PLA). To examine their expression dynamics in a physiological context, we performed immunohistochemistry (IHC) on pancreatic sections from wild-type (WT), prediabetic, and T2DM murine models. Additionally, bioinformatic analysis of publicly available RNA sequencing (RNA-Seq) data from human islets of healthy donors, prediabetic individuals, and T2DM patients provided translational validation. Results: High glucose conditions significantly increased PAK1-CAMKII colocalization, correlating with enhanced insulin secretion. Pharmacological inhibition of these kinases reduced insulin release, confirming their regulatory roles. Murine and human islet analyses showed a progressive increase in kinase expression from prediabetes to T2DM, highlighting their relevance in disease progression. Conclusions: The coordinated function of PAK1 and CaMKII in insulin secretion suggests their potential as biomarkers and therapeutic targets in T2DM. Further studies are warranted to explore their mechanistic roles and therapeutic applications in preserving beta-cell function. Full article
Show Figures

Figure 1

15 pages, 2106 KB  
Article
The Influence of BMP6 on Serotonin and Glucose Metabolism
by Marina Milešević, Ivona Matić Jelić, Viktorija Rumenović, Natalia Ivanjko, Slobodan Vukičević and Tatjana Bordukalo-Nikšić
Int. J. Mol. Sci. 2024, 25(14), 7842; https://doi.org/10.3390/ijms25147842 - 18 Jul 2024
Cited by 1 | Viewed by 1747
Abstract
Previous studies have suggested a potential role of bone morphogenetic protein 6 (BMP6) in glucose metabolism, which also seems to be regulated by serotonin (5-hydroxytryptamine, 5HT), a biogenic amine with multiple roles in the organism. In this study, we explored possible interactions between [...] Read more.
Previous studies have suggested a potential role of bone morphogenetic protein 6 (BMP6) in glucose metabolism, which also seems to be regulated by serotonin (5-hydroxytryptamine, 5HT), a biogenic amine with multiple roles in the organism. In this study, we explored possible interactions between BMP6, serotonin, and glucose metabolism regulation. The effect of BMP6 or 5HT on pancreatic β-cells has been studied in vitro using the INS-1 832/13 rat insulinoma cell line. Studies in vivo have been performed on mice with the global deletion of the Bmp6 gene (BMP6−/−) and included glucose and insulin tolerance tests, gene expression studies using RT-PCR, immunohistochemistry, and ELISA analyses. We have shown that BMP6 and 5HT treatments have the opposite effect on insulin secretion from INS-1 cells. The effect of BMP6 on the 5HT system in vivo depends on the tissue studied, with no observable systemic effect on peripheral 5HT metabolism. BMP6 deficiency does not cause diabetic changes, although a mild difference in insulin tolerance test between BMP6−/− and WT mice was observed. In conclusion, BMP6 does not directly influence glucose metabolism, but there is a possibility that its deletion causes slowly developing changes in glucose and serotonin metabolism, which would become more expressed with ageing. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

15 pages, 4162 KB  
Article
Chronic Epinephrine-Induced Endoplasmic Reticulum and Oxidative Stress Impairs Pancreatic β-Cells Function and Fate
by Ran Zhang, Bingpeng Yao, Rui Li, Sean W. Limesand, Yongju Zhao and Xiaochuan Chen
Int. J. Mol. Sci. 2024, 25(13), 7029; https://doi.org/10.3390/ijms25137029 - 27 Jun 2024
Cited by 5 | Viewed by 2816
Abstract
Epinephrine influences the function of pancreatic β-cells, primarily through the α2A-adrenergic receptor (α2A-AR) on their plasma membrane. Previous studies indicate that epinephrine transiently suppresses insulin secretion, whereas prolonged exposure induces its compensatory secretion. Nonetheless, the impact of epinephrine-induced α2A-AR signaling on the survival [...] Read more.
Epinephrine influences the function of pancreatic β-cells, primarily through the α2A-adrenergic receptor (α2A-AR) on their plasma membrane. Previous studies indicate that epinephrine transiently suppresses insulin secretion, whereas prolonged exposure induces its compensatory secretion. Nonetheless, the impact of epinephrine-induced α2A-AR signaling on the survival and function of pancreatic β-cells, particularly the impact of reprogramming after their removal from sustained epinephrine stimulation, remains elusive. In the present study, we applied MIN6, a murine insulinoma cell line, with 3 days of high concentration epinephrine incubation and 2 days of standard incubation, explored cell function and activity, and analyzed relevant regulatory pathways. The results showed that chronic epinephrine incubation led to the desensitization of α2A-AR and enhanced insulin secretion. An increased number of docked insulin granules and impaired Syntaxin-2 was found after chronic epinephrine exposure. Growth curve and cell cycle analyses showed the inhibition of cell proliferation. Transcriptome analysis showed the occurrence of endoplasmic reticulum stress (ER stress) and oxidative stress, such as the presence of BiP, CHOP, IRE1, ATF4, and XBP, affecting cellular endoplasmic reticulum function and survival, along with UCP2, OPA1, PINK, and PRKN, associated with mitochondrial dysfunction. Consequently, we conclude that chronic exposure to epinephrine induces α2A-AR desensitization and leads to ER and oxidative stress, impairing protein processing and mitochondrial function, leading to modified pancreatic β-cell secretory function and cell fate. Full article
(This article belongs to the Special Issue Advanced Research on the Adrenal Gland and Hormones)
Show Figures

Figure 1

15 pages, 3004 KB  
Article
The Impact of Psilocybin on High Glucose/Lipid-Induced Changes in INS-1 Cell Viability and Dedifferentiation
by Esmaeel Ghasemi Gojani, Bo Wang, Dong-Ping Li, Olga Kovalchuk and Igor Kovalchuk
Genes 2024, 15(2), 183; https://doi.org/10.3390/genes15020183 - 29 Jan 2024
Cited by 10 | Viewed by 14008
Abstract
Serotonin emerges as a pivotal factor influencing the growth and functionality of β-cells. Psilocybin, a natural compound derived from mushrooms of the Psilocybe genus, exerts agonistic effects on the serotonin 5-HT2A and 5-HT2B receptors, thereby mimicking serotonin’s behavior. This study investigates the potential [...] Read more.
Serotonin emerges as a pivotal factor influencing the growth and functionality of β-cells. Psilocybin, a natural compound derived from mushrooms of the Psilocybe genus, exerts agonistic effects on the serotonin 5-HT2A and 5-HT2B receptors, thereby mimicking serotonin’s behavior. This study investigates the potential impacts of psilocybin on β-cell viability, dedifferentiation, and function using an in vitro system. The INS-1 832/13 Rat Insulinoma cell line underwent psilocybin pretreatment, followed by exposure to high glucose-high lipid (HG-HL) conditions for specific time periods. After being harvested from treated cells, total transcript and cellular protein were utilized for further investigation. Our findings implied that psilocybin administration effectively mitigates HG-HL-stimulated β-cell loss, potentially mediated through the modulation of apoptotic biomarkers, which is possibly related to the mitigation of TXNIP, STAT-1, and STAT-3 phosphorylation. Furthermore, psilocybin exhibits the capacity to modulate the expression of key genes associated with β-cell dedifferentiation, including Pou5f1 and Nanog, indicating its potential in attenuating β-cell dedifferentiation. This research lays the groundwork for further exploration into the therapeutic potential of psilocybin in Type II diabetes intervention. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 1281 KB  
Article
Evaluating the Antioxidant and Antidiabetic Properties of Medicago sativa and Solidago virgaurea Polyphenolic-Rich Extracts
by Gabriela Paun, Elena Neagu, Andreia Alecu, Camelia Albu, Ana-Maria Seciu-Grama and Gabriel Lucian Radu
Molecules 2024, 29(2), 326; https://doi.org/10.3390/molecules29020326 - 9 Jan 2024
Cited by 10 | Viewed by 3553
Abstract
The present study evaluated the antioxidant and antidiabetic properties of Medicago sativa and Solidago virgaurea extracts enriched in polyphenolic compounds. The extracts were obtained by accelerated solvent extraction (ASE) and laser irradiation. Then, microfiltration was used for purification, followed by nanofiltration used to [...] Read more.
The present study evaluated the antioxidant and antidiabetic properties of Medicago sativa and Solidago virgaurea extracts enriched in polyphenolic compounds. The extracts were obtained by accelerated solvent extraction (ASE) and laser irradiation. Then, microfiltration was used for purification, followed by nanofiltration used to concentrate the two extracts. The obtained extracts were analyzed to determine their antioxidant activity using DPPH radical scavenging and reducing power methods. The antidiabetic properties have been investigated in vitro on a murine insulinoma cell line (β-TC-6) by the inhibition of α-amylase and α-glucosidase. M. sativa obtained by laser irradiation and concentrated by nanofiltration showed the highest DPPH• scavenging (EC50 = 105.2 ± 1.1 µg/mL) and reducing power activities (EC50 = 40.98 ± 0.2 µg/mL). M. sativa extracts had higher inhibition on α-amylase (IC50 = 23.9 ± 1.2 µg/mL for concentrated extract obtained after ASE, and 26.8 ± 1.1), while S. virgaurea had the highest α-glucosidase inhibition (9.3 ± 0.9 µg/mL for concentrated extract obtained after ASE, and 8.6 ± 0.7 µg/mL for concentrated extract obtained after laser extraction). The obtained results after evaluating in vitro the antidiabetic activity showed that the treatment with M. sativa and S. virgaurea polyphenolic-rich extracts stimulated the insulin secretion of β-TC-6 cells, both under normal conditions and under hyperglycemic conditions as well. This paper argues that M. sativa and S. virgaurea polyphenolic-rich extracts could be excellent natural sources with promising antidiabetic potential. Full article
Show Figures

Graphical abstract

18 pages, 3311 KB  
Article
Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo
by Oleksandr Shapoval, David Větvička, Vitalii Patsula, Hana Engstová, Olga Kočková, Magdalena Konefał, Martina Kabešová and Daniel Horák
Pharmaceutics 2023, 15(12), 2694; https://doi.org/10.3390/pharmaceutics15122694 - 28 Nov 2023
Cited by 14 | Viewed by 2905
Abstract
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case [...] Read more.
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer. Full article
(This article belongs to the Special Issue Advanced Nanopharmaceuticals for Anticancer Therapy)
Show Figures

Figure 1

17 pages, 2635 KB  
Article
Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate
by Johan Perrier, Margaux Nawrot, Anne-Marie Madec, Karim Chikh, Marie-Agnès Chauvin, Christian Damblon, Julia Sabatier, Charles H. Thivolet, Jennifer Rieusset, Gilles J. P. Rautureau and Baptiste Panthu
Nutrients 2023, 15(22), 4791; https://doi.org/10.3390/nu15224791 - 15 Nov 2023
Cited by 1 | Viewed by 2406
Abstract
Progressive decline in pancreatic beta-cell function is central to the pathogenesis of type 2 diabetes (T2D). Here, we explore the relationship between the beta cell and its nutritional environment, asking how an excess of energy substrate leads to altered energy production and subsequent [...] Read more.
Progressive decline in pancreatic beta-cell function is central to the pathogenesis of type 2 diabetes (T2D). Here, we explore the relationship between the beta cell and its nutritional environment, asking how an excess of energy substrate leads to altered energy production and subsequent insulin secretion. Alterations in intracellular metabolic homeostasis are key markers of islets with T2D, but changes in cellular metabolite exchanges with their environment remain unknown. We answered this question using nuclear magnetic resonance-based quantitative metabolomics and evaluated the consumption or secretion of 31 extracellular metabolites from healthy and T2D human islets. Islets were also cultured under high levels of glucose and/or palmitate to induce gluco-, lipo-, and glucolipotoxicity. Biochemical analyses revealed drastic alterations in the pyruvate and citrate pathways, which appear to be associated with mitochondrial oxoglutarate dehydrogenase (OGDH) downregulation. We repeated these manipulations on the rat insulinoma-derived beta-pancreatic cell line (INS-1E). Our results highlight an OGDH downregulation with a clear effect on the pyruvate and citrate pathways. However, citrate is directed to lipogenesis in the INS-1E cells instead of being secreted as in human islets. Our results demonstrate the ability of metabolomic approaches performed on culture media to easily discriminate T2D from healthy and functional islets. Full article
(This article belongs to the Special Issue Metabolomics to Understand Diet-Related Metabolic Diseases)
Show Figures

Figure 1

18 pages, 3964 KB  
Article
BCL-XL Overexpression Protects Pancreatic β-Cells against Cytokine- and Palmitate-Induced Apoptosis
by Atenea A. Perez-Serna, Reinaldo S. Dos Santos, Cristina Ripoll, Angel Nadal, Decio L. Eizirik and Laura Marroqui
Int. J. Mol. Sci. 2023, 24(6), 5657; https://doi.org/10.3390/ijms24065657 - 16 Mar 2023
Cited by 11 | Viewed by 3791
Abstract
Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven β-cell loss or by the progressive loss of β-cell function, due to continued metabolic stresses. Although both α- and β-cells are exposed to the same stressors, such as proinflammatory cytokines and [...] Read more.
Diabetes is a chronic disease that affects glucose metabolism, either by autoimmune-driven β-cell loss or by the progressive loss of β-cell function, due to continued metabolic stresses. Although both α- and β-cells are exposed to the same stressors, such as proinflammatory cytokines and saturated free fatty acids (e.g., palmitate), only α-cells survive. We previously reported that the abundant expression of BCL-XL, an anti-apoptotic member of the BCL-2 family of proteins, is part of the α-cell defense mechanism against palmitate-induced cell death. Here, we investigated whether BCL-XL overexpression could protect β-cells against the apoptosis induced by proinflammatory and metabolic insults. For this purpose, BCL-XL was overexpressed in two β-cell lines—namely, rat insulinoma-derived INS-1E and human insulin-producing EndoC-βH1 cells—using adenoviral vectors. We observed that the BCL-XL overexpression in INS-1E cells was slightly reduced in intracellular Ca2+ responses and glucose-stimulated insulin secretion, whereas these effects were not observed in the human EndoC-βH1 cells. In INS-1E cells, BCL-XL overexpression partially decreased cytokine- and palmitate-induced β-cell apoptosis (around 40% protection). On the other hand, the overexpression of BCL-XL markedly protected EndoC-βH1 cells against the apoptosis triggered by these insults (>80% protection). Analysis of the expression of endoplasmic reticulum (ER) stress markers suggests that resistance to the cytokine and palmitate conferred by BCL-XL overexpression might be, at least in part, due to the alleviation of ER stress. Altogether, our data indicate that BCL-XL plays a dual role in β-cells, participating both in cellular processes related to β-cell physiology and in fostering survival against pro-apoptotic insults. Full article
(This article belongs to the Special Issue Diabetes Mellitus (DM) - Endocrine and Metabolic Disorders)
Show Figures

Figure 1

18 pages, 3022 KB  
Article
Expression Silencing of Mitogen-Activated Protein Kinase 8 Interacting Protein-1 Conferred Its Role in Pancreatic β-Cell Physiology and Insulin Secretion
by Rania Saeed, Abdul Khader Mohammed, Sarra E. Saleh, Khaled M. Aboshanab, Mohammad M. Aboulwafa and Jalal Taneera
Metabolites 2023, 13(2), 307; https://doi.org/10.3390/metabo13020307 - 20 Feb 2023
Cited by 2 | Viewed by 2904
Abstract
Mitogen-activated protein kinase 8 interacting protein-1 (MAPK8IP1) gene has been recognized as a susceptibility gene for diabetes. However, its action in the physiology of pancreatic β-cells is not fully understood. Herein, bioinformatics and genetic analyses on the publicly available database were performed to [...] Read more.
Mitogen-activated protein kinase 8 interacting protein-1 (MAPK8IP1) gene has been recognized as a susceptibility gene for diabetes. However, its action in the physiology of pancreatic β-cells is not fully understood. Herein, bioinformatics and genetic analyses on the publicly available database were performed to map the expression of the MAPK8IP1 gene in human pancreatic islets and to explore whether this gene contains any genetic variants associated with type 2 diabetes (T2D). Moreover, a series of functional experiments were executed in a rat insulinoma cell line (INS-1 832/13) to investigate the role of the Mapk8ip1 gene in β-cell function. Metabolic engineering using RNA-sequencing (RNA-seq) data confirmed higher expression levels of MAPK8IP1 in human islets compared to other metabolic tissues. Additionally, comparable expression of MAPK8IP1 expression was detected in sorted human endocrine cells. However, β-cells exhibited higher expression of MAPK8IP1 than ductal and PSC cells. Notably, MAPK8IP1 expression was reduced in diabetic islets, and the expression was positively correlated with insulin and the β-cell transcription factor PDX1 and MAFA. Using the TIGER portal, we found that one genetic variant, “rs7115753,” in the proximity of MAPK8IP1, passes the genome-wide significance for the association with T2D. Expression silencing of Mapk8ip1 by small interfering RNA (siRNA) in INS-1 cells reduced insulin secretion, glucose uptake rate, and reactive oxygen species (ROS) production. In contrast, insulin content, cell viability, and apoptosis without cytokines were unaffected. However, silencing of Mapk8ip1 reduced cytokines-induced apoptosis and downregulated the expression of several pancreatic β-cell functional markers including, Ins1, Ins2, Pdx1, MafA, Glut2, Gck, Insr, Vamp2, Syt5, and Cacna1a at mRNA and/or protein levels. Finally, we reported that siRNA silencing of Pdx1 resulted in the downregulation of MAPK8IP1 expression in INS-1 cells. In conclusion, our findings confirmed that MAPK8IP1 is an important component of pancreatic β-cell physiology and insulin secretion. Full article
Show Figures

Figure 1

23 pages, 5227 KB  
Article
Modulation of Unfolded Protein Response Restores Survival and Function of β-Cells Exposed to the Endocrine Disruptor Bisphenol A
by Laura Maria Daian, Gabriela Tanko, Andrei Mircea Vacaru, Luiza Ghila, Simona Chera and Ana-Maria Vacaru
Int. J. Mol. Sci. 2023, 24(3), 2023; https://doi.org/10.3390/ijms24032023 - 19 Jan 2023
Cited by 13 | Viewed by 3385
Abstract
Diabetes is a metabolic disease that currently affects nearly half a billion people worldwide. β-cells dysfunction is one of the main causes of diabetes. Exposure to endocrine-disrupting chemicals is correlated with increased diabetes incidence. We hypothesized that treatment with bisphenol A (BPA) induces [...] Read more.
Diabetes is a metabolic disease that currently affects nearly half a billion people worldwide. β-cells dysfunction is one of the main causes of diabetes. Exposure to endocrine-disrupting chemicals is correlated with increased diabetes incidence. We hypothesized that treatment with bisphenol A (BPA) induces endoplasmic reticulum (ER) stress that activates the unfolded protein response (UPR), leading to impaired function of the β-cells, which over time, can cause diabetes. In this study, we aimed to evaluate UPR pathways activation under BPA treatment in β-cells and possible recovery of ER homeostasis. MIN6 cells (mouse insulinoma cell line) and isolated pancreatic islets from NOR (non-obese diabetes resistant) mice were treated with BPA. We analyzed the impact of BPA on β-cell viability, the architecture of the early secretory pathway, the synthesis and processing of insulin and the activation of UPR sensors and effectors. We found that the addition of the chemical chaperone TUDCA rescues the deleterious effects of BPA, resulting in improved viability, morphology and function of the β-cells. In conclusion, we propose that modulators of UPR can be used as therapeutic interventions targeted towards regaining β-cells homeostasis. Full article
Show Figures

Figure 1

20 pages, 3076 KB  
Article
Co-Expression of Adaptor Protein FAM159B with Different Markers for Neuroendocrine Cells: An Immunocytochemical and Immunohistochemical Study
by Anna-Sophia Liselott Beyer, Daniel Kaemmerer, Jörg Sänger and Amelie Lupp
Int. J. Mol. Sci. 2022, 23(21), 13503; https://doi.org/10.3390/ijms232113503 - 4 Nov 2022
Cited by 2 | Viewed by 2876
Abstract
Little is known about the adaptor protein FAM159B. Recently, FAM159B was shown to be particularly expressed in neuroendocrine cells and tissues, such as pancreatic islets and neuroendocrine cells of the bronchopulmonary and gastrointestinal tracts, as well as in different types of neuroendocrine tumours. [...] Read more.
Little is known about the adaptor protein FAM159B. Recently, FAM159B was shown to be particularly expressed in neuroendocrine cells and tissues, such as pancreatic islets and neuroendocrine cells of the bronchopulmonary and gastrointestinal tracts, as well as in different types of neuroendocrine tumours. To gain insights into possible interactions of FAM159B with other proteins and/or receptors, we analysed the co-expression of FAM159B and various neuroendocrine-specific markers in the cancer cell lines BON-1, PC-3, NCI-h82, OH-1, and A431 and also in human pancreatic tissues and pancreatic neuroendocrine tumours. The markers included prominent markers of neuroendocrine differentiation, such as chromogranin A (CgA), neuron-specific enolase (NSE), synaptophysin (SYP), insulinoma-associated protein 1 (INSM1), neural cell adhesion molecule 1 (NCAM1), serotonin (5-HT), somatostatin-14/28 (SST), and several receptors that are typically expressed by neuroendocrine cells, such as dopamine receptor 2 (D2R), somatostatin receptor (SSTR) 1, 2, 3, 4 and 5, and regulator of G-protein signalling 9 (RGS9). FAM159B was expressed evenly throughout the cytosol in all five cancer cell lines. Immunocytochemical and immunohistochemical analyses revealed co-expression of FAM159B with SYP, INSM1, RGS9, D2R, SSTR2, SSTR3, SSTR4, and SSTR5 and strong overlapping co-localisation with NSE. Double-labelling and co-immunoprecipitation Western blot analyses confirmed a direct association between FAM159B and NSE. These results suggest the involvement of FAM159B in several intracellular signalling pathways and a direct or indirect influence on diverse membrane proteins and receptors. Full article
(This article belongs to the Special Issue Advances in Membrane Protein Research)
Show Figures

Figure 1

Back to TopTop